Module Handbook
Chemical and Process Engineering Bachelor 2015 (Bachelor of Science (B.Sc.))
SPO 2015
Winter term 2020/21
Date: 25/10/2020

KIT DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING
Table Of Contents

1. Field of study structure

- Bachelor Thesis ... 5
- Fundamentals of Mathematics and Natural Sciences .. 5
- Fundamentals of Scientific Engineering ... 5
- Thermodynamics and Transport Processes ... 6
- Fundamentals of Process Engineering ... 6
- Mandatory Elective Courses ... 6
- Laboratories .. 6
- Specialization/ Project Work ... 7
- Soft Skill Qualifications ... 8

2. Modules

- Advanced Mathematics I - M-MATH-100280 .. 9
- Advanced Mathematics II - M-MATH-100281 .. 10
- Advanced Mathematics III - M-MATH-100282 ... 11
- Applied Apparatus Engineering - M-CIWVT-103297 .. 12
- Biology for Engineers I [BIW-TEBI-01] - M-CIWVT-101624 ... 15
- Biotechnology [CIW-MAB-05] - M-CIWVT-101143 ... 16
- Catalytic Reaction Engineering [CIW-CVT-02] - M-CIWVT-101140 18
- Computational Methods - M-CIWVT-101956 .. 21
- Control Engineering and System Dynamics [CIW-MACH-04] - M-MACH-101300 22
- Downstream Processing [BIW-MAB-02] - M-CIWVT-101124 .. 23
- Elementary Physics - M-PHYS-100993 .. 24
- Enzyme Technology - M-CIWVT-105518 .. 30
- Ethics and Global Material Cycles [CIW-CEB-01] - M-CIWVT-101149 31
- Fluidodynamics [CIW-MVMV-03] - M-CIWVT-101131 ... 32
- Food Biotechnology [BIW-LVT-02] - M-CIWVT-101126 .. 33
- Food Technology [CIW-LVT-03] - M-CIWVT-101148 ... 34
- Industrial Business Administration [CIW-WWI-01] - M-WWI-100528 40
- Industrial Microbiology - M-CIWVT-105517 .. 41
- Industrial Organic Chemistry [CIW-MAB-03] - M-CIWVT-101137 42
- International Concepts of Water Technologies - M-CIWVT-101972 43
- Laboratory Work in General and Inorganic Chemistry - M-CIWVT-101964 45
- Material Science and Engineering [CIW-MACH-01] - M-MACH-102567 46
- Mechanical Design [CIW-MACH-02] - M-MACH-101299 ... 48
- Mechanical Design III+IV [13 LP] - M-MACH-102829 ... 52
- Mechanical Processing [CIW-MVMG-01] - M-CIWVT-101135 54
- Mechanical Separation Technology [CIW-MVMV-06] - M-CIWVT-101147 55
- Module Bachelor Thesis - M-CIWVT-103204 ... 59
- Organic Chemistry for Engineers [CIW-CHEM-04] - M-CHEMBIO-101115 60
- Particle Technology [CIW-MVMV-02] - M-CIWVT-101141 ... 61
- Practical Course in Organic Chemistry for Chemical Engineers [CIW-CHEM-03] - M-CHEMBIO-101116 ... 62
- Process Machines [CIW-MVMV-04] - M-CIWVT-101139 ... 65
- Rheology and Product Design [CIW-MVMA-05] - M-CIWVT-101144 66
- Thermal Process Engineering [CIW-TVT-02] - M-CIWVT-101134 68
- Thermodynamics I [CIW-TTK-01] - M-CIWVT-101129 ... 69
3. Courses

3.1. Advanced Mathematics I - T-MATH-100275 .. 73
3.2. Advanced Mathematics II - T-MATH-100276 ... 74
3.3. Advanced Mathematics III - T-MATH-100277 ... 75
3.4. Application of Numerics in Engineering - T-CIWVT-101876 76
3.5. Applied Apparatus Engineering - T-CIWVT-106562 ... 77
3.8. Bachelor-Thesis - T-CIWVT-106365 ... 80
3.9. Biotechnology - T-CIWVT-103669 ... 81
3.10. Biotechnology - T-CIWVT-103668 ... 82
3.11. Catalytic Reaction Engineering - T-CIWVT-103653 ... 83
3.15. Control Engineering and System Dynamics - T-MACH-102126 87
3.16. Downstream Processing - T-CIWVT-101897 ... 88
3.17. Elementary Physics - T-PHYS-101577 .. 89
3.25. Enzyme Technology - T-CIWVT-111094 ... 97
3.27. Ethics and Global Material Cycles - Prerequisite - T-CIWVT-109219 99
3.28. Examination Material Science I & II - T-MACH-105148 100
3.29. Exercises Process Development and Scale-up - T-CIWVT-111005 101
3.30. Fluidodynamics, Exam - T-CIWVT-101882 ... 102
3.31. Fluidodynamics, Tutorial - T-CIWVT-101904 .. 103
3.32. Food Biotechnology - T-CIWVT-101898 .. 104
3.33. Food Biotechnology - Prerequisite - T-CIWVT-101899 105
3.34. Food Technology - T-CIWVT-103528 .. 106
3.35. Food Technology Project Work - T-CIWVT-103529 107
3.40. Genetics - T-CIWVT-111063 ... 112
3.41. Industrial Business Administration - T-WIWI-100796 113
3.42. Industrial Microbiology - T-CIWVT-111093 ... 114
3.43. Industrial Organic Chemistry - T-CIWVT-101890 .. 115
3.44. International Concepts of Water Technologies - T-CIWVT-103704 116
3.45. Introduction to Informatics and Algorithmic Mathematics - Exam - T-MATH-102250 117
3.46. Laboratory Work in General and Inorganic Chemistry Part I - T-CHEMBIO-101867 .. 118
3.47. Laboratory Work in General and Inorganic Chemistry Part II - T-CIWVT-108294 119
3.48. Laboratory Work Process Engineering - T-CIWVT-108292 120
3.49. Laboratory Work Process Machines - T-CIWVT-101903 121
3.50. Laboratory Work: Downstream Processing - T-CIWVT-111097 122
3.51. Mechanical Design Basics I and II - T-MACH-110363 123
3.52. Mechanical Design Basics I, Tutorial - T-MACH-110364 124
3.53. Mechanical Design Basics II, Tutorial - T-MACH-110365 125
3.54. Mechanical Design III & IV - T-MACH-104810 ... 126
3.55. Mechanical Design III, Tutorial - T-MACH-110955 .. 127
3.56. Mechanical Design IV, tutorial - T-MACH-110956 ... 128
3.57. Mechanical Processing - T-CIWVT-101886 .. 129
<table>
<thead>
<tr>
<th>Module Title</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.58. Mechanical Separation Technology Exam - T-CIWVT-103448</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>3.59. Mechanical Separation Technology Project Work - T-CIWVT-103452</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>3.60. Micro Process Engineering - T-CIWVT-103667</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>3.62. Organic Chemistry for Engineers - T-CHEMBIO-101865</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>3.63. Particle Technology - T-CIWVT-103654</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>3.64. Particle Technology - T-CIWVT-103655</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>3.65. Practical Course in Organic Chemistry for Chemical Engineers - T-CHEMBIO-101868</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>3.66. Process Development and Scale-up - T-CIWVT-103530</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>3.67. Process Development and Scale-up Project Work - T-CIWVT-103556</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>3.68. Rheology and Product Design - T-CIWVT-103522</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>3.69. Rheology and Product Design Project Work - T-CIWVT-103524</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>3.70. Safety Instruction - T-CIWVT-108293</td>
<td></td>
<td>142</td>
</tr>
<tr>
<td>3.71. Safety Instruction - T-CIWVT-108291</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>3.72. Thermal Process Engineering - T-CIWVT-101885</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>3.73. Thermodynamics I, Exam - T-CIWVT-101879</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>3.74. Thermodynamics I, Tutorial - T-CIWVT-101878</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>3.75. Thermodynamics II, Exam - T-CIWVT-101881</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>3.76. Thermodynamics II, Tutorial - T-CIWVT-101880</td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>3.77. Tutorial Advanced Mathematics I - T-MATH-100525</td>
<td></td>
<td>149</td>
</tr>
<tr>
<td>3.78. Tutorial Advanced Mathematics II - T-MATH-100526</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>3.79. Tutorial Advanced Mathematics III - T-MATH-100527</td>
<td></td>
<td>151</td>
</tr>
</tbody>
</table>
1 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Thesis</td>
</tr>
<tr>
<td>Fundamentals of Mathematics and Natural Sciences</td>
</tr>
<tr>
<td>Fundamentals of Scientific Engineering</td>
</tr>
<tr>
<td>Thermodynamics and Transport Processes</td>
</tr>
<tr>
<td>Fundamentals of Process Engineering</td>
</tr>
<tr>
<td>Mandatory Elective Courses</td>
</tr>
<tr>
<td>Laboratories</td>
</tr>
<tr>
<td>Specialization/ Project Work</td>
</tr>
<tr>
<td>Soft Skill Qualifications</td>
</tr>
</tbody>
</table>

1.1 Bachelor Thesis

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103204</td>
<td>Module Bachelor Thesis</td>
</tr>
</tbody>
</table>

1.2 Fundamentals of Mathematics and Natural Sciences

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-100280</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MATH-100281</td>
<td>Advanced Mathematics II</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MATH-100282</td>
<td>Advanced Mathematics III</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-101956</td>
<td>Computational Methods</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-101117</td>
<td>General and Inorganic Chemistry</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-101115</td>
<td>Organic Chemistry for Engineers</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-PHYS-100993</td>
<td>Elementary Physics</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

1.3 Fundamentals of Scientific Engineering

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101128</td>
</tr>
<tr>
<td>M-MACH-102567</td>
</tr>
<tr>
<td>M-MACH-101299</td>
</tr>
<tr>
<td>M-MACH-101300</td>
</tr>
</tbody>
</table>

First usage possible from 10/1/2017.
1 FIELD OF STUDY STRUCTURE

1.4 Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101129</td>
<td>Thermodynamics I</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-101130</td>
<td>Thermodynamics II</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-101131</td>
<td>Fluidynamics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-101132</td>
<td>Fundamentals of Heat and Mass Transfer</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

1.5 Fundamentals of Process Engineering

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101135</td>
<td>Mechanical Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-101134</td>
<td>Thermal Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-101133</td>
<td>Chemical Process Engineering</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

1.6 Mandatory Elective Courses

Election notes
In most cases, two modules totaling 10 ECTS are chosen (regardless of whether the modules are offered in the summer or winter term). For most optional subjects, participation is not recommended before the fourth semester.

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101124</td>
<td>Downstream Processing</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-101126</td>
<td>Food Biotechnology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-101136</td>
<td>Energy Process Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-101137</td>
<td>Industrial Organic Chemistry</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-101972</td>
<td>International Concepts of Water Technologies</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-101624</td>
<td>Biology for Engineers I</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-103297</td>
<td>Applied Apparatus Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III+IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-CIWVT-105517</td>
<td>Industrial Microbiology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-105518</td>
<td>Enzyme Technology</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

1.7 Laboratories

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101138</td>
<td>Lab Work Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-101964</td>
<td>Laboratory Work in General and Inorganic Chemistry</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-101139</td>
<td>Process Machines</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-101116</td>
<td>Practical Course in Organic Chemistry for Chemical Engineers</td>
<td>5 CR</td>
</tr>
</tbody>
</table>
In the fifth semester the possibility of profile building exists for the first time. Eleven specialization subjects are available. The size and structure of these specialization subjects are similar. All specialization subjects extend over two semesters, start in the winter semester and end at the end of May at the latest. In the winter semester, lectures usually take place in which extended, subject-specific knowledge is imparted. Subsequently, research-related project work is carried out in small groups. Prerequisites for participation in the profile subjects are at least 60 ECTS and at least one successfully completed internship (e.g. general and inorganic chemistry, process engineering,...).

The learning control of specialization subjects consists of two parts which are listed in the description of the module description (e.g. oral examination and presentation of the project work). The specialization subject is only passed if both partial examinations are passed (evaluated with at least “sufficient”). A failed partial performance can only be repeated once. Dates for repeat exams will be agreed with the person responsible for the subject.

As the practical work is carried out in the laboratory, the number of participants in the individual specialization subjects is limited. The registration for the specialization subjects is usually possible in July. Within a registration period of two weeks, students have the opportunity to choose their preferred subject (at least one first and one second wish). After the registration deadline, the places will be allocated automatically, taking into account your wishes as far as possible.

Before the start of the registration period, an information event will be held on 12 July 2019 in which the individual subjects will be presented and the registration procedure explained.

The location and time of the information event will be published in good time on the faculty's and student council's homepages.

The registration process is divided into two stages:
In July, the desired profile subjects can be selected via the following portal https://portal.wiwi.kit.edu/
After the allocation you can choose your specialization subject in the Study Portal, the choice is approved online by the faculty, afterwards the registration for the individual examinations is possible.

Election regulations
Elections in this field require confirmation.

<table>
<thead>
<tr>
<th>Election block: Specialization/ Project Work (at least 12 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101144 Rheology and Product Design</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101145 Energy and Environmental Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101147 Mechanical Separation Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101148 Food Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101140 Catalytic Reaction Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101141 Particle Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101143 Biotechnology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101152 Water Quality and Process Engineering of Water and Waste Water Treatment</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101154 Micro Process Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101153 Process Development and Scale-up</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-104457 Fundamentals of Refrigeration</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-104458 Applied Thermal Process Engineering</td>
<td>12 CR</td>
</tr>
</tbody>
</table>
1.9 Soft Skill Qualifications

A total of 6 LPs must be completed in the area of "soft skill qualifications" during the Bachelor's programme. Non-technical modules, such as modules from other subject areas, language courses or other courses offered by the House of Competence (HoC) or the Centre for Applied Cultural Studies and General Studies (ZaK), belong to interdisciplinary qualifications.

3 of the 6 LPs are fixed: At least one of the modules "Ethics and Global Material Cycles" and/or "Industrial Business Administration" must be selected (scope 3 LP each).

Modules in the range of 3 LP can be freely selected. The following can be done:

- either both modules "Industrial Business Administration" and "Ethics and Global Material Cycles"
- or any modules of at least 3 LP (e.g. HoC or ZaK courses)

can be selected.

<table>
<thead>
<tr>
<th>Election block: Soft Skill Qualifications (at least 6 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101149 Ethics and Global Material Cycles</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-100528 Industrial Business Administration</td>
<td>3 CR</td>
</tr>
</tbody>
</table>
2 Modules

2.1 Module: Advanced Mathematics I [M-MATH-100280]

Responsible: Prof. Dr. Roland Griesmaier
Organisation: KIT Department of Mathematics
Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100525</td>
<td>Tutorial Advanced Mathematics I</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried by a written examination of length 120 minutes and by homework assignments (pre-requesite). A “pass” result on the pre-requesite is a requirement for registration for the corresponding written examination.

Competence Goal

The students know the fundamentals of one-dimensional calculus. They can reliably use limits, functions, power series and integrals. They understand central concepts such as continuity, differentiability or integrability and they know important statements about these concepts. The students can follow the arguments leading to these statements as presented in the lectures and are able to independently prove simple assertions based on these statements.

Module grade calculation

The module grade is the grade of the written examination

Prerequisites

none

Content

Fundamentals, sequences and convergence, functions and continuity, series, differential calculus of one real variable, integral calculus

Workload

In class: 90 hours

- lectures, tutorials and examinations

Independent study: 120 hours

- independent review of course material
- work on homework assignments
- preparation for written exams

Literature

will be announced in class.
2.2 Module: Advanced Mathematics II [M-MATH-100281]

Responsible: Prof. Dr. Roland Griesmaier

Organisation: KIT Department of Mathematics

Part of: Fundamentals of Mathematics and Natural Sciences

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each summer term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100276</td>
<td>Advanced Mathematics II</td>
<td>7 CR Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>Tutorial Advanced Mathematics II</td>
<td>0 CR Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried by a written examination of length 120 minutes and by homework assignments (pre-requisite). A “pass” result on the pre-requisite is a requirement for registration for the corresponding written examination.

Competence Goal

The students know about the fundamentals of linear algebra. They are able to use vectors, linear maps and matrices without problems. They have basic knowledge about Fourier series. The students also can theoretically and practically deal with initial value problems of ordinary differential equations. They can make use of classical solution techniques for linear differential equations.

Module grade calculation

The module grade is the grade of the written examination.

Prerequisites

none

Content

vector spaces, linear maps, eigenvalues, Fourier series, differential equations, Laplace transform

Recommendation

The following modules should have been taken: Advanced Mathematics 1

Workload

In class: 90 hours

- lectures, tutorials and examinations

Independent study: 120 hours

- independent review of course material
- work on homework assignments
- preparation for written exams

Literature

will be announced in class.
2.3 Module: Advanced Mathematics III [M-MATH-100282]

Responsible: Prof. Dr. Roland Griesmaier
Organisation: KIT Department of Mathematics
Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100277</td>
<td>Advanced Mathematics III</td>
<td>7 CR Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>Tutorial Advanced Mathematics III</td>
<td>0 CR Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried by a written examination of length 120 minutes and by homework assignments (pre-requisite). A "pass" result on the pre-requisite is a requirement for registration for the corresponding written examination.

Competence Goal

The students know about differential calculus for vector-valued functions of several variables and about techniques of vector calculus such as the definition and application of differential operators, the computation of domain, line and surface integrals and important integral theorems. They have basic knowledge about partial differential equations and know basic facts from stochastics.

Module grade calculation

The module grade is the grade of the written examination.

Prerequisites

none

Content

Multidimensional calculus, domain integrals, vector calculus, partial differential equations, stochastics.

Recommendation

The following modules should have been taken before: Advanced Mathematics I and II

Workload

In class: 90 hours

- lectures, tutorials and examinations

Independent study: 120 hours

- independent review of course material
- work on homework assignments
- preparation for written exams

Literature

will be announced in class.
M 2.4 Module: Applied Apparatus Engineering [M-CIWVT-103297]

Responsible: Dr. Martin Neuberger
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106562</td>
<td>Applied Apparatus Engineering</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Success Control is an written examination of 90 minutes duration according to § 4 Abs. 2 Nr. 1 SPO.

Competence Goal
The students will be able to describe the necessary steps for concept, planning and calculation of a construction of a machine until the commissioning. This contains the choice and declaration of single components. The students will apply the principles of the machine design with respect to the requirements for different educts, products and processes. Additionally to technical aspects, the students will learn about cost management, time management and quality management. The students will know the sequence of licensing and providing procedures.

Prerequisites
None

Content
Project Management
- Project time management, project cost management, work breakdown structure

Process of Machine Design
- Product (requirements with respect to corrosion, purity, cleanliness ...), process (manufacturing, pressure, temperature, ...),
- selection of materials and components (motors, pumps, vans, fittings), maintenance, repair, safety, manufacturing process (welding, brazing ...), transport, commissioning, performance test, approval ...

Procurement
- Technical specification, call for tenders, contract design, claim management

Quality Management
- Certification concerning ISO 9001:2015, quality planning, quality approval
- e.g. welding process qualification, qualified welders ...
- material qualification report, control of manufacturing and mounting, commissioning

Workload
- Attendance time: 60 h
- Self-study: 45 h
- Exam preparation: 45 h

Literature
Walter Wagner: Planung im Anlagenbau; Vogel Business Media; Auflage: 3. Auflage (August 2009)
2.5 Module: Applied Thermal Process Engineering [M-CIWVT-104458]

Responsible: Dr.-Ing. Benjamin Dietrich
Dr. Philip Scharfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization / Project Work

Credits
12

Recurrence
Each winter term

Language
German

Level
3

Version
3

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-CIWVT-109120</td>
<td>Applied Thermal Process Engineering - Project work</td>
<td>6 CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>T-CIWVT-110803</td>
<td>Applied Thermal Process Engineering - Exercises</td>
<td>6 CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Goal

Students can

- explain basic, future-oriented processes of applied thermal process engineering
- process chain of a scientific question up to its answer: planning, conceptual design, implementation, execution and evaluation of fundamental experiments, describing aspects for implementation on a technical scale (scale-up)
- work scientifically using standard IT tools
- present scientific results
- independently acquire specialist knowledge

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content

Within the scope of this module an insight into the current research of the institute is to be made possible, which deals with future-oriented topics, such as renewable energy concepts, electromobility and energy storage. Three basic experiments in the fields of drying, heat transfer and crystallization are offered in the form of a project work.

First, the corresponding technical and methodological fundamentals are presented in a lecture. This also includes the transfer of necessary knowledge for the preparation of a scientific report or a scientific presentation as well as the use of special Excel tools such as solvers or macros. In special workshops at the TVT the lecture contents can be trained. Subsequently, experiments are carried out in the laboratory using modern, partly self-assembled measuring technology (e.g. temperature sensors based on single board computers / Arduino) on the respective topic. The evaluation is carried out using the basics laid down in the lecture and with the aid of corresponding chapters of the VDI heat atlas. The results are summarized in a work report and are presented in a lecture. In the following step, a design calculation for the industrial scale-up with corresponding specifications of the required devices is prepared for one of the basic experiments. The design achieved is to be presented to the other students of the profile subject in a scientific seminar. The practical part is rounded off by an excursion to BASF in Ludwigshafen, which provides insights into the application of what has been learned in industrial implementation.

Recommendation

The successful participation in the lecture "Basics of Heat an Mass Transfer" of the TVT ist an advantage.
Workload
Lectures and exercises: 100 h
Homework: 160 h
Laboratory work (incl. interpretation and report): 100 h

Literature
- VDI-Wärmeatlas, Springer 2013
- Own Manuscripts
Module: Biology for Engineers I (BIW-TEBI-01) [M-CIWVT-101624]

Responsible: Prof. Dr. Christoph Syldatk
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

Credits: 5
Recurrence: Each winter term
Language: German
Level: 3
Version: 2

Competence Certificate
The module is successfully completed by
- a written exam “Cell Biology” of 90 min (according to § 4 Abs. 2 SPO)
- a written exam “Genetics” of 90 min (according to § 4 Abs. 2 SPO)

Competence Goal
Genetics: Students are able to give a detailed description of basic aspects of molecular genetics in pro- and eukaryotes and can explain genetic processes in their own words. Basic aspects are in particular: Structure and organization of nucleic acids, mechanisms of replication, transcription, translation, regulation of gene expression, recombination, transposition, DNA repair mechanisms and genetic basics of virology. Furthermore, students are able to apply their basic knowledge by explaining graphics or by transferring their knowledge to gene technological methods.

Cell-biology: Identification of pro- and eukaryotic cells, identification of pro- and eukaryotic cellular constituents, knowledge of basic metabolic pathways, knowledge of the most important molecule classes and their occurrence, ability to operate a light microscope and knowledge of the underlying theory, being able to select bioreactors according to the application

Module grade calculation
The module grade is calculated from the LP-weighted average of both parts of the module.

Prerequisites
None

Content
Cell biology: Microscopy; Cell structure of pro- and eukaryotes; Eukaryotic cell compartments; Structure and function of macromolecules; Communication between cells; Cell cycle.

Genetics: Nucleic acids; Chromatin and chromosomes; Genes and genomes; Replication; Transcription; Translation; Recombination; Mutations and DNA repair mechanisms; Gene regulation; Methods and applications of molecular gene technology.

Recommendation
None

Workload
Attendance time: Lecture of 4 SWS ? 60 h
Self-study time: 30 h
Exam preparation: 60 h

Literature
Zellbiologie:
Alberts, Lehrbuch Molekulare Zellbiologie (Wiley-VCH)
Genetik:
Munk, Taschenlehrbuch Biologie, Genetik (Thieme)
Knippers, Genetik (Thieme)
2.7 Module: Biotechnology (CIW-MAB-05) [M-CIWVT-101143]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization / Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103668</td>
<td>Biotechnology</td>
<td>3</td>
<td>Wörner</td>
</tr>
<tr>
<td>T-CIWVT-103669</td>
<td>Biotechnology</td>
<td>9</td>
<td>Perner-Nochta</td>
</tr>
</tbody>
</table>

Competence Certificate

The module comprises two graded success controls according to § 4 (2) No 2,3 SPO:

1. written examination
2. practical work / protocol / presentation

The module grade is calculated from both parts of the module, part 1: 25%, part 2: 75%

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Competence Goal

Basic understanding of processes and synthesis of processes in biotechnologic production

lecture „Instrumental Bioanalytics“

The students are able to assign important methods of instrumental biotechnology to corresponding analytical problems. By deepening their theoretical understanding of physical-chemical analytics and working techniques the students become qualified to analyze fields of application and constraints thereof. They can compare/evaluate potentials and limitations of different methods and select suitable methods for (future) experimental work on their own.

Lecture „Management of scientific projects“ and exercises:

The students are able to conduct literature research on their own, design own experiments, evaluate their own data, write own scientific texts. They can plan their own small project regarding time and finances required and prepare a project plan as well as present it. They can prepare a (scientific) poster and present it.

Hands-on training

The students are able to do own scientific research and practical work in the field of biotechnology. They know how to analyse their own gained data and prepare a project report.

Module grade calculation

weighted mean based on LP

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course
Modeled Conditions
The following conditions have to be fulfilled:

1. You have to fulfill one of 6 conditions:
 1. The module M-CIWVT-101138 - Lab Work Process Engineering must have been passed.
 2. The module M-CIWVT-101139 - Process Machines must have been passed.
 3. The module M-CIWVT-101722 - General Chemistry and Chemistry of Aqueous Solutions must have been passed.
 4. The module M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry must have been passed.
 5. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been passed.
 6. The course T-CIWVT-103331 - Laboratory Work: Biology for Engineers must have been passed.

2. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content
lecture „Instrumental Bioanalytics“
The lecture introduces to important instrumental methods in biotechnology including both theory and possible fields of application. Methods covered in the lecture are chromatographic separation techniques, spectroscopic structure analysis (MS, NMR, IR, absorption and fluorescence) as well as special microscopic techniques (fluorescence, CLSM, EM and SNOM). Beyond that, scanning probe microscopy and single molecule spectroscopy will be introduced.

Lecture „Management of scientific projects“ and exercises:
The lecture covers literature research, design of experiments, data evaluation, scientific writing and project management; in parts it is software-based and carried out in an electronic classroom.

Practical exercises cover literature research, preparation of a project plan, presentation of the project plan, preparation of a poster, presentation of the poster

Hands-on training
Accomplishment of autonomous investigation and practical work in the field of biotechnology, preparation of a project report

Workload
Instrumental Bioanalytics (3 ECTS):
 - Lectures and Exercises: 28 h
 - Homework: 30 h
 - Exam Preparation: 32 h

Management of scientific projects (3 ECTS):
 - Lectures and Exercises: 28 h
 - Homework: 64 h

Lab Work: (3 ECTS):
 - Lab: 80 h
 - Homework: 10 h

Project (3 ECTS)
 - Lab: 10 h
 - Homework: 80 h

Literature
Will be announced.
Module: Catalytic Reaction Engineering (CIW-CVT-02) [M-CIWVT-101140]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103652</td>
<td>Catalytic Reaction Engineering</td>
<td>8 CR</td>
<td>Kraushaar-Czarnetzki</td>
</tr>
<tr>
<td>T-CIWVT-103653</td>
<td>Catalytic Reaction Engineering</td>
<td>4 CR</td>
<td>Kraushaar-Czarnetzki</td>
</tr>
</tbody>
</table>

Competence Certificate

Graded: oral (written in case of overload) examinations for the lectures; written report and presentation for the project work

The module grade is calculated from the LP-weighted mean of both parts of the module.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Competence Goal

Students can analyse and design chemical reactors for conversions of two- and three-phase reaction mixtures. They are able to identify processing conditions for efficient, selective and safe operation. Furthermore, they are familiar with the functions, the manufacturing techniques and the important characterisation methods of heterogeneous catalysts, and with the prominent mechanistic models used to explain catalytic effects.

Module grade calculation

Weighted mean based on LP

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content

Multiphase reaction engineering and heterogeneous catalysis including modeling and applications to practical technical topics.

Workload

360 h

Learning type

22122 Chemical Process Engineering II, 1 V, 2 LP
22123 Exercises to Chemical Process Engineering II, 1 Ü, 2 LP
22125 Heterogeneous Catalysis I, 2 V, 4 LP
project work with excursion, 5 SWS, 4 LP
Literature
B. Kraushaar-Czarnetzki: Lecture notes "Chemische Verfahrenstechnik II" (https://studium.kit.edu).
B. Kraushaar-Czarnetzki: Lecture notes "Heterogene Katalyse I" (https://studium.kit.edu).
Topical references to special literature are given in the above mentioned lecture notes.
Module: Chemical Process Engineering (CIW-CVT-01) [M-CIWVT-101133]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki
Organisation: KIT Department of Chemical and Process Engineering
Part of: Fundamentals of Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-CIWVT-101884 Chemical Process Engineering 6 CR Kraushaar-Czarnetzki

Competence Certificate
Learning control is a written examination of 120 min duration according to §4 Abs. 2 Nr. 1 SPO

Competence Goal
Students can analyse and design reactors for chemical and enzymatic-biochemical conversions in homogeneous phase. They are able to promote the formation of a certain desired product in multi-step reactions, when parallel and consecutive steps can yield further products. Furthermore, students can apply balances of energy to identify conditions of safe reactor operation when exo- and endothermic reactions are run.

Module grade calculation
Grade of the written examination

Prerequisites
None

Content
Application of mass and energy balances for the analysis and design of ideal reactors for single-phase conversions, and for the identification of optimum operation conditions.

Recommendation
Courses of 1st - 4th semester

Workload
lecture: 56 h
self-study: 56 h
preparation of examination. 68 h

Literature
B. Kraushaar-Czarnetzki: "Klausuren mit Lösungen" (Studentenwerk).
2.10 Module: Computational Methods [M-CIWVT-101956]

Responsible: Dr. Peter Habisreuther

Organisation: KIT Department of Chemical and Process Engineering

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102250</td>
<td>Introduction to Informatics and Algorithmic Mathematics - Exam</td>
<td>5 CR</td>
<td>Dörfler, Krause</td>
</tr>
<tr>
<td>T-CIWVT-101876</td>
<td>Application of Numerics in Engineering</td>
<td>3 CR</td>
<td>Habisreuther</td>
</tr>
</tbody>
</table>

Competence Goal

Higher programming languages, design and description of algorithms, basic algorithms from mathematics and computer science, implementation of mathematical concepts on computers, modeling and simulation of scientific and technical problems.

Students are able to solve engineering problems applying numerical methods, to solve a problem within a fixed time-frame in a team and to show their results in a concluding presentation.

Prerequisites

None

Content

The course offers the basics to advanced studies. Key concepts of the lectures are: structured program design, iteration, recursion, data structures (in particular: arrays), procedural programming with functions and methods, developing application-oriented programs. In computer labs, the mathematical concepts will be implemented.

Fundamentals to solve problems in process engineering by applying numerical methods.
Module: Control Engineering and System Dynamics (CIW-MACH-04) [M-MACH-101300]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering
Part of: Fundamentals of Scientific Engineering

Credits: 5
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 3
Version: 2

Mandatory

T-MACH-102126 Control Engineering and System Dynamics

Competence Certificate
Type of Examination: written exam
Duration of Examination: 120 minutes

Competence Goal
Provision of linear system theory and simple controls for technical systems to CIW and BIW engineers.

Module grade calculation
grade of the written examination

Prerequisites
Compulsory preconditions: none
Recommendation: courses of 1st -3rd semester

Content
Dynamic systems, Properties of important systems and modeling, Stability, Controller design, Estimation

Workload
150 hours

Learning type
2138332 Regelungstechnik und System-dynamik, 2V, 2 LP, compulsory course
2138333 Übungen zu Regelungstechnik und Systemdynamik, 1Ü, 2 LP, compulsory course

Literature
Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag
2.12 Module: Downstream Processing (BIW-MAB-02) [M-CIWVT-101124]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

Credits: 7
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101897</td>
<td>Downstream Processing</td>
<td>5 CR</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>T-CIWVT-111097</td>
<td>Laboratory Work: Downstream Processing</td>
<td>2 CR</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control consist of

- written examination of 120 min duration according to § 4 Abs. 2 SPO
- Lab work

Competence Goal
Overview on unit operations for protein separations and respective analytics used in the biotechnological industry.

Module grade calculation
ECTS-weight mean of written examination and lab work.

Prerequisites
None

Content
The lecture series addresses fundamentals in biotechnological purification of bio-products and respective analytics.

Recommendation
Courses of 1st - 3rd semester

Workload
Lectures and exercises: 56h
Homework: 50 h
preparation of examination: 44 h
Lab Work (one week):
Attendance time: 40 h
preparation and reports: 20 h

Literature
will be announced
2.13 Module: Elementary Physics [M-PHYS-100993]

Responsible: Prof. Dr. Bernd Pilawa

Organisation: KIT Department of Physics

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-101577 | Elementary Physics | 7 CR | Pilawa, Ustinov |

Competence Certificate

See components of this module

Prerequisites

The modules Advanced Mathematics I and Advanced Mathematics II have to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-MATH-100280 - Advanced Mathematics I must have been passed.
2. The module M-MATH-100281 - Advanced Mathematics II must have been passed.

Recommendation

Contents of *Engineering Mechanics: Dynamics*
2.14 Module: Energy and Environmental Engineering (CIW-MVM-06) [M-CIWVT-101145]

Responsible:
- Prof. Dr. Reinhard Rauch
- Prof. Dr.-Ing. Dimosthenis Trimis

Organisation:
KIT Department of Chemical and Process Engineering

Part of: Specialization / Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103527</td>
<td>Energy and Environmental Engineering Project Work</td>
<td>4</td>
<td>Rauch, Trimis</td>
</tr>
<tr>
<td>T-CIWVT-108254</td>
<td>Energy and Environmental Engineering</td>
<td>8</td>
<td>Rauch, Trimis</td>
</tr>
</tbody>
</table>

Competence Certificate
The module comprises two graded success controls according to § 4 (2) No. 1, 3 SPO:
- written examination, duration 120 minutes
- project work

The module grade is calculated from the LP-weighted mean of both parts of the module.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Competence Goal
The students will be able to discuss, analyze and compare applications in energy engineering and environmental protection (primary/secondary means, efficiency, raw materials etc.).

Prerequisites
Participation requires
- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content
Introduction into production of fuels (chemical energy carriers) from fossil and renewable sources and their use, prevention of formation of pollutants, removal of pollutants, review and selected examples, fundamentals and applications of high temperature energy conversion.

Recommendation
Courses of 1st - 4th semester

Workload
- Attendance time: 60 h
- Excursions: 20 h
- Self-Study: 90 h
- Project work: 90 h
- Exam preparation: 100 h
Literature
lecture notes and specific literature indicated during lectures, additionally:
M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010
Module: Energy Process Engineering (CIW-CEB-02) [M-CIWVT-101136]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Prof. Dr.-Ing. Nikolaos Zarzalis

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning control is a written examination of 150 min duration according to § 4 Abs. 2 SPO.

Competence Goal

Students learn to classify energy and the different appearances of energy, knowledge of the different energy sources and the national and global energy demand, knowledge and solution of simple tasks in energy conversion with different conversion methods.

Module grade calculation

Grade of the written examination

Prerequisites

None.

Content

Basics: Concepts, forms of appearance of energy, systems and balances

Process Engineering: Energy carriers, energy conversion, energy transportation and storage, decentral energy systems

Ecology / Economy / Policy

Recommendation

Thermodynamik

Workload

- Lectures: 56 h
- Self-study: 50 h
- Preparation of examination: 44 h

Literature

In the lecture stated literature, additionally:

- VDI-Gesellschaft Energietechnik (Hrsg.): Energietechnische Arbeitsmappe, Springer-Verlag, Berlin 2000
- M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010
2.16 Module: Engineering Mechanics: Dynamics (CIW-MVMA-03) [M-CIWVT-101128]

Responsible: Prof. Dr. Roland Dittmeyer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Exam Credits</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101877</td>
<td>Engineering Mechanics: Dynamics, Exam</td>
<td>5 CR</td>
<td></td>
<td>Dittmeyer</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-106290</td>
<td>Engineering Mechanics: Dynamics</td>
<td>0 CR</td>
<td></td>
<td>Dittmeyer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment of success takes place via
1. a written examination of 90 minutes according to § 4, passage 2 of the Studies and Examinations Regulations (SPO)
2. prerequisite

Competence Goal
Students possess basic knowledge in Engineering Mechanics/Dynamics, they are familiar with problem solving and able to use this knowledge for theoretical analysis and solution of practical engineering problems.

Module grade calculation
grade of the written examination. Superior preliminary test can be credited according to §7,13 SPO.

Prerequisites
None

Content
Kinematics and dynamics of mass point;
Kinematics and dynamics of rigid body;
The principle of linear momentum, angular momentum, work and energy theorem;
Oscillation of the systems with one or more freedom degrees;
Relative movement of mass point;
Methods in analytical Mechanics, Lagrange equation;

Recommendation
modules of 1. - 2. semester.

Workload
lectures and exercises: 56 h
self study: 56 h
preparation for examination 40h

Literature
Kühlhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
Hibbler: Dynamik, Pearson 2006, 10. Auflage
Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner2006

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: Fundamentals of Scientific Engineering (Usage from 10/1/2017)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Authors</th>
</tr>
</thead>
</table>

Competence Certificate
Learning Control consists of:

- A written examination "Statics" according § 4 (2) No 1 SPO. Duration: 90 minutes.
- A written examination "Strength of Material" according § 4 (2) No 1 SPO. Duration: 90 minutes.

Module grade calculation
ECTS-weighted mean.

Prerequisites
None

Content
forces and momentums, static balance, bearings, frameworks, tension/elongation in general (3D), internal force variables of beams, friction, principle of virtual work, tension/elongation in rods, hypothesis of stability, torsion, buckling

Workload
Attendance time: 120 h
Self-study: 120 h
Exam preparation: 60 h

Literature
Gross/Hauger/Schnell/Schröder: Technische Mechanik
Hibbeler: Technische Mechanik 1- Statik, Pearson 2005, 10. Auflage;
Technische Mechanik 2 - Festigkeitslehre,
Pearson (2006) 5. Auflage,
Mechanics of Materials, Pearson (2004),
Kühnhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner 2006
Müller/Ferber: Technische Mechanik für Ingenieure (mit CD-Rom), Fachbuchverlag Leipzig 2005;
2.18 Module: Enzyme Technology [M-CIWVT-105518]

Responsible: Dr. Jens Rudat
Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-111094 | Enzyme Technology | 5 CR | Rudat, Syldatk |

Competence Certificate
Learning Control is a written examination according to § 4 Abs. 2 Nr. 1 SPO.

Module grade calculation
The grade of module ist the grade of written examination.

Prerequisites
None.

Workload
- Lectures: 60 h
- Homework: 40 h
- Exam Preparation: 50 h

Literature
- Voet/Voet/Pratt: "Lehrbuch der Biochemie" (Wiley-VCH)
- Koolman/Röhm Taschenatlas der Biochemie (Thieme)
Module: Ethics and Global Material Cycles (CIW-CEB-01) [M-CIWVT-101149]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of: Soft Skill Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101887 | Ethics and Global Material Cycles | 3 CR | Rauch |
| T-CIWVT-109219 | Ethics and Global Material Cycles - Prerequisite | 0 CR | Rauch |

Competence Certificate

Examination consists of

1. Prerequisite: regular attendance at lectures and exercises; short presentation
2. Written examination (ILIAS)

Competence Goal

Basic understanding of: Examples of global material cycles and effects caused by human societies, Important limitations for material and energy conversion by human societies (civilization, industrialization), Basic knowledge in engineering ethics, Competences in "handling" with ethical questions for engineers

Module grade calculation

Not applicable

Prerequisites

Prerequisite has to be passed for admittance to the written examination.

Content

Bio-geosphere as environment for human life. selected examples of global material cycles. limits of man-made material and energy conversion. sustainability as term. priority rules for sustainability and for shaping the future. technology assessment, engineering codes. responsibility individual, collective, corporate

Workload

- lectures and exercises: 15 h
- homework: 45 h
- preparation of examination: 30 h

Literature

2.20 Module: Fluidodynamics (CIW-MVMV-03) [M-CIWVT-101131]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering

Part of: Thermodynamics and Transport Processes

Credits 5
Recurrence Each summer term
Duration 1 term
Language German
Level 3
Version 2

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101882</td>
<td>Fluidodynamics, Exam</td>
<td>5</td>
<td>Nirschl</td>
</tr>
<tr>
<td>T-CIWVT-101904</td>
<td>Fluidodynamics, Tutorial</td>
<td>0</td>
<td>Nirschl</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning control consists of:

1. written exam of 120 minutes duration according to § 4 (2) SPO.
2. Non-graded precondition for participation according to § 4 (3) SPO: eihter 4 of 5 compulsory exercises have to be approved or a group presentation has to be given during the lecture

Competence Goal

The students have the ability to analyse, to structure and to describe problems in fluid dynamics. The also can use the specific methods for the calculation of specific flows with the studied tools. Besides they are able to discuss the different procedures critically.

Module grade calculation

grade of the written examination

Prerequisites

none

Content

Fundamentals of fluid dynamics: hydro static, aerostatik, compressible and incompressible flows, turbulent flows, Navier-Stokes equations, boundary layer theory

Recommendation

Courses of 1st - 3rd semester

Workload

lecture 2 SWH, exercises 2 SWH: 56 h
self-study: 56 h
preparation of examination: 56 h

Literature

Nirschl, Zarzalis: Skriptum Fluidmechanik
Zierep: Grundzüge der Strömungslehre, Teubner 2008
Prandtl: Führer durch die Strömungslehre, Teubner 2008
Module: Food Biotechnology (BIW-LVT-02) [M-CIWVT-101126]

2.21 Module: Food Biotechnology (BIW-LVT-02) [M-CIWVT-101126]

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two sucess controls:
1. written examination
2. non-granded precondition for the admission to the examination: short presentations

Competence Goal
The students will know about basics to secure food (and life science product) safety.

Module grade calculation
grade of the written examination.

Prerequisites
None

Content
The students will learn about microorganisms being important for food safety and biotechnological food production. Based on some historical products student will learn modern process technology. Technologies to secure food (and life science product safety) will be taught. Using actual case studies students will learn how food process engineers work. Process and product design will be rehearsed and practised in exercises and commented students' presentations.

Recommendation
Courses of 1st semester

Workload
Attendance time: 60 h
Preparation of presentation: 10 h
Exam Preparation: 20 h
homework: 60 h

Literature
Lebensmittelmiikrobiologie (J. Krämer, UTB Ulmer)
Lebensmittelbiotechnologie (Heinz Rutlof, Akademie Verlag)
Lebensmittelverfahrenstechnik, Teil A (Schuchmann, Wiley)
Lebensmittelbiotechnologie: eine Einführung (P. Czemak, GIT)
Lebensmittelbiotechnologe (R. Heiss, Springer)
Lexikon der Lebensmitteltechnologie (B. Kunz, Springer)
Taschenatlas der Biotechnologie und Gentechnik (Rolf D. Schmid, Wiley)
Mikroorganismen in Lebensmitteln (H. Keweloh, Pfanneberg)
Mikrobiologie der Lebensmittel (G. Müller, H. Weber, Behr's)
Grundzüge der Lebensmitteltechnik (H.-D. Tscheuschner, Behr's)
2.22 Module: Food Technology (CIW-LVT-03) [M-CIWVT-101148]

Responsible: Dr.-Ing. Azad Emin

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization / Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103528</td>
<td>Food Technology</td>
<td>5</td>
<td>Emin</td>
</tr>
<tr>
<td>T-CIWVT-103529</td>
<td>Food Technology Project Work</td>
<td>7</td>
<td>Emin</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two graded success controls according to § 4 (2) No 2, 3 SPO:

1. Oral examination, duration about 45 minutes
2. Project work (presentation and report of results)

The module grade is calculated from the LP-weighted mean of both parts of the module.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Competence Goal
The students are able to design and evaluate simple food products. They learned to define, focus and solve tasks milestone-oriented as an interdisciplinary team. The gained in depth insight in the influence of recipe and process parameters on food quality parameters using a selected product produced on pilot scale. They will be able to present targets and results of their team project in a clear, conceptual and comprehensible manner.

Module grade calculation

Weighted mean based on LP

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content

Lecture: Basic introduction to the design and quality assurance of selected foods;
project work (team work): definition, production and evaluation of selected products as a team; presentation and defense of the project and its results incl. degustation in a bigger group;
field trip to industrial production plants

Workload

Attendance time: 115 h
(lecture 1 SWS, exercises 1 SWS, project work 5 SWS)
self study: 185 h
exam preparation: 60 h
Literature

Will be offered within the lecture, depending on products available.
Module: Fundamentals of Heat and Mass Transfer (CIW-TVT-01) [M-CIWVT-101132]

Responsible: Prof. Dr.-Ing. Wilhelm Schabel
Prof. Dr.-Ing. Thomas Wetzel
Organisation: KIT Department of Chemical and Process Engineering
Part of: Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

Competence Certificate
Success control is a written examination, duration 180 minutes according to § 4 Abs. 2 SPO.

Competence Goal
Elaborating the fundamental physics and laws of heat and mass transfer and at the provision of knowledge about the methodological tools required for solving engineering tasks in these fields.

Module grade calculation
Grade of the written examination

Prerequisites
none

Content
Heat Transfer: Definitions - System, balances and conservation equations, konetics of heat transfer (Fourier's law), dimensionless numbers, heat conduction, heat radiation, heat transfer in solids an between solids and moving fluids as well as in packings and fluidized beds.
Mass Transfer: Kinetics of mass transfer (Fickian law), equilibrium, diffusion and mass flow, Knudsen- and multicomponent-diffusion, Lewis analogy of heat and mass transfer

Recommendation
Courses of 1st - 3rd semester, especially fundamentals of thermodynamics.

Workload
lecture: 75 h
self-study: 55 h
preparation of examination: 80 h

Literature
Schabel: Stoffübertragung I, Skript
Module: Fundamentals of Refrigeration (CIW-TTK-03) [M-CIWVT-104457]

Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109117</td>
<td>Fundamentals of Refrigeration, oral examination</td>
<td>6</td>
</tr>
<tr>
<td>T-CIWVT-109118</td>
<td>Fundamentals of Refrigeration, Project Work</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two graded success controls according to § 4 (2) No 2,3:
1. Project work/ presentation
2. Oral exam of about 30 minutes duration
The project work is a prerequisite for the oral examination.
The module grade is calculated from the LP-weighted mean of both parts of the module.
Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Competence Goal
Students are able to explain and apply the fundamentals of refrigeration to various refrigeration technologies. They are able to describe properties of refrigerants and working fluids, and to assess their environmental impact based in different criteria. The students can develop concepts of refrigeration and heat pump processes using phase diagrams and fluid property models, and they are able to explore the energy consumption based on first and second law analyses. They are able to design various circuit configurations, to dimension and select refrigeration compressors and heat exchangers, and to design suitable control systems.

Module grade calculation
Weighted mean based on LP

Prerequisites
Participation requires
- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content
Introduction to the fundamentals of refrigeration, phase diagrams, energy transformation based on first and second law analyses, refrigerants and working fluids including their environmental impact, design of common refrigeration and heat pump processes, major circuit components and process control.

Recommendation
None
Workload
Attendance time: Lecture 2 SWS, Exercises 1 SWS: 45 h
Self-Study: 60 h
Exam Preparation: 75 h
Project work including presentation: 180 h

Literature
v. Cube, H.L. (Hrsg.), Lehrbuch der Kältetechnik Band 1 und 2, 4. Auflage (1997), C.F. Müller, Heidelberg
Berliner, P., Kältetechnik Vogel-Verlag, Würzburg (1986 und frühere)
Kältemaschinenregeln, Deutscher Kälte- und Klimatechnischer Verein (DKV) (Herausgeber)
DKV-Arbeitsblätter für die Wärme- und Kältetechnik in: C.F. Müller Verlag, Hüthig Gruppe, Heidelberg, wird jeweils aktualisiert (Sept. 2008)
Module: General and Inorganic Chemistry (CIW-CHEM-01) [M-CHEMBIO-101117]

Responsible: Prof. Dr. Mario Ruben

Organisation: KIT Department of Chemistry and Biosciences

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CHEMBIO-101866 | General and Inorganic Chemistry | 6 CR Ruben |

Competence Certificate

graded: written examination (150 min)

Competence Goal

The students get a basic understanding of the inorganic chemistry. With the knowledge of the periodic table of the elements and basic knowledge of the chemical bond the students are able to describe different compounds and to estimate different reactivities.

Module grade calculation

grade of the written examination

Prerequisites

none

Content

Structure of the matter, nuclear models, periodic table of the elements. The chemical bond. Structure of Metals, ion crystals, covalent bonds, metal complexes. Chemical reactions, chemical equilibrium, law of mass action, solubility product. Acids and bases, redox reactions

Workload

Lectures and exercises: 56h

Homework and preparation of examination: 94h

Literature

Mortimer, Müller (aktuelle Auflage): Chemie, Thieme Verlag

Riedel (aktuelle Auflage): Moderne Anorganische Chemie, de Gruyter Verlag

Hollemann, Wieberg (aktuelle Auflage): Lehrbuch der Anorganischen Chemie, de Gruyter Verlag

2.26 Module: Industrial Business Administration (CIW-WIWI-01) [M-WIWI-100528]

Responsibility: Prof. Dr. Wolf Fichtner

Organisation: KIT Department of Economics and Management

Part of: Soft Skill Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compentence Certificate
The assessment of this course is a ungraded written examination (60 min) according to §4(2), 1 of the examination regulation.

Compentence Goal
Students are able to describe and differentiate legal forms for industrial enterprises.

Students will gain knowledge about different ways of financing to raise capital.

The students gain knowledge about the basics of financial accounting and are able to record and book performance and capital flows occurring in companies.

The students gain knowledge about different types of cost accounting and are able to apply them.

Students gain knowledge of the basics of investment planning and are able to evaluate investments economically.

The students gain knowledge about the basics of linear optimization and can solve simple optimization problems with the Simplex algorithm.

The students gain knowledge about basic marketing methods and can describe and differentiate them from each other.

The students gain knowledge about basic methods of project management and can apply them to practical examples.

Prerequisites
None

Content
- Goals and basics
- Legal framework for industrial enterprises
- Financial accounting
- Cost accounting
- Investment calculation
- Optimisation
- Network technique

Workload
The total workload for this course is approximately 90 hours.
2.27 Module: Industrial Microbiology [M-CIWVT-105517]

Responsible: Prof. Dr.-Ing. Clemens Posten
Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-CIWVT-111093</th>
<th>Industrial Microbiology</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 CR</td>
<td>Posten, Syldatk</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination with a duration of 90 minutes (section 4, subsection 2 No. 1 SPO).

Module grade calculation
The grade of module ist the grade of written examination.

Prerequisites
None

Workload
- Lectures: 60 h
- Homework: 30 h
- Exam Preparation: 60 h

Literature
- Munk “Taschenlehrbuch Mikrobiologie” (Thieme)
- Cypionka “Grundlagen der Mikrobiologie” (Springer)
- Ratledge & Kristiansen: Basic Biotechnology (Cambridge University Press)
- Posten: Integrated Bioprocesses, De Gruyter, Berlin;
- Vorlesungsunterlagen
Module: Industrial Organic Chemistry (CIW-MAB-03) [M-CIWVT-101137]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101890 | Industrial Organic Chemistry | 5 CR | Hubbuch, Rauch, Wörner |

Competence Certificate
Learning control is a written examination of 120 min duration according to § 4 Abs. 2 SPO.

Competence Goal
Consolidate knowledge of organic materials and types of chemical reactions; understand logic relations between types of chemical reaction and technical processes, for selected examples; understand industrial material conversion pathways from raw materials to final products.

Module grade calculation
grade of the written examination

Prerequisites
Organic Chemistry

Content
Feedstock's for industrial processes of organic chemistry, industrial production of basic chemicals and intermediates using practical examples, digitalization and industry 4.0 in the chemical industry.

Mechanism during formation of synthetic macromolecules, production and properties of plastics and polymers, spectroscopic methods of analyzing organic molecules.

Workload
lecture: 60 h
self-study: 40 h
preparation of examination: 50 h

Literature
Handouts
Onken, Behr: Chem. Prozeßkunde, Wiley-VCH 1996
Brahm: Polymerchemie kompakt, Hirzel 2009
Tieke: Makromolekulare Chemie, Wiley-VCH 2014
Hesse u.a.: Spektroskop. Methoden in der OC, Thieme 2011
2.29 Module: International Concepts of Water Technologies [M-CIWVT-101972]

Responsible: Prof. Dr. Andrea Schäfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| CR | T-CIWVT-103704 | International Concepts of Water Technologies | 5 CR | Schäfer |

Competence Certificate
Assessment is an assignment of 25 pages and an oral presentation of 15 minutes.

Competence Goal
The students can explain concepts of water technologies (e.g. desalination, water reuse, decentralised systems, water & sanitation in international development) in their international context. The fundamentals of relevant water technologies will be understood and mass balances of water, contaminants and energy calculated. Based on these calculations decisions will be made how available water will be treated. After an overview on relevant renewable energies water technologies that are powered with renewable energies will be considered. An important ability in the international context are an understanding of the varying circumstances that are essential for decision making and successful system integration. Contributing factors of cost, operating strategies, cultural awareness, local environment and infrastructure availability are some of those factors to be considered.

Module grade calculation
The result is a composite of the Case study report (assignment) and presentation.

Prerequisites
English language proficiency

Content
Global water issues, international water quality guidelines, concepts of water technologies, desalination, water reuse, water energy nexus, decentralised systems, emergency water supplies, water & sanitation in international development, renewable energies, operating concepts.

Recommendation
None.

Annotation
The course is held in English and the assignment/presentation are to be prepared in English. Presence is mandatory!

Literature
Web of Science & Reference list for basic principles (provided in lectures) predominantly in English language.
Module: Lab Work Process Engineering (CIW-TTK-05) [M-CIWVT-101138]

Responsible: Dr. Sokratis Sinanis
Organisation: KIT Department of Chemical and Process Engineering
Part of: Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108291</td>
</tr>
<tr>
<td>T-CIWVT-108292</td>
</tr>
</tbody>
</table>

Competence Certificate
not graded (passed/not passed) succes control:
starting colloquium, practical work, written report

Competence Goal
Carrying out successfull experiments. Measurement of physical properties. Evaluation of data and writing a report

Module grade calculation
non-graded

Prerequisites
written exam "General and Inorganic Chemistry" must be passed.

Content
Fundamental experiments over the whole field of chemical engineering

Workload
Lab course/ Presence time: 60 h
(15 Experiments)
self study (preparation an reports): 120 h

Literature
Documents from each institute for the experiments
Module: Laboratory Work in General and Inorganic Chemistry [M-CIWVT-101964]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: Laboratories

Credits 6
Recurrence Each winter term
Language German
Level 3
Version 3

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-101867</td>
<td>Laboratory Work in General and Inorganic Chemistry Part I</td>
<td>4</td>
<td>Ehrenberg</td>
</tr>
<tr>
<td>T-CIWVT-108293</td>
<td>Safety Instruction</td>
<td>0</td>
<td>Abbt-Braun</td>
</tr>
<tr>
<td>T-CIWVT-108294</td>
<td>Laboratory Work in General and Inorganic Chemistry Part II</td>
<td>2</td>
<td>Horn</td>
</tr>
</tbody>
</table>

Competence Goal
The students receive a basic knowledge of the general chemistry. They can handle chemicals and can perform qualitative and quantitative analysis in aqueous solutions. They can perform calculations, and can apply the necessary tools to understand the context.

Prerequisites
Written exam "General and Inorganic Chemistry" must be passed.

Content
Lab experiments of qualitative analysis and reactions

Workload
presence time: 120 h
self-study: 60 h

Literature
Mortimer, Müller Chemie, 11. Auflage, Thieme Verlag 2014
Riedel, Meyer, Allgemeine und Anorganische Chemie, 11. Auflage, de Gruyter Verlag 2013
Horn, Abbt-Braun: Praktikumsskript, aktuelle Ausgabe, siehe ILIAS Studierendenportal oder Papierversion;
Ruben, Dsoke: Unterlagen im ILIAS Studierendenportal oder Papierversion
2.32 Module: Material Science and Engineering (CIW-MACH-01) [M-MACH-102567]

Responsible: Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105148 | Examination Material Science I & II | 9 CR | Schneider |

Competence Certificate

oral exam

Competence Goal

The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can describe the typical property profiles and can name applications for the most important engineering materials.

The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to asses materials on base of the data obtained by these methods.

Module grade calculation

grade of the oral exam

Prerequisites

None
Content
Atomic structure and atomic bonds

Structures of crystalline and amorphous solids

Defects in crystalline solids

Alloys

Transport and transformation phenomena in the solid state

Corrosion

Wear

Mechanical properties

Testing of materials

Ferrous materials

Non-ferrous metals and alloys

Polymers

Engineering ceramics

Composites

Workload
regular attendance: 90 hours
self-study: 180 hours

Learning type
lectures and exercises

Literature
W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9
M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008
J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2008 (E-Book)
lecture notes and lab script
2.33 Module: Mechanical Design (CIW-MACH-02) [M-MACH-101299]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110363</td>
<td>Mechanical Design Basics I and II</td>
<td>7 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110364</td>
<td>Mechanical Design Basics I, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110365</td>
<td>Mechanical Design Basics II, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination on the contents of Mechanical Design I&II
Duration: 90 min plus reading time
Preliminary examination: Successful participation in the preliminary work in the field of Mechanical Design I&II
Competence Goal

Learning objects springs:
- be able to recognize spring types and explain stress
- identify and describe the properties of a resilient LSS in machine elements presented later on
- understanding and explaining the principle of action
- know and list areas of application for springs
- graphically illustrate the load and the resulting stresses
- be able to describe the degree of species usefulness as a means of lightweight construction
- be able to analyse different solution variants with regard to lightweight construction (use species efficiency)
- being able to explain several springs as a circuit and calculate total spring stiffness

Learning objects Technical Systems:
- being able to explain what a technical system is
- "thinking in systems."
- using system technology as an abstraction tool for handling complexity
- recognizing functional relationships of technical systems
- getting to know the concept of function
- being able to use C&C²-A as a means of system technology

Learning objects Visualization:
- ability to create and interpret schematics
- using freehand technical drawing as a means of communication
- to be able to apply the technical basics of freehand drawing
- derivation of 2D representations into different perspective representations of technical structures and vice versa
- master reading of technical drawings
- dedicated dimensioning of technical drawings
- create sectional views of technical systems as a technical sketch

Learning objects Bearings:
- be able to recognize bearings in machine systems and explain their basic functions
- name bearings (type/type/function) and recognize them in machine systems and technical drawings
- being able to name areas of application and selection criteria for the various bearings and bearing arrangements and explain interrelationships
- ability to functionally explain the design of the bearing definitions in different directions radially/axially and circumferentially
- know and describe selection as an iterative process as an example
- be able to perform dimensioning of bearing arrangements as an example of the engineer's approach to dimensioning machine elements
- develop first ideas for probabilities in predicting the life of machine elements
- recognise from the damage pattern whether static or dynamic overload was the cause of material failure
- calculate equivalent static and dynamic bearing loads from the catalogue and given external forces on the bearing
- being able to name, explain and transfer the basic equation of the dimensioning to the bearing dimensioning

Learning objectives seals:
The students...
- can discuss the basic functions of seals
- can describe the physical causes for mass transfer
- can apply the C&C-Model on seals
- can name, describe and apply the three most important classification criteria of seals
- can explain the function of a contacting seal and a non-contacting seal.
- can differentiate the seal types and organize them to the classification criteria.
- can discuss the structure and the effect of a radial shaft seal
- can evaluate radial shaft seals, compression packings, mechanical seals, gap seals and labyrinth seals
- can describe and apply the constructional principle of selffortification
- can describe the stick-slip phenomenon during the movement sequences of a reciprocating seal

Learning design:
The students...
- understand the meaning of design
- are able to recognize and implement basic rules and principles of design
- are able to design the connection of partial systems into the total system
- can name requirements of design and take them into account
- know the main groups of manufacturing methods
are able to explain the manufacturing processes
are able to depict a casted design in a drawing clearly, e.g. draft of the mold, no material accumulation, ...
know how components are designed
Know how the production of the components has an effect on their design
Know the requirements and boundary conditions on design

Learning bolted connections:
The students...

- can list and explain various bolt applications.
- can recognize bolt types and explain their function
- can build a C&C² model of a bolted joint and discuss the influences on its function
- can explain the function of a bolted connection with the help of a spring model
- can reproduce, apply and discuss the screw equation.
- Can estimate the load-bearing capacity of low-loaded bolted joints for dimensioning purposes
- Can indicate which bolted joint is to be calculated and which only roughly dimensioned.
- Can carry out the dimensioning of bolted connections as flange connections
- Can create, explain and discuss the force deflection diagram of a bolted connection

Prerequisites
None

Content
MKL I:
Introduction to product development
Tools for visualization (technical drawing)
Product creation as a problem solution
Technical Systems Product Development
 - Systems theorie
 - Contact and Channel Approach C&C²-A

Basics of selected construction and machine elements
 - Federn
 - bearings and fence
 - sealings

The lecture is accompanied by exercises with the following content:
gear workshop
Tools for visualization (technical drawing)
Technical Systems Product Development
 - Systemtheorie
 - Contact and Channel Approach C&C²-A

Exercises for springs
Exercises for bearings and fence

MKL II:

- sealings
- design
- dimensioning
- component connections
- bolts
Workload
MKL1:
presence: 33.5 h
Attendance in lectures: 15 * 1.5 h = 22.5 h
Presence in exercises: 8 * 1.5 h = 12 h
self-study: 56.5 h
Personal preparation and wrap-up of lecture and exercises including the processing of the test certificates and preparation for the exam: 56.5 h
Total: 90 h = 3 LP
MKL2:
Presence: 33 h
Attendance in lectures: 15 * 1.5 h = 22.5 h
Presence in exercises: 7 * 1.5 h = 10.5 h
Self study: 87 h
Personal preparation and wrap-up of lectures and exercises, including the processing of the test certificates and preparation for the exam: 87 h
Total: 150 h = 5 LP
Additional expenditure for degree programs from other disciplines MKL1 + MKL2 in total: 30 h = 1 LP

Learning type
Lecture
Tutorial
Project work during the semester
Online-test
Module: Mechanical Design III+IV (13 LP) [M-MACH-102829]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104810</td>
<td>Mechanical Design III & IV</td>
<td>11</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110955</td>
<td>Mechanical Design III, Tutorial</td>
<td>1</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110956</td>
<td>Mechanical Design IV, tutorial</td>
<td>1</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination, consisting of theoretical and constructive part.
The theoretical examination lasts 1 hour plus reading time.
The constructional examination takes 3 hours plus reading time.
Both parts of the examination must be passed in order to pass the overall examination for machine design apprenticeship III+IV.

Competence Goal

In mechanical design, students acquire skills in analysis and synthesis using examples (= leading examples). The examples include individual machine elements such as bearings or springs as well as more complex systems such as gears or clutches. After completing the machine design course, the students can apply the learned contents to further technical systems - even those not known from the lecture - by transferring the exemplary learned operating principles and basic functions to other contexts. This enables students to independently analyze unknown technical systems and to synthesize systems suitable for given problems.

Prerequisites

None

Content

- tolerances and fits
- component connections
- gears
- basics of component dimensioning
- shaft clutches
- fundamentals of fluid technology
- electrical machines
Workload

MKL 3:
Presence: 45 h
Attendance time lecture (15 L): 22,5h
Attendance time exercises (7 exercises): 10,5h
Attendance time milestones project work (3x 4h): 12h

Self-study: 135h
Project work in a team: 90h
Personal preparation and follow-up of lecture and exercise: 45h

MKL 4:
Presence: 40,5 h
Attendance lectures (13 L): 19,5h
Attendance time exercises (6 exercises): 9h
Attendance time milestones project work (3x 4h): 12h

Self-study: 169,5 h
Project work in a team: 105h
Personal preparation and follow-up of lecture and exercise, incl. preparation for the exam: 64,5h

Total: 390 h = 13 LP

Learning type
- Lecture
- Tutorial
- Project work during the semester
Module: Mechanical Processing (CIW-MVMG-01) [M-CIWVT-101135]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: Fundamentals of Process Engineering

Credits 6
Recurrence Each winter term
Duration 1 term
Language German
Level 3
Version 2

Mandatory
T-CIWVT-101886 Mechanical Processing 6 CR Dittler

Competence Certificate
Success control is a written examination, 120 minutes duration, according to § 4 Abs. 2 No. 1 SPO.

Competence Goal
Students have a basic understanding of properties & behavior of particulate systems in important engineering applications; they are able to use this understanding for calculations and design of selected processes.

Module grade calculation
The mark of the module is equal to the mark of the written examination.

Prerequisites
None

Content
- Unit operations of mechanical processing - introduction and overview
- Particle size distribution - determination, depiction, conversion
- Forces on particles in flows
- Separating function - characterization of a separations process
- Fundamentals of mixing and stirring
- Introduction to dimensional analysis
- Characterizations of packings
- Capillarity in porous systems
- Flow through porous systems
- Fundamentals of agglomeration
- Fundamentals of storage and conveyance

Recommendation
Courses of 1st - 4th semester

Workload
Lectures and exercises: 56 h
Self-study: 14 h (about one hour per week)
Preparation of examination: 140 h

Literature
Dittler, Skriptum MVT
Löffler, Raasch: Grundlagen der Mechanischen Verfahrenstechnik, Vieweg 1992
Schubert, Heidenreich, Liepe, Neeße: Mechanische Verfahrenstechnik, Deutscher Verlag Grundstoffindustrie, Leipzig 1990
Dialer, Onken, Leschonski: Grundzüge Verfahrenstechnik & Reaktionstechnik, Hanser Verlag 1986
Zogg: Einführung in die Mechanische Verfahrenstechnik, Teubner 1993
2.36 Module: Mechanical Separation Technology (CIW-MVMV-06) [M-CIWVT-101147]

Responsible: Dr.-Ing. Marco Gleiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory
- T-CIWVT-103448 Mechanical Separation Technology Exam 8 CR Gleiß
- T-CIWVT-103452 Mechanical Separation Technology Project Work 4 CR Gleiß

Competence Certificate
The control of success in this module comprises 2 graded major course assessments according to §4 para.2 Nr.3 of the SPO:
1. An oral individual examination with a volume of about 30 minutes for the lecture "22987 Mechanical Separation Technology" and "22988 Exercises to 22987"
2. Project work. Practical collaboration, written report and oral presentation of the results are rated.
The module grade is calculated from the LP-weighted mean of both parts of the module.
Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Competence Goal
The students are able to explain the fundamental laws and the derived physical principles of the particle separation from liquids and not only to relate them to the principally suited separation apparatuses but also special variants. They have the ability to apply the relationship between product operation and design parameters to different separation techniques. They can analyse separation problems with scientific methods and give alternative problem solution proposals. The students are able to execute their fundamental and process knowledge practically to the example of beer brewing.

Module grade calculation
The module grade is calculated from the LP-weighted mean of both parts of the module.

Prerequisites
Participation requires
- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:
1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content
Physical fundamentals, apparatuses, applications, strategies; characterisation of particle systems and slurries; pretreatment methods to enhance the separability of slurries; fundamentals, apparatuses and process technology of static and centrifugal sedimentation, flotation, depth filtration, crossflow filtration, cake forming vacuum and gas overpressure filtration, filter centrifuges and press filters; filter media; selection criteria and scale-up methods for separation appsartuses and machines; apparatus combinations; case studies to solve separation problems.

Recommendation
Modules of 1st - 4th semester
Workload
lecture 3SWH, exercises 1SWH, presence time: 60h
self-study: 80h
examination preparation: 80h
project work presence time and self-study: 140h

Literature
Anlauf: Script "Mechanische Separationstechnik - Fest/Flüssig-Trennung"
Module: Micro Process Engineering (CIW-IMVT-01) [M-CIWVT-101154]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization / Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103666</td>
<td>Micro Process Engineering</td>
<td>7</td>
<td>Pfeifer</td>
</tr>
<tr>
<td>T-CIWVT-103667</td>
<td>Micro Process Engineering</td>
<td>5</td>
<td>Pfeifer</td>
</tr>
</tbody>
</table>

Competence Certificate
The module comprises two success controls according to § 4(2) No 2,3 SPO:
1. Oral examination of about 25 minutes duration
2. project work
Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Competence Goal
The students are able apply the methods of process intensification by microstructuring of the reaction zone and are capable of analyzing the advantages and disadvantages while transferring given processes into microreactors. With knowledge of special production processes for micro reactors, students are able to design microstructured systems in terms of heat exchange and to analyze the possibilities of transferring processes from conventional technology into the microreactor with regard to heat transfer performance. They understand also how the mechanisms of mass transport and mixing interact in microstructured flow mixers, and are able to apply this knowledge to the combination of mixing and reaction. They can also analyze possible limitations in the process adaptation and are thus able to design microstructured reactors for homogeneous reactions appropriately. The students understand the significance of the residence time distribution for the conversion and selectivity and are capable of analyzing the interaction of mass transport by diffusion and hydrodynamic residence time in microstructured equipment in given applications.

Prerequisites
Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content
Basic knowledge of micro process engineering systems: fabrication of microstructured systems and interaction with processes, intensification of heat exchange and special effects by heat conduction, residence time distribution in reactors and peculiarities in microstructured systems, structured flow mixers (designs and characterization) and dimensioning of structured reactors with regard to heat and mass transfer.

Recommendation
Courses of 1st - 4th semester
Workload
360 h

Literature
Scriptum (slides collection), text books:
Micro Process Engineering - A Comprehens (Hardcover), Volker Hessel (Editor), Jaap C. Schouten (Editor), Albert Renken (Editor), Yong Wang (Editor), Junichi Yoshida (Editor), 3 Bände, 1500 Seiten, Wiley VCH, ISBN-10: 3527315500
2.38 Module: Module Bachelor Thesis [M-CIWVT-103204]

Responsible: Prof. Dr.-Ing. Heike Karbstein
apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of: Bachelor Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106365</td>
<td>Bachelor-Thesis</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Competence Goal
Students are able to work on specialised problems with scientific methods independently and within a defined time frame.

Prerequisites
§ 14 (1) SPO

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 120 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Specialization/ Project Work
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses
Module: Organic Chemistry for Engineers (CIW-CHEM-04) [M-CHEMBIO-101115]

Responsible: Prof. Dr. Michael Meier

Organisation: KIT Department of Chemistry and Biosciences

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CHEMBIO-101865 | Organic Chemistry for Engineers | 5 CR | Meier |

Competence Certificate

graded: written examination

Competence Goal

Relevance of Organic Chemistry; fundamental and method-oriented knowledge; correlation between structure and reactivity; knowledge of important concepts and principles; self-solving of problems in Organic Chemistry

Module grade calculation

grade of the written examination

Prerequisites

none

Content

Nomenclature, electronic structure and bonding of organic molecules; Organic substance classes and functional groups; Reaction mechanisms and synthesis of organic compounds; Stereoisomers and optical activity; Synthetic polymers and biopolymers; Identification of organic compounds

Workload

lectures and exercises: 34h

homework and preparation of examination: 86h

Literature

Module: Particle Technology (CIW-MVMG-02) [M-CIWVT-101141]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization / Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two graded success controls according to § 4 (2) No 2,3 SPO:
1. oral examination, duration 30 minutes (60 %)
2. project work (60 %)

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Competence Goal
Students understand transport behavior and methods of size distribution measurement of airborne fine particles in the context of environmental and nanotechnology. They are able to apply this knowledge to solve basic problems of particle technology in a team oriented approach.

Prerequisites
Participation requires
- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content
The classes provide a knowledge base of methods of particle dispersion, particle transport processes in gases, as well as methods for their characterization with applications in the environment and industrial product design. Practical experience related to these concepts is developed in a team based lab project.

Recommendation
Courses of 1st - 4th semester

Workload
Attendance time: 56 h (V+Ü) + 120 (project work) + 10 (Excursion)
Self-Study: 24 h
Oral examination: 140 h

Literature
Skriptum Gas-Partikel-Messtechnik
2.41 Module: Practical Course in Organic Chemistry for Chemical Engineers (CIW-CHEM-03) [M-CHEMBIO-101116]

Responsible: Dr. Andreas Rapp

Organisation: KIT Department of Chemistry and Biosciences

Part of: Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
<th>Code</th>
<th>Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-101868</td>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
<td>Practical Course in Organic Chemistry for Chemical Engineers</td>
<td>5 CR</td>
<td>Rapp</td>
</tr>
</tbody>
</table>

Competence Certificate

protocols and analytical results

Competence Goal

After that course the students should be able to build up a reaction apparatus, to handle hazardous materials and perform chemical reactions. Furthermore the students get an insight in most important purification procedures, e.g. distillation, extraction.

Module grade calculation

average out of lab experiments/ analytical results

Prerequisites

Compulsory preconditions: written examination OC

Content

Key reactions in Organic Chemistry, e.g.: nucleophilic substitution, electrophilic aromatic substitution, carbony compounds, additions to non-activated double bonds

Workload

lectures and exercises: 45h
home work and preparation of examination: 75h

Literature

Schwetlick: Organikum, Wiley-VCH
2.42 Module: Process Development and Scale-up (CIW-IKFT-01) [M-CIWVT-101153]

Responsibility: Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization/Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103530</td>
<td>Process Development and Scale-up</td>
<td>8 CR</td>
<td>Sauer</td>
</tr>
<tr>
<td>T-CIWVT-103556</td>
<td>Process Development and Scale-up Project Work</td>
<td>4 CR</td>
<td>Sauer</td>
</tr>
<tr>
<td>T-CIWVT-111005</td>
<td>Exercises Process Development and Scale-up</td>
<td>0 CR</td>
<td>Sauer</td>
</tr>
</tbody>
</table>

Competence Certificate

The module comprises two success controls according to § 4 (2) No 2,3 SPO:
- project work/presentation and report
- individual oral examination, duration 30 minutes

The module grade is calculated from the mean of both parts of the module. Additionally Online-Quick-Tests can be done accompanying the lecture. These are included in the oral examination mark with 20%.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Competence Goal

The students are capable of developing energy and material balances for complex processes in process technology and to analyze processes in terms of potentials for optimization. They are able to derive suitable methods for the optimization of such processes.

The students are able to calculate the costs of major pieces of equipment and to apply estimation methods for investment costs of production plants. Together with the calculation of variable production costs they are able to analyze the profitability of a chemical process plant. Furthermore the students learn basic concepts of project management, they are enabled to work in teams and guided for independent scientific work.

Module grade calculation

50% oral examination, 50% project work.

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content

Introduction into the basics of process development and project management for the development of chemical processes from the lab into production scale, including the design of a chemical process, design of miniplants and scale-up into production scale. Overview over methods for the economic, technical evaluation of processes and the preparation of business concepts.
Recommendation
Courses of 1st - 4th semester

Annotation
As part of the project study a visit to the IKFT and the bioliq plant at the Campus North is intended

Workload
Lecture and Exercise:
Attendance time: 45 h
Self-study: 90 h
Exam preparation: 45 h
Project work: 180 h

Literature
Belbin, R.M., Management Teams, Why They Succeed or Fail, Routledge, NY, 2013.
Module: Process Machines (CIW-MVMV-04) [M-CIWVT-101139]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Exam</th>
<th>Credit Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWT-101903</td>
<td>Laboratory Work Process Machines</td>
<td>5 CR</td>
<td>Gleiß</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

not graded, passed/not passed
during lab course for each experiment
starting colloquium oral/written, practical work, written report

Competence Goal

The students are able to explain fundamentals of process design for selected process apparatuses and machines. They have the ability to carry out practical experiments to these processes by themselves after advice and according to a manual, to collect experimental data, to describe and to interpret them. They can make easy calculations regarding the design of the examined processes.

Module grade calculation

Non graded

Prerequisites

written exam "organic chemistry" must be passed.

Content

pumps, electroseparator, power input into stirred vessels, heat transfer in and out stirred vessels, refrigerator/heat pump, heat transfer co-current and counter-current, error calculation, emulsification/ice cream machine, flow-characteristics of emulsions, biomass-transport in a screw-reactor

Workload

presence time: 7 experiments, 30 h
preparation and reports: 120 h

Literature

scripts for lecture and manuals for lab course
2.44 Module: Rheology and Product Design (CIW-MVMA-05) [M-CIWVT-101144]

Responsible: Dr.-Ing. Claude Oelschlaeger

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization / Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103522</td>
<td>Rheology and Product Design</td>
<td>8</td>
<td>8 CR</td>
<td>Oelschlaeger</td>
</tr>
<tr>
<td>T-CIWVT-103524</td>
<td>Rheology and Product Design Project Work</td>
<td>4</td>
<td>4 CR</td>
<td>Oelschlaeger</td>
</tr>
</tbody>
</table>

Competence Certificate

The module comprises two grades success controls according to § 4 (2) No 2,3 SPO:
- project work (teamwise)
- oral examinations (courses)

The oral examinations have to be passed as a precondition for project work.

overall grade of the module: average weighted according to the credit points.

1/3 project work
2/3 oral examinations

Each of the course has to be passed ('ausreichend'). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Competence Goal

Basic knowledge about the design of complex fluids based on dispersions or emulsions by chemical engineering processes. Fundamental comprehension of applications and working properties, flow behavior an colloidal stability of disperse systems. Applying this knowledge in context of their project work. They gather experience in teamoriented problem solving.

Module grade calculation

final grade = 2/3 x oral examination + 1/3 x project work

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratoires
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content

Representation of a systematic of the relation between the quality aspects of products and their physico-chemical properties. Furthermore, these properties are generated in the respective production processes. This systematics is taught in the lecture "Basics of Product Design". In the lecture "Fabrications an characterization of dispersions and emulsions" this systematics is elaborated in a more specific manner. The application of this systematics is practiced on specific case studies.
Workload
lectures and exercises: 135h
homework and preparation of examination: 225h

Literature
Scriptum, articles out of scientific journals, text books:
Lagaly/Schulz/Zimehl: Dispersionen und Emulsionen, Steinkopff (1997),
Barnes/Hutton/Walters: An Introduction to Rheology, Elsevier (1989),
2.45 Module: Thermal Process Engineering (CIW-TVT-02) [M-CIWVT-101134]

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101885</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control is a written examination taking 120 minutes in time according to § 4 Abs. 2 SPO Bachelor Chemical and Process engineering 2015.

Competence Goal
Students can explain fundamental knowledge in the field of Thermal Separations. Emphasis is laid on the difference between methodological tools and their application for the description of selected unit operations. They can work on standard types of problems in the field of Thermal Process Engineering. They can solve it mathematically and can apply methodological tools adequate. Furthermore, the students can quantitatively apply these tools and skills to processes and problems which are new to them.

Module grade calculation
The mark of the module is equal to the mark of the written examination.

Prerequisites
None

Content
The taught methodological tools are balancing of conservative quantities, thermodynamic equilibrium and their application to single- and multi-stage processes. Within this module the following unit operations are introduced: Distillation, Rectification, Absorption, Extraction, Evaporation, Crystallisation, Drying, Adsorption/Chromatography.

Recommendation
Courses of 1st - 4th semester

Workload
- Attendance time (lecture and tutorials): 56 h
- Self study: 44 h
- Examination preparation: 80 h

Literature
personal prints, scientific text books
Module: Thermodynamics I (CIW-TTK-01) [M-CIWVT-101129]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101878</td>
<td>Thermodynamics I, Tutorial</td>
<td>0 CR</td>
<td>Enders</td>
</tr>
<tr>
<td>T-CIWVT-101879</td>
<td>Thermodynamics I, Exam</td>
<td>7 CR</td>
<td>Enders</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination 120 min
Precondition for participation: 2 of 3 compulsory exercises have to be approved

Competence Goal
Students are able to analyse and to design energy conversion processes by applying the first and second law of thermodynamics. They understand the behaviour of real pure substances, and they are able to explain thermodynamic processes with and without phase change by means of state diagrams and process schemes.

Module grade calculation
grade of the written examination

Prerequisites
none

Content
Fundamental terms; thermodynamic equilibrium and temperature; properties and equation of state for ideal gases; energy and first law for closed systems; balances for open systems; entropy and thermodynamic potentials; second law; equations of state for pure component caloric properties; phase change behavior of pure component systems and state diagrams; thermodynamic cycles for power generation, refrigeration and heat pumps; exergy

Recommendation
courses of 1st and 2nd semester

Workload
Lectures and exercises: 70 h
Homework: 80 h
Preparation of Examination : 60 h

Literature
Schaber, K.: Skriptum Thermodynamik I (www.ttk.uni-karlsruhe.de)
Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006
Module: Thermodynamics II (CIW-TTK-02) [M-CIWVT-101130]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101880</td>
<td>Thermodynamics II, Tutorial</td>
<td>0 CR</td>
<td>Enders</td>
</tr>
<tr>
<td>T-CIWVT-101881</td>
<td>Thermodynamics II, Exam</td>
<td>7 CR</td>
<td>Enders</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination 120 min
Precondition for participation: 2 of 3 compulsory exercises have to be approved

Competence Goal

Students understand the behavior of real gases, gas-vapor mixtures, simple real mixtures, chemical equilibria of ideal gases. They are able to explain and to analyse corresponding thermodynamic processes by means of state diagrams and process schemes. They are able to analyse and to design these processes based on balance equations and phase equilibria.

Module grade calculation

Grade of the written examination

Prerequisites

none

Content

Real gases and liquefaction of gases; thermodynamic potentials; characterization of mixtures; mixtures of ideal gases; gas-vapor mixtures and processes with humid air; phase equilibria and phase diagrams, laws of Raoult and Henry, liquid-liquid equilibria; enthalpy of mixtures; general description of mixtures and chemical potential; reaction equilibria of ideal gases; fundamentals of combustion processes.

Recommendation

courses of 1st - 3rd semester

Thermodynamics I

Workload

Lectures and exercises: 70 h
Homework: 80 h
Preparation of Examination: 60 h

Literature

Aufl., Springer, 2010

Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006
2.48 Module: Water Quality and Process Engineering of Water and Waste Water Treatment (CIW-WCH-03) [M-CIWVT-101152]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>2 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103650</td>
<td>Water Quality and Process Engineering of Water and Waste Water Treatment</td>
<td>8 CR</td>
<td>Abbt-Braun, Horn</td>
</tr>
<tr>
<td>T-CIWVT-103651</td>
<td>Water Quality and Process Engineering of Water and Waste Water Treatment</td>
<td>4 CR</td>
<td>Hille-Reichel, Horn</td>
</tr>
</tbody>
</table>

Competence Certificate

There is an oral examination of the lectures and a grading of the project thesis. The overall grade of the module is taken as an average from the individual grades of the oral examination of the lectures and of the project thesis, weighted according to the credit points.

Lectures: overall oral examination of 30 min according to § 4 Abs. 2 No 2 SPO of the lectures "22603 Scientific Principles for Water Quality Assessment" and "22607 Water Quality and Process Engineering of Water and Waste Water Treatment".

Project thesis: individual grades of the written report and the oral presentation, according to § 4 Abs. 2 No. 3 SPO.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO 9 (2) - (6).

Competence Goal

The students can explain the basic processes of drinking water supply and waste water treatment. They can describe and apply the basic principles and the criteria for water quality assessment. The can perform calculations, and can evaluate, compare and interprete the data and the results. They are able to use the methodical tools and to analyze the context.

Module grade calculation

The overall grade of the module is taken as an average from the individual grades of the oral examination of the lectures and of the project thesis, weighted according to the credit points.

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Content

Hydrological cycle: different sources and needs, water treatment, water supply, water quality, analytical tools for quality assessment, practical thesis to optimize a treatment step, including experimental lab work, application of different tools for analysis, excursions to drinking water treatment plants and to waste water treatment plants.

Recommendation

Courses of 1st - 4th semester
Workload
Attendance time: 60 h
Exam preparation: 60 h
Practical course: 40 h lab, 80 h self-study/report

Literature

- Frimmel (1998): Wasser und Gewässer, Spektrum Verlag, Heidelberg
- Crittenden et al. (2005): Water Treatment, Principles and Design. Wiley & Sons
- Scriptum of the lectures will be available in ILIAS (ILIAS Studierendenportal)
- Script of the lab work
3 Courses

3.1 Course: Advanced Mathematics I [T-MATH-100275]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics
Part of: M-MATH-100280 - Advanced Mathematics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>Lecture (V) / 🖥️</td>
<td>4 SWS</td>
<td>Arens</td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>Lecture (V) / 🖥️</td>
<td>4 SWS</td>
<td>Arens</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A “pass” result on the pre-requisite in AM I is a requirement for registration for the examination in AM I.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100525 - Tutorial Advanced Mathematics I must have been passed.
3.2 Course: Advanced Mathematics II [T-MATH-100276]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-100281 - Advanced Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0180800</td>
<td>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Hettlich</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>0181000</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Hettlich</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites

A "pass" result on the pre-requisite in AM II is a requirement for registration for the examination in AM II.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-100526 - Tutorial Advanced Mathematics II must have been passed.
3.3 Course: Advanced Mathematics III [T-MATH-100277]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-100282 - Advanced Mathematics III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| Events | 0131400 | Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau | 4 SWS | Lecture (V) / 🕵️‍♂️ | Griesmaier |

Legend: 🕵️‍♂️ Online, 🟥 Blended (On-Site/Online), 🗂️ On-Site, ☓ Cancelled

Competence Certificate

Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites

A "pass" result on the pre-requisite in AM III is a requirement for registration for the examination in AM III.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-100527 - Tutorial Advanced Mathematics III must have been passed.
3.4 Course: Application of Numerics in Engineering [T-CIWVT-101876]

Responsible: Dr. Peter Habisreuther

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101956 - Computational Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (oral)</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Practical course Numerics in engineering science</td>
<td>3 SWS</td>
<td>Habisreuther, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites

Written Examination T-MATH-102250 - Einstieg in die Informatik und algorithmische Mathematik

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MATH-102250 - Introduction to Informatics and Algorithmic Mathematics - Exam must have been started.
3.5 Course: Applied Apparatus Engineering [T-CIWVT-106562]

Responsible: Dr. Martin Neuberger
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103297 - Applied Apparatus Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22956</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Learning Control is a written examination, 90 minutes duration.

Prerequisites
None

Responsible: Dr.-Ing. Benjamin Dietrich
Dr. Philip Scharfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104458 - Applied Thermal Process Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Examination of another type</td>
<td>6</td>
<td>Each winter term</td>
<td>2</td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Grundlagen der Angewandten</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td></td>
<td>Thermischen Verfahrenstechnik</td>
<td></td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Ausgewählte Kapitel der</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td></td>
<td>Angewandten Thermischen</td>
<td></td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td></td>
<td>Verfahrenstechnik</td>
<td></td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Praktikum zu Angewandte</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td></td>
<td>Thermische Verfahrenstechnik</td>
<td></td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td></td>
<td>(Projektarbeit)</td>
<td></td>
<td></td>
<td></td>
<td>Dietrich, Scharfer</td>
</tr>
</tbody>
</table>

Prerequisites
None
3.7 Course: Applied Thermal Process Engineering - Project work [T-CIWVT-109120]

Responsible: Dr.-Ing. Benjamin Dietrich
Dr. Philip Scharfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104458 - Applied Thermal Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22826</td>
<td>Grundlagen der Angewandten Thermischen Verfahrenstechnik (Proffaf)</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22827</td>
<td>Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik (Proffaf)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Dietrich, Scharfer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22828</td>
<td>Praktikum zu Angewandte Thermische Verfahrenstechnik (Proffaf)</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Dietrich, Scharfer, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites

None
3.8 Course: Bachelor-Thesis [T-CIWVT-106365]

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103204 - Module Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 4 months
- **Maximum extension period**: 2 weeks
- **Correction period**: 6 weeks
3.9 Course: Biotechnology [T-CIWVT-103669]

Responsible: Dr.-Ing. Iris Perner-Nochta
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101143 - Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22723</td>
<td>Profile Subject Biotechnology for BSc BIW/CIW - Management of Scientific Projects</td>
<td>2 SWS</td>
<td>Lecture (V) / Perner-Nochta, Kindervater, Loesch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21 22724</td>
<td>Profile Subject Biotechnology for BSc BIW/CIW - Laboratory Work (22723)</td>
<td>6 SWS</td>
<td>Practical course (P)</td>
<td>Perner-Nochta, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21 22725</td>
<td>Profile Subject Biotechnology for BSc BIW/CIW - Exercises on Management of Scientific Projects (22723)</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Perner-Nochta, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None
3.10 Course: Biotechnology [T-CIWVT-103668]

Responsible: Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101143 - Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>3</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Profile Subject Biotechnology for BSc BIW/CIW - Instrumental Bioanalytics</th>
<th>SWS</th>
<th>Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22711</td>
<td>Description of the subject. Analysis and evaluation of biological samples using various instrumental and analytical methods.</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Wörner, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ☝ On-Site, ✗ Cancelled

Prerequisites

None
3.11 Course: Catalytic Reaction Engineering [T-CIWVT-103653]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101140 - Catalytic Reaction Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>22152</th>
<th>Projektarbeit im Profilfach Katalytische Reaktionstechnik</th>
<th>2 SWS</th>
<th>Practice (Ü)</th>
<th>Kraushaar-Czarnetzki, und Mitarbeiter</th>
</tr>
</thead>
</table>

Prerequisites

None
3.12 Course: Catalytic Reaction Engineering [T-CIWVT-103652]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101140 - Catalytic Reaction Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22122 Chemische Verfahrenstechnik II</td>
<td>2 SWS</td>
<td>Lecture (V) / 📧</td>
<td>Kraushaar-Czarnetzki</td>
</tr>
<tr>
<td>22123 Übung und Repetitorium zu 22122 und 22125</td>
<td>2 SWS</td>
<td>Practice (Ü) / 📧</td>
<td>Kraushaar-Czarnetzki</td>
</tr>
<tr>
<td>22125 Heterogene Katalyse I</td>
<td>1 SWS</td>
<td>Lecture (V) / 📧</td>
<td>Kraushaar-Czarnetzki</td>
</tr>
</tbody>
</table>

Legend: 📧 Online, 🎤 Blended (On-Site/Online), ⚰️ On-Site, ✗ Cancelled

Prerequisites
None
3.13 Course: Cell Biology [T-CIWVT-111062]

Responsible: Prof. Dr. Hans-Eric Gottwald
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101624 - Biology for Engineers I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination with a duration of 90 minutes (section 4, subsection 2 Nr. 1 SPO).

Prerequisites
None
3.14 Course: Chemical Process Engineering [T-CIWVT-101884]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101133 - Chemical Process Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22101</td>
<td>Written examination</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>WS 20/21 22102</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
3.15 Course: Control Engineering and System Dynamics [T-MACH-102126]

Responsible: Prof. Dr.-Ing. Christoph Stiller
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101300 - Control Engineering and System Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Title</th>
<th>Schedule</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2138332</td>
<td>Control Engineering and System Dynamics</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2138333</td>
<td>Practice groups on control engineering and system dynamics</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam

Prerequisites
none
3.16 Course: Downstream Processing [T-CIWVT-101897]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101124 - Downstream Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22721</td>
<td>Downstream Processing</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Hubbuch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22722</td>
<td>Exercises on Downstream Processing (22721)</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Hubbuch, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites

None
3.17 Course: Elementary Physics [T-PHYS-101577]

Responsible: Prof. Dr. Bernd Pilawa
 Prof. Dr. Alexey Ustinov

Organisation: KIT Department of Physics

Part of: M-PHYS-100993 - Elementary Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4040321</td>
<td>Physikalische Grundlagen für Chemie- und Bioingenieure und</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verfahrenstechniker</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engel</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4040322</td>
<td>Übungen zu Physikalische Grundlagen für Chemie- und Bioingenie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ure und Verfahrenstechniker.</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engel, Schmidt, Leszczyńska</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (usually about 180 min)
3.18 Course: Energy and Environmental Engineering [T-CIWVT-108254]

Responsible: Prof. Dr. Reinhard Rauch
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101145 - Energy and Environmental Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22562</td>
<td>Written examination</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Verfahren zur Erzeugung chemischer Energieträger</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥</td>
<td>Rauch</td>
</tr>
<tr>
<td>WS 20/21 22564</td>
<td>Written examination</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Fundamentals of High Temperature Energy Conversion</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥</td>
<td>Trimis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🖥 Blended (On-Site/Online), 🗩 On-Site, ✗ Cancelled

Prerequisites
None
3.19 Course: Energy and Environmental Engineering Project Work [T-CIWVT-103527]

Responsible:
Prof. Dr. Reinhard Rauch
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation:
KIT Department of Chemical and Process Engineering

Part of:
M-CIWVT-101145 - Energy and Environmental Engineering

Type
Examination of another type

Credits
4

Version
1

Events
| SS 2020 | 22566 | Projektarbeit im Profilfach Energie- und Umwelttechnik | SWS | Project (PRO) | Trimis, Rauch, Kolb |

Prerequisites
None
3.20 Course: Energy Process Engineering [T-CIWVT-101889]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101136 - Energy Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22524</td>
<td>Energieverfahrenstechnik</td>
<td>2</td>
<td>Lecture (V) /</td>
<td>2</td>
<td>Kolb, Zarzalis</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22525</td>
<td>Übung zu 22524 Energieverfahrenstechnik</td>
<td>1</td>
<td>Practice (Ü) /</td>
<td>1</td>
<td>Kolb, Zarzalis, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), ☑ On-Site, ❌ Cancelled

Prerequisites

None

Responsible: Prof. Dr. Roland Dittmeyer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101128 - Engineering Mechanics: Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22112</td>
<td>Technische Mechanik III</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22113</td>
<td>Übungen zu Technische Mechanik III</td>
<td>2 SWS</td>
<td>Practice (Ü) / 🖥</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22114</td>
<td>Tutorium zu Technische Mechanik III</td>
<td>1 SWS</td>
<td>Tutorial (Tu) / 🫖</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🫖 Blended (On-Site/Online), 🗣 On-Site, ☒ Cancelled

Responsible: Prof. Dr. Roland Dittmeyer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101128 - Engineering Mechanics: Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22112</td>
<td>Technische Mechanik III</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22113</td>
<td>Übungen zu Technische Mechanik III</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22114</td>
<td>Tutorium zu Technische Mechanik III</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Legend: 🕒 Online, 🌟 Blended (On-Site/Online), 🏠 On-Site, ✗ Cancelled

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-106290 - Engineering Mechanics: Dynamics must have been passed.

Responsible: Dr.-Ing. Bernhard Hochstein
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104006 - Engineering Mechanics: Statics and Strength of Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>Time</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22911</td>
<td>Technische Mechanik: Statik</td>
<td>2 SWS</td>
<td>Willenbacher, Hochstein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None

Responsible: Dr.-Ing. Bernhard Hochstein
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104006 - Engineering Mechanics: Statics and Strength of Materials

Type
- Written examination

Credits
- 5

Recurrence
- Each summer term

Version
- 1

Prerequisites
None
3.25 Course: Enzyme Technology [T-CIWVT-111094]

Responsible: Dr. Jens Rudat
Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105518 - Enzyme Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22406</td>
<td>Biology for Engeneers II</td>
<td>4 SWS</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22403</td>
<td>Bioprocess Engineering - Enzyme Technology</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written examination with a duration of 90 minutes (section 4, subsection 2 No. 1 SPO).

Prerequisites
None.
3.26 Course: Ethics and Global Material Cycles [T-CIWVT-101887]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101149 - Ethics and Global Material Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 22330 | Ethik und Stoffkreisläufe | 2 SWS | Lecture (V) | Hillerbrand, Rauch |

Prerequisites

Prerequisite must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-109219 - Ethics and Global Material Cycles - Prerequisite must have been passed.
3.27 Course: Ethics and Global Material Cycles - Prerequisite [T-CIWVT-109219]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101149 - Ethics and Global Material Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>22330</th>
<th>Ethik und Stoffkreisläufe</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Hillerbrand, Rauch</th>
</tr>
</thead>
</table>

Prerequisites

None
3 COURSES

Course: Examination Material Science I & II [T-MACH-105148]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Dr.-Ing. Johannes Schneider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
</tbody>
</table>

Part of: M-MACH-102567 - Material Science and Engineering

Type
Oral examination

Credits
9

Recurrence
Each winter term

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2182562</td>
<td>Materials Science and Engineering II for ciw, vt, mit</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schneider</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2181555</td>
<td>Materials Science and Engineering I for ciw, vt, MIT</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Legend: 🚶 Online, ⛽ Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Competence Certificate
oral; 30 to 40 minutes

No tools and reference tools are allowed!

Prerequisites
none
3.29 Course: Exercises Process Development and Scale-up [T-CIWVT-111005]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Jörg Sauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Part of</td>
<td>M-CIWVT-101153 - Process Development and Scale-up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
3.30 Course: Fluidodynamics, Exam [T-CIWVT-101882]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101131 - Fluidodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>22944</th>
<th>Fluidodynamics</th>
<th>3 SWS</th>
<th>Lecture (V)</th>
<th>Nirschl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22945</td>
<td>Practical in Fluidodynamics</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Nirschl</td>
<td></td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-101904 - Fluidodynamics, Tutorial must have been passed.
3.31 Course: Fluidodynamics, Tutorial [T-CIWVT-101904]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101131 - Fluidodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Event Description</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 22944</td>
<td>3 SWS</td>
<td>Fluidodynamics</td>
<td>Lecture (V)</td>
<td>Nirschl</td>
<td></td>
</tr>
<tr>
<td>SS 2020 22945</td>
<td>1 SWS</td>
<td>Practical in Fluidodynamics</td>
<td>Practice (Ü)</td>
<td>Nirschl</td>
<td></td>
</tr>
</tbody>
</table>
3.32 Course: Food Biotechnology [T-CIWVT-101898]

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101126 - Food Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22227</td>
<td>Lebensmittelbiotechnologie (Bachelor BIW)</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Karbstein</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22227</td>
<td>Lebensmittelbiotechnologie (Bachelor BIW)</td>
<td>3</td>
<td>Lecture (V) / Online</td>
<td>Karbstein, Rütten</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22228</td>
<td>Übung Lebensmittelbiotechnologie (Bachelor BIW) (22227)</td>
<td>1</td>
<td>Practice (Ü) / Online</td>
<td>Karbstein, Rütten</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
This module is successfully completed by a written exam of 120 min (according to § 4 Abs. 2 Nr. 1, SPO Bachelor Bioingenieurwesen 2015)

Prerequisites
The Pre-Condition must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-101899 - Food Biotechnology - Prerequisite must have been passed.
3.33 Course: Food Biotechnology - Prerequisite [T-CIWVT-101899]

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101126 - Food Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture Date</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22227</td>
<td></td>
<td>Lecture (V)</td>
<td>3 SWS</td>
<td>Karbstein</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22227</td>
<td></td>
<td>Lecture (V) / 🖥</td>
<td>3 SWS</td>
<td>Karbstein, Rütten</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22228</td>
<td></td>
<td>Practice (Ü) / 🖥</td>
<td>1 SWS</td>
<td>Karbstein, Rütten</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Prerequisites

none
3.34 Course: Food Technology [T-CIWVT-103528]

Responsible: Dr.-Ing. Azad Emin

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101148 - Food Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22231</td>
<td>Übung zu 22232</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Karbstein, und Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22252</td>
<td>Exkursion im Profilfach Lebensmitteltechnologie</td>
<td>SWS</td>
<td>Excursion (EXK)</td>
<td>Emin</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22230</td>
<td>Einführung in das Profilfach Lebensmitteltechnologie</td>
<td>1</td>
<td>Lecture (V) / 🖥</td>
<td>Emin, und Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22232</td>
<td></td>
<td>1</td>
<td>Project (PRO)</td>
<td>Emin, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 📡 On-Site, ❌ Cancelled

Competence Certificate

Die Erfolgskontrolle ist eine mündliche Gruppenprüfung im Umfang von ca. 45 Minuten zu den Inhalten der Lehrveranstaltungen 22230, 22231 und 22232 nach § 4 Abs. 2 Nr. 2 der SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015.

Prerequisites

None.
3.35 Course: Food Technology Project Work [T-CIWVT-103529]

Responsible: Dr.-Ing. Azad Emin

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101148 - Food Technology

Type: Examination of another type

Credits: 7

Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22232</td>
<td>Projektarbeit im Profilfach Lebensmitteltechnologie</td>
<td>4 SWS</td>
</tr>
</tbody>
</table>

Prerequisites

None
3.36 Course: Fundamentals of Heat and Mass Transfer [T-CIWVT-101883]

Responsible: Prof. Dr.-Ing. Wilhelm Schabel
Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101132 - Fundamentals of Heat and Mass Transfer

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 22830</td>
<td>Wärme- und Stoffübertragung</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Wetzel, Schabel</td>
</tr>
<tr>
<td>SS 2020 22831</td>
<td>Übung zu Wärme- und Stoffübertragung (22830)</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Wetzel, Schabel, und Mitarbeiter</td>
</tr>
</tbody>
</table>
3.37 Course: Fundamentals of Refrigeration, oral examination [T-CIWVT-109117]

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104457 - Fundamentals of Refrigeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>6</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22026</td>
<td>Refrigeration A</td>
<td>2 SWS</td>
<td>Lecture (V) / 🕒</td>
</tr>
<tr>
<td>WS 20/21 22027</td>
<td>Refrigeration A - exercises</td>
<td>1 SWS</td>
<td>Practice (Ü) / 🕒</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕒 Blended (On-Site/Online), 🗦 On-Site, ✗ Cancelled

Competence Certificate
Learning Control is an oral examination about the lecture "Grundlagen der Kältetechnik", duration about 30 minutes.

Prerequisites
Projects Work

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-109118 - Fundamentals of Refrigeration, Project Work must have been started.
3.38 Course: Fundamentals of Refrigeration, Project Work [T-CIWVT-109118]

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104457 - Fundamentals of Refrigeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>22046</th>
<th>Projektarbeit zum Profilfach Thermodynamik und Kältetechnik</th>
<th>2 SWS</th>
<th>Practice (Ü)</th>
<th>Grohmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td>Thermodynamik und Kältetechnik</td>
<td></td>
<td>Practice (Ü)</td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Prerequisites
None
3.39 Course: General and Inorganic Chemistry [T-CHEMBIO-101866]

Responsible: Prof. Dr. Mario Ruben
Organisation: KIT Department of Chemistry and Biosciences
Part of: M-CHEMBIO-101117 - General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>5004</td>
<td>Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens)</td>
<td>3 SWS</td>
<td>Ruben</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21</td>
<td>5005</td>
<td>Seminar zur Vorlesung Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens)</td>
<td>2 SWS</td>
<td>Scheiba</td>
</tr>
</tbody>
</table>

Legend: ☑ Online, ☑ Blended (On-Site/Online), ☑ On-Site, X Cancelled
3.40 Course: Genetics [T-CIWVT-111063]

Responsible: Dr. Katrin Ochsenreither
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101624 - Biology for Engineers I

Competence Certificate
Written examination with a duration of 90 minutes (section 4 subsection 2 No. 1 SPO).

Prerequisites
None
3.41 Course: Industrial Business Administration [T-WIWI-100796]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-100528 - Industrial Business Administration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2581040</td>
<td>Industriebetriebswirtschaftslehre</td>
<td>2 SWS</td>
<td>Fichtner, Schumacher</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is an ungraded written examination.

Prerequisites

None
3.42 Course: Industrial Microbiology [T-CIWVT-111093]

Responsible: Prof. Dr.-Ing. Clemens Posten
Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105517 - Industrial Microbiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22406</td>
<td>4 SWS</td>
<td>Biology for Engineers II</td>
<td>4 SWS</td>
<td>Syldatk</td>
</tr>
<tr>
<td>WS 20/21 22947</td>
<td>2 SWS</td>
<td>Bioprocess Engineering</td>
<td>2 SWS</td>
<td>Posten</td>
</tr>
</tbody>
</table>

Legend: 🛠 Online, 🧩 Blended (On-Site/Online), ☑ On-Site, ❌ Cancelled

Competence Certificate

Written examination with a duration of 90 minutes (section 4 subsection 2 No. 1 SPO).

Prerequisites

None.
3.43 Course: Industrial Organic Chemistry [T-CIWVT-101890]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Prof. Dr. Reinhard Rauch
Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101137 - Industrial Organic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester/Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22703</td>
<td>Organic Chemical Process Science</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Rauch, Wörner</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22704</td>
<td>Exercises on organical Chemical Process Science (22703)</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Rauch, Wörner</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🪐 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been started.
3.44 Course: International Concepts of Water Technologies [T-CIWVT-103704]

Responsible: Prof. Dr. Andrea Schäfer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101972 - International Concepts of Water Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22644</td>
<td>International Concepts in Water Treatment</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>
3.45 Course: Introduction to Informatics and Algorithmic Mathematics - Exam [T-MATH-102250]

Responsible: Prof. Dr. Willy Dörfler
Dr. rer. nat. Mathias Krause

Organisation: KIT Department of Mathematics

Part of: M-CIWVT-101956 - Computational Methods

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0150700</td>
<td>Einstieg in die Informatik und Algorithmische Mathematik (für Bio- und Chemie-Ingenieurwesen)</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Krause, Veszelka</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0150800</td>
<td>Übungen zu 0150700</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Krause</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0150900</td>
<td>Praktikum zu 0150700</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Krause</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>0101100</td>
<td>Einstieg in die Informatik und algorithmische Mathematik</td>
<td>2</td>
<td>Lecture (V) / 🖥</td>
<td>Krause</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>0101200</td>
<td>Übungen zu 0101100</td>
<td>2</td>
<td>Practice (Ü) / 🖥</td>
<td>Krause, Veszelka</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>0101300</td>
<td>Rechnerpraktikum zu 0101100</td>
<td>2</td>
<td>Practical course (P) / 🗣</td>
<td>Krause, Veszelka</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🥑 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
3.46 Course: Laboratory Work in General and Inorganic Chemistry Part I [T-CHEMBIO-101867]

Responsible: Prof. Dr. Helmut Ehrenberg

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Completed coursework (practical)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5050</td>
<td>Anorganisch-chemisches Praktikum für Studierende des Chemieingenieurwesens (Teil I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 SWS</td>
<td>Practical course (P) / 🗣</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ehrenberg, Dsoke, Ruben, Assistenten, Breher, Feldmann, Powell, Roesky</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101117 - General and Inorganic Chemistry must have been passed.
3.47 Course: Laboratory Work in General and Inorganic Chemistry Part II [T-CIWVT-108294]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework (practical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101117 - General and Inorganic Chemistry must have been passed.
2. The module M-CIWVT-101138 - Lab Work Process Engineering must not have been started.
3. The course T-CIWVT-108293 - Safety Instruction must have been passed.
3.48 Course: Laboratory Work Process Engineering [T-CIWVT-108292]

Responsible: Dr. Sokratis Sinanis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101138 - Lab Work Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>5 SWS</td>
<td>Practical course (P)</td>
<td></td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry must not have been started.
2. The course T-CHEMBIO-101866 - General and Inorganic Chemistry must have been passed.
3. The course T-CIWVT-108291 - Safety Instruction must have been passed.
3.49 Course: Laboratory Work Process Machines [T-CIWVT-101903]

Responsible: Dr.-Ing. Marco Gleiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101139 - Process Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22973</td>
<td>Praktikum Verfahrenstechnische Maschinen</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
</tr>
</tbody>
</table>

Prerequisites
Written Exam "Organic Chemistry" must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been passed.
2. The module M-CHEMBIO-101116 - Practical Course in Organic Chemistry for Chemical Engineers must not have been started.
3.50 Course: Laboratory Work: Downstream Processing [T-CIWVT-111097]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101124 - Downstream Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Laboratory Work: Downstream Processing</td>
<td>Hubbuch, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites
None.
3.51 Course: Mechanical Design Basics I and II [T-MACH-110363]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2146131</td>
<td>Mechanical Design Basics II</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>WS 20/21 2145131</td>
<td>Mechanical Design Basics I</td>
<td>2 SWS</td>
<td>Lecture (V) / Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Competence Certificate
Written Exam (90min) on the topics of MKLGI and MKLGII.

Prerequisites

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-110364 - Mechanical Design Basics I, Tutorial must have been passed.
2. The course T-MACH-110365 - Mechanical Design Basics II, Tutorial must have been passed.
3.52 Course: Mechanical Design Basics I, Tutorial [T-MACH-110364]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Tutorials Mechanical Design Basics I</td>
<td>1 SWS</td>
<td>Practice (Ü) / 🖥️</td>
<td>Albers, Matthiesen, Behrendt, Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

To pass the preliminary work, attendance at 3 workshop sessions of the MKL1 transmission workshop and the passing of a colloquium at the beginning of each workshop are prerequisites.

Prerequisites

None
3.53 Course: Mechanical Design Basics II, Tutorial [T-MACH-110365]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Tutorials Mechanical Design Basics II</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
</tbody>
</table>

Competence Certificate
CIW/ VT/ IP-M/ WiING / NWT/ MATH/ MWT: For passing the prerequisite it is necessary that a design task is successfully completed as a technical hand drawing
MIT: To pass the preliminary examination, attendance at workshop sessions and a colloquium at the beginning of each workshop are required.

Prerequisites
None
3.54 Course: Mechanical Design III & IV [T-MACH-104810]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>11</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146177</td>
<td>Mechanical Design IV</td>
<td>2</td>
<td>Lecture (V)</td>
<td></td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146020</td>
<td>Mechanical Design IV Lecture</td>
<td>2</td>
<td>Lecture (V)</td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2145151</td>
<td>Mechanical Design III</td>
<td>2</td>
<td>Lecture (V) / 🖥</td>
<td></td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145016</td>
<td>Mechanical Design III (Lecture)</td>
<td>2</td>
<td>Lecture (V) / 🖥</td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

written exam consisting of:

- written part duration 60 min and
- design part duration 180 min

Sum: 240 min

Prerequisites

Admission to the exam only with successful completion of the Mechanical Design III, Tutorial and Mechanical Design IV, Tutorial.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. The course T-MACH-110955 - Mechanical Design III, Tutorial must have been passed.
2. The course T-MACH-110956 - Mechanical Design IV, tutorial must have been passed.
3.55 Course: Mechanical Design III, Tutorial [T-MACH-110955]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>2145153</td>
<td>Tutorials Mechanical Design III</td>
<td>Practice (Ü)</td>
<td>2</td>
<td>Each winter term</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>2145154</td>
<td>Mechanical Design III Workshop</td>
<td>Practical course (P)</td>
<td>1</td>
<td></td>
<td>Albers, Matthiesen, Albers Assistenten</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>Practice (Ü)</td>
<td>2</td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td></td>
<td>SWS</td>
<td></td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🤞 Blended (On-Site/Online), ⚠️ On-Site, ✗ Cancelled

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single CAD-workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites

None
Course: Mechanical Design IV, tutorial [T-MACH-110956]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>1</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type III</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2146184 Tutorials Mechanical Design IV</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2146187 Workshop 'Mechanical Design IV'</td>
<td>1 SWS</td>
<td></td>
<td>Albers, Matthiesen, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146021 Mechanical Design IV Tutorials</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>3146022 Mechanical Design IV Workshop</td>
<td>1 SWS</td>
<td></td>
<td>Albers, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites
None
3.57 Course: Mechanical Processing [T-CIWVT-101886]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101135 - Mechanical Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22901</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik (Bach.)</td>
<td>2 SWS Lecture (V) / Dittler</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22902</td>
<td>Übung zu 22901 Mechanische Verfahrenstechnik (Bach.)</td>
<td>2 SWS Practice (ü) / Dittler, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites

none
Course: Mechanical Separation Technology Exam [T-CIWVT-103448]

Responsible: Dr.-Ing. Marco Gleiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101147 - Mechanical Separation Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22987</td>
<td>Mechanische Separationstechnik</td>
<td>3</td>
<td>Lecture (V) / Online</td>
<td>8</td>
<td>Gleiß</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22988</td>
<td>Übung zu 22987 Mechanische Separationstechnik</td>
<td>1</td>
<td>Practice (Ü) / Online</td>
<td>8</td>
<td>Gleiß</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, × Cancelled

Prerequisites

None
3.59 Course: Mechanical Separation Technology Project Work [T-CIWVT-103452]

Responsible: Dr.-Ing. Marco Gleiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101147 - Mechanical Separation Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>22972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Work for Profile Subject Mechanical Separation Techniques</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
</tr>
</tbody>
</table>

Prerequisites
none
3.60 Course: Micro Process Engineering [T-CIWVT-103667]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101154 - Micro Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

| Events | SS 2020 | 22138 | Projektarbeit im Profilfach Mikroverfahrenstechnik | 2 SWS | Practice (Ü) | Pfeifer, und Mitarbeiter |

Competence Certificate
Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art (Projektarbeit) nach § 4 Abs. 2 Nr. 3 der SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015. Es werden die praktische Mitarbeit, der schriftliche Bericht sowie die mündliche Präsentation der Ergebnisse individuell bewertet.

Prerequisites
None
3.61 Course: Micro Process Engineering [T-CIWVT-103666]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101154 - Micro Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>7</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22145</td>
<td>Auslegung von Mikroreaktoren</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ) / 🗣</td>
<td>Pfeifer</td>
</tr>
</tbody>
</table>

Competence Certificate

Die Erfolgskontrolle ist eine mündliche Einzelprüfung nach § 4 Abs. 2 Nr. 2 der SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015 im Umfang von ca. 25 Minuten zu Lehrveranstaltung "Auslegung von Mikroreaktoren".

Prerequisites

None
3.62 Course: Organic Chemistry for Engineers [T-CHEMBIO-101865]

Responsible: Prof. Dr. Michael Meier
Organisation: KIT Department of Chemistry and Biosciences
Part of: M-CHEMBIO-101115 - Organic Chemistry for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>5142</th>
<th>Organische Chemie für CIW/VT und BIW</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Levkin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>5143</td>
<td>Übungen zu Organische Chemie für CIW/VT und BIW</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Levkin</td>
</tr>
</tbody>
</table>

Prerequisites
acc. to module catalogue
3.63 Course: Particle Technology [T-CIWVT-103654]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101141 - Particle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22917</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥</td>
<td>Dittler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 20/21 22918</td>
<td>1 SWS</td>
<td>Practice (Ü) /🧩</td>
<td>Dittler, und Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, ✗ Cancelled

Prerequisites

None
3.64 Course: Particle Technology [T-CIWVT-103655]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101141 - Particle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Event Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22963</td>
<td>Exkursion zum Profilfach Partikeltechnik</td>
<td>2</td>
<td>Excursion (EXK)</td>
<td>Dittler, und Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22977</td>
<td>Projektarbeit im Profilfach Partikeltechnik</td>
<td>2</td>
<td>Project (PRO)</td>
<td>Dittler, und Mitarbeiter</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22963</td>
<td>Exkursion zum Profilfach Partikeltechnik</td>
<td>2</td>
<td>Excursion (EXK)</td>
<td>Dittler, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites
None
3.65 Course: Practical Course in Organic Chemistry for Chemical Engineers [T-CHEMBIO-101868]

Responsible: Dr. Andreas Rapp
Organisation: KIT Department of Chemistry and Biosciences
Part of: M-CHEMBIO-101116 - Practical Course in Organic Chemistry for Chemical Engineers

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 5123</td>
<td>Completed coursework (practical)</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisch-Chemisches Praktikum für Studierende des Chemie- und Bioingenieurwesens
SWS
Practical course (P) / 🗣
Mitarbeiter, Rapp, Meier

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been passed.
3.66 Course: Process Development and Scale-up [T-CIWVT-103530]

Responsible: Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101153 - Process Development and Scale-up

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 22333</td>
<td>Prozesssentwicklung und Scale-up</td>
<td>2 SWS</td>
<td>Lecture (V) / 🗣️</td>
<td>Sauer</td>
</tr>
<tr>
<td>WS 20/21 22334</td>
<td>Übung zu 22333 Prozesssentwicklung und Scale-up</td>
<td>2 SWS</td>
<td>Practice (Ü) / 🗣️</td>
<td>Sauer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-111005 - Exercises Process Development and Scale-up must have been passed.
3.67 Course: Process Development and Scale-up Project Work [T-CIWVT-103556]

Responsible: Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101153 - Process Development and Scale-up

Type
Examination of another type

Credits
4

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Event Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22318</td>
<td>Presentation Profile Course "Process Development and Scale-up"</td>
<td>SWS</td>
<td>Lecture (V)</td>
<td>Sauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22335</td>
<td>Project Work in the Profile Course "Process Development and Scale-up"</td>
<td>2 SWS</td>
<td>Project (PRO)</td>
<td>Sauer, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites
none
Course: Rheology and Product Design [T-CIWVT-103522]

Responsible: Dr.-Ing. Claude Oelschlaeger
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101144 - Rheology and Product Design

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Title</th>
<th>Content Hours</th>
<th>Type</th>
<th>Responsible Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22949</td>
<td>Rheometrie und Rheologie</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Hochstein</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22816</td>
<td>Grundlagen der Produktgestaltung</td>
<td>1 SWS</td>
<td>Lecture (V) / Online</td>
<td>Kind</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22905</td>
<td>Herstellung und Charakterisierung von Suspensionen und Emulsionen</td>
<td>2 SWS</td>
<td>Lecture (V) / On-Site</td>
<td>Willenbacher, Hochstein, Oelschlaeger</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22906</td>
<td>Übungen zu 22905 Herstellung und Charakterisierung von Suspensionen und Emulsionen</td>
<td>1 SWS</td>
<td>Practice (Ü) / On-Site</td>
<td>Willenbacher, Hochstein, Oelschlaeger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
None
3.69 Course: Rheology and Product Design Project Work [T-CIWWT-103524]

Responsible: Dr.-Ing. Claude Oelschlaeger
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101144 - Rheology and Product Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>22960</th>
<th>Profilfach Rheologie und Produktgestaltung (Projektarbeit)</th>
<th>SWS</th>
<th>Project (PRO)</th>
<th>Oelschlaeger, Willenbacher, und Mitarbeiter</th>
</tr>
</thead>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWWT-103522 - Rheology and Product Design must have been passed.
3.70 Course: Safety Instruction [T-CIWVT-108293]

Responsible: Dr. Gudrun Abbt-Braun

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

None
3.71 Course: Safety Instruction [T-CIWVT-108291]

Responsible: Dr. Sokratis Sinanis
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101138 - Lab Work Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Thermal Process Engineering [T-CIWVT-101885]

Responsible: Prof. Dr.-Ing. Matthias Kind

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101134 - Thermal Process Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
<th>Module Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22805</td>
<td>Thermische Verfahrenstechnik</td>
<td>2 SWS</td>
<td>1</td>
<td>Kind, Dietrich</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22806</td>
<td>Übung zu 22805 Thermische Verfahrenstechnik</td>
<td>2 SWS</td>
<td></td>
<td>Kind, Dietrich, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
3.73 Course: Thermodynamics I, Exam [T-CIWVT-101879]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101129 - Thermodynamics I

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Written examination</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22002</td>
<td>Thermodynamics I</td>
<td>3 SWS</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22003</td>
<td>Thermodynamics I - exercises</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22007</td>
<td>Tutorial thermodynamics I and II</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Modeled Conditions
The following conditions have to be fulfilled:
1. The course T-CIWVT-101878 - Thermodynamics I, Tutorial must have been passed.
3.74 Course: Thermodynamics I, Tutorial [T-CIWVT-101878]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101129 - Thermodynamics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22002</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Enders</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>22007</td>
<td>Tutorial thermodynamics I and II</td>
<td>2</td>
<td>Tutorial (Tu)</td>
<td>Enders, Mitarb.</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ☆ On-Site, ❌ Cancelled

Prerequisites
None
3.75 Course: Thermodynamics II, Exam [T-CIWVT-101881]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101130 - Thermodynamics II

Type
- Written examination
- Credits: 7
- Version: 1

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>22004</th>
<th>Technische Thermodynamik II</th>
<th>3 SWS</th>
<th>Lecture (V)</th>
<th>Enders</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22005</td>
<td>Übungen zu 22004 Technische Thermodynamik II</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Enders, und Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22007</td>
<td>Tutorium Thermodynamik II</td>
<td>2 SWS</td>
<td>Tutorial (Tu)</td>
<td>Enders, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites
Precondition for participation: 2 of 3 compulsory exercises have to be approved

Modeled Conditions
*The following conditions have to be fulfilled:

1. The course **T-CIWVT-101880 - Thermodynamics II, Tutorial** must have been passed.*
Course: Thermodynamics II, Tutorial [T-CIWVT-101880]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101130 - Thermodynamics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>22004</td>
<td>Technische Thermodynamik II</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Enders</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22005</td>
<td>Übungen zu 22004 Technische Thermodynamik II</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Enders, und Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22007</td>
<td>Tutorium Thermodynamik II</td>
<td>2</td>
<td>Tutorial (Tu)</td>
<td>Enders, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Prerequisites

None
3.77 Course: Tutorial Advanced Mathematics I [T-MATH-100525]

Responsible:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-100280 - Advanced Mathematics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2 SWS</td>
<td>Arens</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2 SWS</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🍃 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning assessment is carried out by written assignments (pre-requsite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
3.78 Course: Tutorial Advanced Mathematics II [T-MATH-100526]

Responsible:
PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-100281 - Advanced Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type (Ü)</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0180900</td>
<td>Übungen zu 0180800</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Hettlich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0181100</td>
<td>Übungen zu 0181000</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
3.79 Course: Tutorial Advanced Mathematics III [T-MATH-100527]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-100282 - Advanced Mathematics III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>0131500</td>
<td>Übungen zu 0131400</td>
<td>2 SWS</td>
<td>Griesmaier</td>
</tr>
</tbody>
</table>

Legend: 🚫 Online, ☘ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisit). Exact requirements will be communicated in the lectures.

Prerequisites

None.
3.80 Course: Water Quality and Process Engineering of Water and Waste Water Treatment [T-CIWVT-103651]

Responsible: Dr. Andrea Hille-Reichel
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101152 - Water Quality and Process Engineering of Water and Waste Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 22643 | **Project Work in Subject "Water, Technology and Environment"** | 2 SWS | Project (PRO) | Horn, und Mitarbeiter |

Competence Certificate

Project thesis: individual grades of the written report and the oral presentation.
(According to § 4 Abs. 2 Nr. 3 SPO Bachelor Bioingeneering 2015)

Prerequisites

None

Responsible: Dr. Gudrun Abbt-Braun
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101152 - Water Quality and Process Engineering of Water and Waste Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>22603</th>
<th>Scientific Principles for Water Quality Assessment</th>
<th>2 SWS</th>
<th>Lecture (V) / 📚</th>
<th>Abbt-Braun</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>22607</td>
<td>Process Engineering in Water Technology</td>
<td>2 SWS</td>
<td>Lecture (V) / 📚</td>
<td>Horn, Abbt-Braun</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 📚 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Success control is an overall oral examination of about 30 min according to § 4 Abs. 2 der SPO Bachelor Bioingenieurwesen 2015 of the lectures "22603 Scientific Principles for Water Quality Assessment" and "22607 Water Quality and Process Engineering of Water and Waste Water Treatment".

Prerequisites

None