Module Handbook
Chemical and Process Engineering Bachelor 2015 (Bachelor of Science (B.Sc.))

SPO 2015
Summer term 2022
Date: 01/03/2022

KIT DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING
Table Of Contents

1. General Information .. 5

2. Curriculum ... 8

3. Master Transfer Account .. 12

4. Field of study structure .. 13
 4.1. Bachelor Thesis .. 13
 4.2. Fundamentals of Mathematics and Natural Sciences ... 13
 4.3. Fundamentals of Scientific Engineering .. 13
 4.4. Thermodynamics and Transport Processes ... 14
 4.5. Fundamentals of Process Engineering .. 14
 4.6. Mandatory Elective Courses .. 14
 4.7. Laboratories .. 14
 4.8. Specialization / Project Work .. 15
 4.9. Soft Skill Qualifications ... 16

5. Modules ... 17
 5.1. Advanced Mathematics I - M-MATH-100280 ... 17
 5.2. Advanced Mathematics II - M-MATH-100281 .. 18
 5.3. Advanced Mathematics III - M-MATH-100282 ... 19
 5.4. Applied Apparatus Engineering - M-CIWVT-103297 .. 20
 5.5. Applied Thermal Process Engineering - M-CIWVT-104458 .. 21
 5.6. Biology for Engineers I - M-CIWVT-101624 .. 23
 5.7. Biotechnology - M-CIWVT-101143 .. 25
 5.9. Computational Methods - M-CIWVT-101956 .. 28
 5.10. Control Engineering and System Dynamics - M-MACH-101300 .. 29
 5.11. Downstream Processing - M-CIWVT-105698 .. 30
 5.12. Electrochemical Energy Technologies - M-ETIT-105690 ... 31
 5.13. Elementary Physics - M-PHYS-100993 .. 32
 5.18. Enzyme Technology - M-CIWVT-105518 ... 38
 5.20. Fluidodynamics - M-CIWVT-101131 ... 40
 5.21. Food Biotechnology - M-CIWVT-101126 .. 41
 5.22. Food Technology - M-CIWVT-101148 .. 43
 5.24. Fundamentals of Refrigeration - M-CIWVT-104457 ... 46
 5.25. General and Inorganic Chemistry - M-CHEMBIO-101117 .. 48
 5.26. Industrial Business Administration - M-WWI-100528 ... 49
 5.27. Industrial Microbiology - M-CIWVT-105517 ... 50
 5.28. Industrial Organic Chemistry - M-CIWVT-101137 .. 51
 5.29. Intercultural Sensitivity and Competence - M-CIWVT-105847 .. 52
 5.31. Lab Work Process Engineering - M-CIWVT-101138 ... 54
 5.32. Laboratory course: Electrochemical Energy Technologies - M-ETIT-105703 56
 5.33. Laboratory Work in General and Inorganic Chemistry - M-CIWVT-101964 57
 5.34. Material Science and Engineering - M-MACH-102567 ... 58
 5.35. Mechanical Design - M-MACH-101299 .. 60
 5.36. Mechanical Design III+IV - M-MACH-102829 ... 64
 5.37. Mechanical Processing - M-CIWVT-101135 .. 66
 5.38. Mechanical Separation Technology - M-CIWVT-101147 ... 67
 5.40. Module Bachelor Thesis - M-CIWVT-103204 ... 71
 5.41. Organic Chemistry for Engineers - M-CHEMBIO-101115 .. 72
 5.42. Particle Technology - M-CIWVT-101141 .. 73
 5.43. Practical Course in Organic Chemistry for Chemical Engineers - M-CHEMBIO-101116 74
6. Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mathematics I</td>
<td>T-MATH-100275</td>
</tr>
<tr>
<td>Advanced Mathematics II</td>
<td>T-MATH-100276</td>
</tr>
<tr>
<td>Advanced Mathematics III</td>
<td>T-MATH-100277</td>
</tr>
<tr>
<td>Application of Numerics in Engineering</td>
<td>T-CIWVT-101876</td>
</tr>
<tr>
<td>Applied Apparatus Engineering</td>
<td>T-CIWVT-106562</td>
</tr>
<tr>
<td>Applied Thermal Process Engineering - Exercises</td>
<td>T-CIWVT-110803</td>
</tr>
<tr>
<td>Applied Thermal Process Engineering - Project Work</td>
<td>T-CIWVT-109120</td>
</tr>
<tr>
<td>Bachelor-Thesis</td>
<td>T-CIWVT-106365</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>T-CIWVT-111064</td>
</tr>
<tr>
<td>Bioprocess Engineering</td>
<td>T-CIWVT-110128</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>T-CIWVT-103668</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>T-CIWVT-103669</td>
</tr>
<tr>
<td>Cell Biology</td>
<td>T-CIWVT-111062</td>
</tr>
<tr>
<td>Chemical Process Engineering</td>
<td>T-CIWVT-101884</td>
</tr>
<tr>
<td>Control Engineering and System Dynamics</td>
<td>T-MACH-102126</td>
</tr>
<tr>
<td>Downstream Processing</td>
<td>T-CIWVT-101897</td>
</tr>
<tr>
<td>Electrochemical Energy Technologies</td>
<td>T-ETIT-111352</td>
</tr>
<tr>
<td>Elementary Physics</td>
<td>T-PHYS-101577</td>
</tr>
<tr>
<td>Energy and Environmental Engineering</td>
<td>T-CIWVT-108254</td>
</tr>
<tr>
<td>Energy and Environmental Engineering Project Work</td>
<td>T-CIWVT-103527</td>
</tr>
<tr>
<td>Energy Process Engineering</td>
<td>T-CIWVT-101889</td>
</tr>
<tr>
<td>Engineering Mechanics: Dynamics</td>
<td>T-CIWVT-106290</td>
</tr>
<tr>
<td>Engineering Mechanics: Dynamics, Exam</td>
<td>T-CIWVT-101877</td>
</tr>
<tr>
<td>Engineering Mechanics: Statics</td>
<td>T-CIWVT-111054</td>
</tr>
<tr>
<td>Enzyme Technology</td>
<td>T-CIWVT-111074</td>
</tr>
<tr>
<td>Ethics and Global Material Cycles</td>
<td>T-CIWVT-101887</td>
</tr>
<tr>
<td>Ethics and Global Material Cycles Prerequisite</td>
<td>T-CIWVT-109219</td>
</tr>
<tr>
<td>Examination Material Science I & II</td>
<td>T-MACH-105148</td>
</tr>
<tr>
<td>Exercises Process Development and Scale-up</td>
<td>T-CIWVT-111005</td>
</tr>
<tr>
<td>Fluidodynamics, Exam</td>
<td>T-CIWVT-101882</td>
</tr>
<tr>
<td>Fluidodynamics, Tutorial</td>
<td>T-CIWVT-101904</td>
</tr>
<tr>
<td>Food Biotechnology</td>
<td>T-CIWVT-101898</td>
</tr>
<tr>
<td>Food Biotechnology Prerequisite</td>
<td>T-CIWVT-101899</td>
</tr>
<tr>
<td>Food Technology</td>
<td>T-CIWVT-103528</td>
</tr>
<tr>
<td>Food Technology Project Work</td>
<td>T-CIWVT-103529</td>
</tr>
<tr>
<td>Fundamentals of Heat and Mass Transfer</td>
<td>T-CIWVT-101883</td>
</tr>
<tr>
<td>Fundamentals of Refrigeration, oral examination</td>
<td>T-CIWVT-109117</td>
</tr>
<tr>
<td>Fundamentals of Refrigeration, Project Work</td>
<td>T-CIWVT-109118</td>
</tr>
<tr>
<td>General and Inorganic Chemistry</td>
<td>T-CHEMBIO-101866</td>
</tr>
<tr>
<td>Genetics</td>
<td>T-CIWVT-111063</td>
</tr>
<tr>
<td>Industrial Business Administration</td>
<td>T-WIWI-100796</td>
</tr>
<tr>
<td>Industrial Organic Chemistry</td>
<td>T-CIWVT-101890</td>
</tr>
<tr>
<td>International Concepts of Water Technologies</td>
<td>T-CIWVT-103704</td>
</tr>
<tr>
<td>Introduction to Informatics and Algorithmic Mathematics</td>
<td>T-MATH-102250</td>
</tr>
<tr>
<td>Laboratory course: Electrochemical Energy Technologies</td>
<td>T-ETIT-111376</td>
</tr>
<tr>
<td>Laboratory Work in General and Inorganic Chemistry Part I</td>
<td>T-CHEMBIO-101867</td>
</tr>
<tr>
<td>Laboratory Work in General and Inorganic Chemistry Part II</td>
<td>T-CIWVT-108294</td>
</tr>
<tr>
<td>Laboratory Work Process Engineering</td>
<td>T-CIWVT-108292</td>
</tr>
<tr>
<td>Laboratory Work Process Machines</td>
<td>T-CIWVT-101903</td>
</tr>
<tr>
<td>Mechanical Design Basics I</td>
<td>T-MACH-110363</td>
</tr>
<tr>
<td>Mechanical Design Basics II</td>
<td>T-MACH-110363</td>
</tr>
</tbody>
</table>

Module Handbook as of 01/03/2022

Chemical and Process Engineering Bachelor 2015 (Bachelor of Science (B.Sc.))
Table Of Contents

6.52. Mechanical Design Basics I, Tutorial - T-MACH-110364 ... 137
6.54. Mechanical Design III & IV - T-MACH-104810 .. 139
6.55. Mechanical Design III, Tutorial - T-MACH-110955 .. 140
6.56. Mechanical Design IV, Tutorial - T-MACH-110956 .. 141
6.57. Mechanical Processing - T-CIWVT-101886 ... 142
6.58. Mechanical Separation Technology Exam - T-CIWVT-103448 ... 143
6.59. Mechanical Separation Technology Project Work - T-CIWVT-103452 144
6.62. Microbiology - T-CIWVT-111065 .. 147
6.63. Organic Chemistry for Engineers - T-CHEMBIO-101865 ... 148
6.64. Particle Technology - T-CIWVT-103654 .. 149
6.65. Particle Technology - T-CIWVT-103655 .. 150
6.66. Process Development and Scale-up - T-CIWVT-103530 ... 151
6.68. Rheology and Product Design - T-CIWVT-103522 .. 154
6.69. Rheology and Product Design Project Work - T-CIWVT-103524 .. 155
6.70. Safety Instruction - T-CIWVT-108293 .. 156
6.71. Safety Instruction - T-CIWVT-108291 .. 157
6.72. SmartMentoring - Group Management - T-CIWVT-111761 .. 158
6.73. Thermodynamic Project Work - T-CIWVT-101885 ... 159
6.74. Thermodynamics I, Exam - T-CIWVT-101879 .. 160
6.75. Thermodynamics I, Tutorial - T-CIWVT-101878 .. 161
6.76. Thermodynamics II, Exam - T-CIWVT-101881 ... 162
6.77. Thermodynamics II, Tutorial - T-CIWVT-101880 ... 163
6.78. Tutorial Advanced Mathematics I - T-MATH-100525 ... 164
6.79. Tutorial Advanced Mathematics II - T-MATH-100526 ... 165
6.80. Tutorial Advanced Mathematics III - T-MATH-100527 ... 166
6.82. Water Quality and Process Engineering of Water and Waste Water Treatment - T-CIWVT-103650 ... 168
7. Nichtamtliche_Lesefassung_SPO_2015_Bachelor_CIw.pdf ... 169
1 General Information

<table>
<thead>
<tr>
<th>Field of study</th>
<th>Chemical and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Academic degree</td>
<td>Bachelor of Science (B.Sc.)</td>
</tr>
<tr>
<td>Exam regulations</td>
<td>Version 2015</td>
</tr>
<tr>
<td>Regular termin</td>
<td>6 Semester</td>
</tr>
<tr>
<td>Credit points</td>
<td>180</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Grade scale</td>
<td>Tenth grades</td>
</tr>
<tr>
<td>Calculation scheme</td>
<td>Weighted average by credits</td>
</tr>
</tbody>
</table>

1.1 Qualification Profile

The Bachelor’s program provides knowledge on scientific fundamentals and methodical expertise in the area of Chemical and Process Engineering. The Bachelor degree qualifies students to enroll for a Master’s program. Furthermore, it enables students to apply the acquired theoretical knowledge to a concrete professional field.

The compulsory program in the first and second year focuses on methodical and qualified fundamental knowledge of mathematics, natural sciences and engineering. This includes in particular the knowledge of heat and mass transfer and the most important unit operations in the field of thermal, chemical and mechanical process engineering. Graduates will be able to balance engineering processes appropriately.

The knowledge acquired in the first and second year is not only the basis for the third year of the Bachelor’s program, but also for the following Master’s studies. Mandatory elective courses in the third year of study offer the opportunity to gain in-depth knowledge in a specialist area for the first time. As part of the specialization, students will apply basic process engineering knowledge in a project work. In addition to technical aspects, working on a project in a team as well as preparing, interpreting and presenting the results are important parts of the specialization subject.

Within their Bachelor's thesis, students prove the ability to work on specialized problems in the field of chemical and process engineering independently and within a defined time frame using scientific methods.

Graduates are qualified to identify, abstract, and solve technical problems using the basic knowledge provided during the Bachelor's program. Furthermore, they can evaluate products and processes systematically as well as select and apply analyzing and simulation tools. They are able to combine theory and practice as well as to organize and implement projects independently. Graduates are able to collaborate with experts in other fields.
1.2 Contact

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of students</td>
<td>Prof. Dr.-Ing. Achim Dittler</td>
</tr>
<tr>
<td>Study affairs/ study counseling</td>
<td>Dr.-Ing. Barbara Freudig</td>
</tr>
<tr>
<td>Master Examination Board</td>
<td>Prof. Dr.-Ing. Achim Dittler</td>
</tr>
<tr>
<td>Examination office</td>
<td>Julia Hofer</td>
</tr>
</tbody>
</table>

Current information on degree programs and dates for information sessions can be found on the faculty web pages.

http://www.ciw.kit.edu/english/studium.php

1.3 Exam Regulations

The legal basis for the study program and the examinations is the “Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik” (Study and Examination Regulations of the Karlsruhe Institute of Technology (KIT) for the Bachelor Course of Studies in Chemical and Process Engineering) of 05 August 2015, amended on 24 February 2020. All references to the SPO in this module manual refer to the above-mentioned SPO.

The statute of 05 August 2015 including the amending statute can be found in the appendix of this module manual (only in German).

1.4 Recognition of achievements according to § 19 SPO

A request for recognition of services which
- At another university
- Abroad
- Outside the higher education system

can be submitted to the Bachelor Examination Board within one semester. There, if necessary after consultation with the subject representative, it will be determined whether the performance is equivalent to a performance envisaged in the curriculum of the course of study and can be recognised. Achievements completed as part of a semester abroad can also be recognized at a later date.

For forms, please refer to the website of the KIT Faculty of Chemical and Process Engineering https://www.ciw.kit.edu/bpa.php

1.5 Additional achievements and interdisciplinary (soft skill) qualification

Additional credits and interdisciplinary qualifications cannot always be registered directly in the CAS system (e.g. some modules from another faculty). In any case, you must contact Julia Hofer before the examination.

Exception:
interdisciplinary qualification at the House of Competence (HoC) or Language Centre

If the Soft Skill Qualification is taken at the HoC or Language Centre, then no certificate of approval is required for an examination achievement, as the achievements are automatically posted in the CAS system under "unallocated credits".
If you want to credit a performance that is listed under "unallocated credits", you have submit a form to the Masters Examination Board.

For forms, please refer to the website of the KIT Faculty of Chemical and Process Engineering https://www.ciw.kit.edu/bpa.php
2 Curriculum

Bachelor Chemical and Process Engineering

|----------|--|--|---|---|---|
| 1 32 ECTS | • Advanced Mathematics I (7*)
 • General Inorganic Chemistry (6) | • Engineering Mechanics: Statics (5)
 • Material Science and Engineering (4)
 • Mechanical Design (4) | | | • Laboratory I (6): Chemistry or Process Engineering |
| 2 32 ECTS | • Advanced Mathematics II (7)
 • Computational Methods (5)
 • Organic Chemistry (5) | • Engineering Mechanics: Strength of Material (5)
 • Material Science and Engineering (5)
 • Mechanical Design (5) | | | |
| 3 30 ECTS | • Advanced Mathematics III (7)
 • Computational Methods, Lab (5) | • Engineering Mechanics: Dynamics (5) | • Thermodynamics I (7) | | • Laboratory II (5): Chemistry or Process Engineering
 • Soft Skill Qualification (3) |
| 4 29 ECTS | | • Thermodynamics II (7)
 • Heat and Mass Transfer (7)
 • Fluidodynamics (5) | | | • Mandatory Elective Course [5] |
| 5 32 ECTS | • Elementary Physics (7) | | • Mechanical Processing (6)
 • Chemical Process Engineering (6)
 • Thermal Process Engineering (6) | | • Mandatory Elective Course (5)
 • Specialization/Project Work (2) |
| 6 25 ECTS | | | | | • Soft Skill Qualification (3)
 • Specialization/Project Work (10)
 • Bachelor Thesis (12) |

Numbers in brackets = ECTS
Overview: Fields and Modules

<table>
<thead>
<tr>
<th>Field</th>
<th>Module</th>
<th>Responsible</th>
<th>SWS</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 CP</td>
<td>Fundamentals of Mathematics and Natural Sciences</td>
<td>Advanced Mathematics I</td>
<td>Griesmeier</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Mathematics II</td>
<td>Griesmeier</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Mathematics III</td>
<td>Griesmeier</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computational Methods</td>
<td>Trimis</td>
<td>3 + P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General and Inorganic Chemistry</td>
<td>Ruben</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic Chemistry</td>
<td>Meier</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elementary Physics</td>
<td>Pilawa</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mechanics: Dynamics</td>
<td>Dittmeyer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical Design</td>
<td>Matthiesen/ Albers</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Engineering and System Dynamics</td>
<td>Stiller</td>
<td>4</td>
</tr>
<tr>
<td>26 CP</td>
<td>Thermodynamics and Transport Processes</td>
<td>Thermodynamics I</td>
<td>Enders</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermodynamics II</td>
<td>Enders</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluid dynamics</td>
<td>Nirschl</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat/ Mass Transfer</td>
<td>Wetzel</td>
<td>5</td>
</tr>
<tr>
<td>18 CP</td>
<td>Fundamentals of Process Engineering</td>
<td>Mechanical Processing</td>
<td>Dittler</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal Process Engineering</td>
<td>Kind</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Process Engineering</td>
<td>Kraushaar</td>
<td>4</td>
</tr>
<tr>
<td>10 CP</td>
<td>Mandatory Elective Courses</td>
<td>2 Elective Modules</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>11 CP</td>
<td>Laboratories</td>
<td>Either: Lab Work Process Engineering Or: Laboratory Work in General and Inorganic Chemistry</td>
<td>Sinanis Horn</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Either: Process Machines Or: Practical Course in Organic Chemistry for Chemical Engineers</td>
<td>Anlauf Rapp</td>
<td>P</td>
</tr>
<tr>
<td>6 CP</td>
<td>Soft Skill Qualifikations</td>
<td>2 Elective Modules</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12 CP</td>
<td>Specialization/ Project Work</td>
<td>1 Elective Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 CP</td>
<td>Thesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CP</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

CP: Credit Points (ECTS), SWS: weekly teaching hours
Lectures/ Exercises/ Laboratories (Semester Overview, Attendance Time hours per week)

<table>
<thead>
<tr>
<th></th>
<th>1. Semester (WS)</th>
<th>2. Semester (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>Ü</td>
</tr>
<tr>
<td>Advanced Mathematics I and II</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Computational Methods</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Engineering Mechanics: Statics/ Strength of Material</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General and Inorganic Chemistry (AAC)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Material Science and Engineering I und II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Design I und II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Organic Chemistry for Engineers</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lab (Chemistry or Process Engineering)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total CP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3. Semester (WS)</th>
<th>4. Semester (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>Ü</td>
</tr>
<tr>
<td>Advanced Mathematics III</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Mechanics: Dynamics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Computational Methods</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Control Engineering and System Dynamics</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fluidynamics</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Technical Thermodynamics I and II</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Heat- and Mass Transfer</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mandatory Elective Courses</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lab (Chemistry or Process Engineering)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soft Skill Qualification</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Total Credit Points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5. Semester (WS)</th>
<th>6. Semester (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>Ü</td>
</tr>
<tr>
<td>Chemical Process Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Thermal Process Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Processing</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elementary Physics</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mandatory Elective Courses</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Specialization/ Project Work</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Soft Skill Qualification*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor Thesis</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total CP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*WS: Winter Term, SS: Summer Term V: Vorlesung (lecture); Ü: Übung (exercise); P: Praktikum (Lab); CP = Credit Points
Overview graded and ungraded examinations

<table>
<thead>
<tr>
<th>1. FS</th>
<th>2. FS</th>
<th>3. FS</th>
<th>4. FS</th>
<th>5. FS</th>
<th>6. FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K HMI</td>
<td>K HM II</td>
<td>K HM III</td>
<td>S/V Thermo II</td>
<td>K MVT</td>
<td>M Profilfach</td>
</tr>
<tr>
<td>K AAC</td>
<td>K Info</td>
<td>S/V TM III</td>
<td>K Thermo II</td>
<td>K TVT</td>
<td>P Projektarbeit</td>
</tr>
<tr>
<td>P AAC/VT PR</td>
<td>K OC</td>
<td>K TM III</td>
<td>K WSU</td>
<td>K CVT</td>
<td>A Bachelorarbeit</td>
</tr>
<tr>
<td>S/V MKL</td>
<td>S/V MKL</td>
<td>K Thermo I</td>
<td>K Fluidynamik</td>
<td>K Wahlpflicht</td>
<td></td>
</tr>
<tr>
<td>M Werkstoffk.</td>
<td>P OC/VM PR</td>
<td>P Prog.</td>
<td>S ÜQ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unbenotete Leistungen (Studienleistungen)
- S: Studienleistung, unbenotet
- S/V: Studienleistung; Vorleistung zu einer Prüfung, z. B. Übungsaufgaben
- S/P: Praktikum unbenotet

Benotete Leistungen (Prüfungsleistungen)
- K: Klausur/Prüfungsleistung schriftlich
- M: Prüfungsleistung mündlich
- P: Praktikum/Prüfungsleistung anderer Art
- A: Abschlussarbeit

S: ungraded coursework
S/V: ungraded Coursework: Prerequisite for an written examination
S/P: Lab, ungraded
K: Written Examination
M: Oral Examination
P: Graded Lab
A: Thesis
3 General information about Master Transfer Account

Students who have already earned at least 120 LP in their Bachelor's programme can earn credit points from a consecutive Master's programme at KIT up to a maximum of 30 LP.

Exams can be taken in the following subjects:

- Advanced Fundamentals
- Internship
- Soft Skill Qualifications

Further information on individual modules can be found in the module manual of the Master's program.

Within the first Master's semester, achievements can be taken over into the master program. Please contact the Master's Examination Board.

There is no obligation to transfer achievements from Master Transfer Account!
4 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Thesis</td>
<td>12 CR</td>
</tr>
<tr>
<td>Fundamentals of Mathematics and Natural Sciences</td>
<td>47 CR</td>
</tr>
<tr>
<td>Fundamentals of Scientific Engineering</td>
<td>38 CR</td>
</tr>
<tr>
<td>Thermodynamics and Transport Processes</td>
<td>26 CR</td>
</tr>
<tr>
<td>Fundamentals of Process Engineering</td>
<td>18 CR</td>
</tr>
<tr>
<td>Mandatory Elective Courses</td>
<td>10 CR</td>
</tr>
<tr>
<td>Laboratories</td>
<td>11 CR</td>
</tr>
<tr>
<td>Specialization/ Project Work</td>
<td>12 CR</td>
</tr>
<tr>
<td>Soft Skill Qualifications</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

4.1 Bachelor Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103204 Module Bachelor Thesis</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

4.2 Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-100280 Advanced Mathematics I</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MATH-100281 Advanced Mathematics II</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MATH-100282 Advanced Mathematics III</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-101956 Computational Methods</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-101117 General and Inorganic Chemistry</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-101115 Organic Chemistry for Engineers</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-PHYS-100993 Elementary Physics</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

4.3 Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101128 Engineering Mechanics: Dynamics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102567 Material Science and Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101299 Mechanical Design</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101300 Control Engineering and System Dynamics</td>
<td>5 CR</td>
</tr>
</tbody>
</table>
4.4 Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWT-101129</td>
<td>Thermodynamics I</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWT-101130</td>
<td>Thermodynamics II</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWT-101131</td>
<td>Fluidynamics</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-101132</td>
<td>Fundamentals of Heat and Mass Transfer</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

Credits: 26

4.5 Fundamentals of Process Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWT-101135</td>
<td>Mechanical Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWT-101134</td>
<td>Thermal Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWT-101133</td>
<td>Chemical Process Engineering</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Credits: 18

4.6 Mandatory Elective Courses

Election notes
In most cases, two modules totaling 10 ECTS are chosen (regardless of whether the modules are offered in the summer or winter term). For most optional subjects, participation is not recommended before the fourth semester.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWT-101126</td>
<td>Food Biotechnology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-101136</td>
<td>Energy Process Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-101137</td>
<td>Industrial Organic Chemistry</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-101972</td>
<td>International Concepts of Water Technologies</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-101624</td>
<td>Biology for Engineers I</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-103297</td>
<td>Applied Apparatus Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-MACH-102829</td>
<td>Mechanical Design III+IV</td>
<td>13 CR</td>
</tr>
<tr>
<td>M-CIWT-105517</td>
<td>Industrial Microbiology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-105518</td>
<td>Enzyme Technology</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-105690</td>
<td>Electrochemical Energy Technologies</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWT-105698</td>
<td>Downstream Processing</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-ETIT-105703</td>
<td>Laboratory course: Electrochemical Energy Technologies</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Credits: 10

4.7 Laboratories

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWT-101138</td>
<td>Lab Work Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWT-101964</td>
<td>Laboratory Work in General and Inorganic Chemistry</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWT-101139</td>
<td>Process Machines</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-101116</td>
<td>Practical Course in Organic Chemistry for Chemical Engineers</td>
<td>5 CR</td>
</tr>
</tbody>
</table>
4.8 Specialization/ Project Work

Credits
12

In the fifth semester the possibility of profile building exists for the first time. Eleven specialization subjects are available. The size and structure of these specialization subjects are similar. All specialization subjects extend over two semesters, start in the winter semester and end at the end of May at the latest. In the winter semester, lectures usually take place in which extended, subject-specific knowledge is imparted. Subsequently, research-related project work is carried out in small groups. Prerequisites for participation in the profile subjects are at least 60 ECTS and at least one successfully completed internship (e.g. general and inorganic chemistry, process engineering,...).

The learning control of specialization subjects consists of two parts which are listed in the description of the module description (e.g. oral examination and presentation of the project work). The specialization subject is only passed if both partial examinations are passed (evaluated with at least “sufficient”). A failed partial performance can only be repeated once. Dates for repeat exams will be agreed with the person responsible for the subject.

As the practical work is carried out in the laboratory, the number of participants in the individual specialization subjects is limited. The registration for the specialization subjects is usually possible in July. Within a registration period of two weeks, students have the opportunity to choose their preferred subject (at least one first and one second wish). After the registration deadline, the places will be allocated automatically, taking into account your wishes as far as possible.

Before the start of the registration period, an information event will be held on 22. June 2022 in which the individual subjects will be presented and the registration procedure explained.

The location and time of the information event will be published in good time on the faculty's and student council's homepages.

The registration process is divided into two stages:
In July, the desired profile subjects can be selected via the following portal https://portal.wiwi-kit.edu/
After the allocation you can choose your specialization subject in the Study Portal, the choice is approved online by the faculty, afterwards the registration for the individual examinations is possible.

Election regulations
Elections in this field require confirmation.

<table>
<thead>
<tr>
<th>Specialization/ Project Work (Election: at least 12 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101144 Rheology and Product Design</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101145 Energy and Environmental Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101147 Mechanical Separation Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101148 Food Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101141 Particle Technology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101143 Biotechnology</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101152 Water Quality and Process Engineering of Water and Waste Water Treatment</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101154 Micro Process Engineering</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-101153 Process Development and Scale-up</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-104457 Fundamentals of Refrigeration</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-CIWVT-104458 Applied Thermal Process Engineering</td>
<td>12 CR</td>
</tr>
</tbody>
</table>
4.9 Soft Skill Qualifications

A total of 6 LPs must be completed in the area of "soft skill qualifications" during the Bachelor's programme. Non-technical modules, such as modules from other subject areas, language courses or other courses offered by the House of Competence (HoC) or the Centre for Applied Cultural Studies and General Studies (ZaK), belong to interdisciplinary qualifications.

Election notes
3 of the 6 LPs are fixed: At least one of the following modules must be selected:

- Ethics and Global Material Cycles
- Industrial Business Administration
- Intercultural Sensitivity and Competence

Modules in the range of 3 LP can be freely selected. The following can be done

- either two of the above mentioned modules
- or any modules of at least 3 LP (e.g. HoC or ZaK courses)

can be selected.

<table>
<thead>
<tr>
<th>Soft Skill Qualifications (Election: at least 6 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101149 Ethics and Global Material Cycles</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WWI-100528 Industrial Business Administration</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-CIWVT-105847 Intercultural Sensitivity and Competence</td>
<td>3 CR</td>
</tr>
<tr>
<td>First usage possible from 10/1/2021.</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-105848 SmartMentoring</td>
<td>4 CR</td>
</tr>
<tr>
<td>First usage possible from 10/1/2021.</td>
<td></td>
</tr>
</tbody>
</table>
5 Modules

5.1 Module: Advanced Mathematics I [M-MATH-100280]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Roland Griesmaier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Mathematics</td>
</tr>
<tr>
<td>Part of</td>
<td>Fundamentals of Mathematics and Natural Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275</td>
<td>Advanced Mathematics I</td>
<td>7 CR</td>
<td></td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100525</td>
<td>Tutorial Advanced Mathematics I</td>
<td>0 CR</td>
<td></td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried by a written examination of length 120 minutes and by homework assignments (pre-requisite). A “pass” result on the pre-requisite is a requirement for registration for the corresponding written examination.

Prerequisites

none

Competence Goal

The students know the fundamentals of one-dimensional calculus. They can reliably use limits, functions, power series and integrals. They understand central concepts such as continuity, differentiability or integrability and they know important statements about these concepts. The students can follow the arguments leading to these statements as presented in the lectures and are able to independently prove simple assertions based on these statements.

Content

Fundamentals, sequences and convergence, functions and continuity, series, differential calculus of one real variable, integral calculus

Module grade calculation

The module grade is the grade of the written examination

Workload

In class: 90 hours

• lectures, tutorials and examinations

Independent study: 120 hours

• independent review of course material
• work on homework assignments
• preparation for written exams

Literature

will be announced in class.

Base for

Advanced Mathematics II
5.2 Module: Advanced Mathematics II [M-MATH-100281]

Responsible: Prof. Dr. Roland Griesmaier

Organisation: KIT Department of Mathematics

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 CR</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100276</td>
<td>Advanced Mathematics II</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100526</td>
<td>Tutorial Advanced Mathematics II</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning assessment is carried by a written examination of length 120 minutes and by homework assignments (pre-requisite). A "pass" result on the pre-requisite is a requirement for registration for the corresponding written examination.

Prerequisites

none

Competence Goal

The students know about the fundamentals of linear algebra. They are able to use vectors, linear maps and matrices without problems. They have basic knowledge about Fourier series. The students also can theoretically and practically deal with initial value problems of ordinary differential equations. They can make use of classical solution techniques for linear differential equations.

Content

vector spaces, linear maps, eigenvalues, Fourier series, differential equations, Laplace transform

Module grade calculation

The module grade is the grade of the written examination.

Workload

In class: 90 hours

- lectures, tutorials and examinations

Independent study: 120 hours

- independent review of course material
- work on homework assignments
- preparation for written exams

Recommendation

The following modules should have been taken: Advanced Mathematics 1

Literature

will be announced in class.

Base for

Advanced Mathematics III
5.3 Module: Advanced Mathematics III [M-MATH-100282]

Responsible: Prof. Dr. Roland Griesmaier

Organisation: KIT Department of Mathematics

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100277</td>
<td>Advanced Mathematics III</td>
<td>7 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>T-MATH-100527</td>
<td>Tutorial Advanced Mathematics III</td>
<td>0 CR</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried by a written examination of length 120 minutes and by homework assignments (pre-requisite). A "pass" result on the pre-requisite is a requirement for registration for the corresponding written examination.

Prerequisites
none

Competence Goal
The students know about differential calculus for vector-valued functions of several variables and about techniques of vector calculus such as the definition and application of differential operators, the computation of domain, line and surface integrals and important integral theorems. They have basic knowledge about partial differential equations and know basic facts from stochastics.

Content
Multidimensional calculus, domain integrals, vector calculus, partial differential equations, stochastics.

Module grade calculation
The module grade is the grade of the written examination.

Workload

In class: 90 hours
- lectures, tutorials and examinations

Independent study: 120 hours
- independent review of course material
- work on homework assignments
- preparation for written exams

Recommendation
The following modules should have been taken before: Advanced Mathematics I and II

Literature
will be announced in class.
5.4 Module: Applied Apparatus Engineering [M-CIWVT-103297]

Responsible: Dr. Martin Neuberger
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Success Control is a written examination of 90 minutes duration according to § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None

Competence Goal
The students will be able to describe the necessary steps for concept, planning and calculation of a construction of a machine until the commissioning. This contains the choice and declaration of single components. The students will apply the principles of the machine design with respect to the requirements for different educts, products and processes.

Additionally to technical aspects, the students will learn about cost management, time management and quality management. The students will know the sequence of licensing and providing procedures.

Content
- Project Management
 - Project time management, project cost management, work breakdown structure
- Process of Machine Design
 - Product (requirements with respect to corrosion, purity, cleanliness ...), process (manufacturing, pressure, temperature, ...), selection of materials and components (motors, pumps, vans, fittings), maintenance, repair, safety, manufacturing process (welding, brazing ...), transport, commissioning, performance test, approval ...
- Procurement
 - Technical specification, call for tenders, contract design, claim management
- Quality Management
 - Certification concerning ISO 9001:2015, quality planning, quality approval
 - e.g. welding process qualification, qualified welders ...
 - material qualification report, control of manufacturing and mounting, commissioning

Workload
- Attendance time: 60 h
- Self-study: 45 h
- Exam preparation: 45 h

Literature
Walter Wagner: Planung im Anlagenbau; Vogel Business Media; Auflage: 3. Auflage (August 2009)
5.5 Module: Applied Thermal Process Engineering [M-CIWVT-104458]

Responsible: Dr.-Ing. Benjamin Dietrich
Dr. Philip Scharfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110803</td>
<td>Applied Thermal Process Engineering - Exercises</td>
<td>6 CR</td>
<td>Dietrich, Scharfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal

Students can

- explain basic, future-oriented processes of applied thermal process engineering
- process chain of a scientific question up to its answer: planning, conceptual design, implementation, execution and evaluation of fundamental experiments, describing aspects for implementation on a technical scale (scale-up)
- work scientifically using standard IT tools
- present scientific results
- independently acquire specialist knowledge

Content

Within the scope of this module an insight into the current research of the institute is to be made possible, which deals with future-oriented topics, such as renewable energy concepts, electromobility and energy storage. Three basic experiments in the fields of drying, heat transfer and crystallization are offered in the form of a project work.

First, the corresponding technical and methodological fundamentals are presented in a lecture. This also includes the transfer of necessary knowledge for the preparation of a scientific report or a scientific presentation as well as the use of special Excel tools such as solvers or macros. In special workshops at the TVT the lecture contents can be trained. Subsequently, experiments are carried out in the laboratory using modern, partly self-assembled measuring technology (e.g. temperature sensors based on single board computers / Arduino) on the respective topic. The evaluation is carried out using the basics laid down in the lecture and with the aid of corresponding chapters of the VDI heat atlas. The results are summarized in a work report. In the following step, a design calculation for the industrial scale-up with corresponding specifications of the required devices is prepared for one of the basic experiments. The design achieved is to be presented to the other students of the profile subject in a scientific seminar. The practical part is rounded off by an excursion to BASF in Ludwigshafen, which provides insights into the application of what has been learned in industrial implementation.

Workload

Lectures and exercises: 100 h
Homework: 160 h
Laboratory work (incl. interpretation and report): 100 h
Recommendation
The successful participation in the lecture "Basics of Heat and Mass Transfer" of the TVT ist an advantage.

Literature
- VDI-Wärmeatlas, Springer 2013
- Own Manuscripts
5.6 Module: Biology for Engineers I [M-CIWVT-101624]

Responsible: Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111062</td>
<td>Cell Biology</td>
<td>3 CR</td>
<td>Gottwald</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-111063</td>
<td>Genetics</td>
<td>2 CR</td>
<td>Neumann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module is successfully completed by

- a written exam "Cell Biology" of 90 min
- a written exam "Genetics" of 90 min

Prerequisites

None

Competence Goal

Cell-biology: Identification of pro- and eukaryotic cells, identification of pro- and eukaryotic cellular constituents, knowledge of basic metabolic pathways, knowledge of the most important molecule classes and their occurrence, ability to operate a light microscope and knowledge of the underlying theory, being able to select bioreactors according to the application.

Genetics: Students are able to give a detailed description of basic aspects of molecular genetics in pro- and eukaryotes and can explain genetic processes in their own words. Basic aspects are in particular: Structure and organization of nucleic acids, mechanisms of replication, transcription, translation, regulation of gene expression, recombination, transposition, DNA repair mechanisms and genetic basics of virology. Furthermore, students are able to apply their basic knowledge by explaining graphics or by transferring their knowledge to gene technological methods.

Content

Cell biology: Microscopy; Cell structure of pro- and eukaryotes; Eukaryotic cell compartments; Structure and function of macromolecules; Communication between cells; Cell cycle.

Genetics: Nucleic acids; Chromatin and chromosomes; Genes and genomes; Replication; Transcription; Translation; Recombination; Mutations and DNA repair mechanisms; Gene regulation; Methods and applications of molecular gene technology.

Module grade calculation

The module grade is calculated from the LP-weighted average of both parts of the module.

Workload

Attendance time: Lecture of 4 SWS: 60 h
Self-study time: 30 h
Exam preparation: 60 h

Recommendation

None
Literature

Cell biology

- Alberts, Lehrbuch Molekulare Zellbiologie (Wiley-VCH)
- Munk: Biochemie - Zellbiologie (Thieme)
- Plattner/Hentschel: Tellbiologie (Thieme)

Genetics

- Munk, Taschenlehrbuch Biologie, Genetik (Thieme)
- Knippers, Genetik (Thieme)
5.7 Module: Biotechnology [M-CIWVT-101143]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103668</td>
<td>Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>T-CIWVT-103669</td>
<td>Biotechnology</td>
<td>9</td>
</tr>
</tbody>
</table>

Competence Certificate

The module comprises two graded success controls according to § 4 (2) No 2,3 SPO:

1. written examination
2. practical work/ protocol/ presentation

The module grade is calculated from both parts of the module, part 1: 25%, part 2: 75%
Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Prerequisites

Participation requires:

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You have to fulfill one of 6 conditions:
 1. The module M-CIWVT-101138 - Lab Work Process Engineering must have been passed.
 2. The module M-CIWVT-101139 - Process Machines must have been passed.
 3. The module M-CIWVT-101722 - General Chemistry and Chemistry of Aqueous Solutions must have been passed.
 4. The module M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry must have been passed.
 5. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been passed.
 6. The course T-CIWVT-103331 - Laboratory Work: Biology for Engineers must have been passed.

2. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses
Competence Goal
Basic understanding of processes and synthesis of processes in biotechnologic production

lecture „Instrumental Bioanalytics“
The students are able to assign important methods of instrumental biotechnology to corresponding analytical problems. By deepening their theoretical understanding of physical-chemical analytics and working techniques the students become qualified to analyze fields of application and constraints thereof. They can compare/evaluate potentials and limitations of different methods and select suitable methods for (future) experimental work on their own.

Lecture „Management of scientific projects“ and exercises:
The students are able to conduct literature research on their own, design own experiments, evaluate their own data, write own scientific texts. They can plan their own small project regarding time and finances required and prepare a project plan as well as present it. They can prepare a (scientific) poster and present it.

Hands-on training
The students are able to do own scientific research and practical work in the field of biotechnology. They know how to analyse their own gained data and prepare a project report.

Content
lecture „Instrumental Bioanalytics“
The lecture introduces to important instrumental methods in biotechnology including both theory and possible fields of application. Methods covered in the lecture are chromatographic separation techniques, spectroscopic structure analysis (MS, NMR, IR, absorption and fluorescence) as well as special microscopic techniques (fluorescence, CLSM, EM and SNOM). Beyond that, scanning probe microscopy and single molecule spectroscopy will be introduced.

Lecture „Management of scientific projects“ and exercises:
The lecture covers literature research, design of experiments, data evaluation, scientific writing and project management; in parts it is software-based and carried out in an electronic classroom.

Practical exercises cover literature research, preparation of a project plan, presentation of the project plan, preparation of a poster, presentation of the poster

Hands-on training
Accomplishment of autonomous investigation and practical work in the field of biotechnology, preparation of a project report

Module grade calculation
weighted mean based on LP

Workload
Instrumental Bioanalytics (3 ECTS):
- Lectures and Exercises: 28 h
- Homework: 30 h
- Exam Preparation: 32 h

Management of scientific projects (3 ECTS):
- Lectures and Exercises: 28 h
- Homework: 64 h

Lab Work: (3 ECTS):
- Lab: 80 h
- Homework: 10 h

Project (3 ECTS)
- Lab: 10 h
- Homework: 80 h

Literature
Will be announced.
5.8 Module: Chemical Process Engineering [M-CIWVT-101133]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki

Organisation: KIT Department of Chemical and Process Engineering

Part of: Fundamentals of Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101884 | Chemical Process Engineering | 6 CR | Kraushaar-Czarnetzki |

Competence Certificate

Learning control is a written examination of 120 min duration according to §4 Abs. 2 Nr. 1 SPO

Prerequisites

None

Competence Goal

Students can analyse and design reactors for chemical and enzymatic-biochemical conversions in homogeneous phase. They are able to promote the formation of a certain desired product in multi-step reactions, when parallel and consecutive steps can yield further products. Furthermore, students can apply balances of energy to identify conditions of safe reactor operation when exo- and endothermic reactions are run.

Content

Application of mass and energy balances for the analysis and design of ideal reactors for single-phase conversions, and for the identification of optimum operation conditions.

Module grade calculation

grade of the written examination

Workload

lecture: 56 h
self-study: 56 h
preparation of examination: 68 h

Recommendation

Courses of 1st - 4th semester

Literature

B. Kraushaar-Czarnetzki: "Klausuren mit Lösungen" (Studentenwerk).
5 Module: Computational Methods [M-CIWVT-101956]

Responsible: Dr.-Ing. Peter Habisreuther
Organisation: KIT Department of Chemical and Process Engineering
Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102250</td>
<td>Introduction to Informatics and Algorithmic Mathematics - Exam</td>
<td>5</td>
<td>CR</td>
<td>Dörfler, Krause</td>
</tr>
<tr>
<td>T-CIWVT-101876</td>
<td>Application of Numerics in Engineering</td>
<td>3</td>
<td>CR</td>
<td>Habisreuther</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
Higher programming languages, design and description of algorithms, basic algorithms from mathematics and computer science, implementation of mathematical concepts on computers, modeling and simulation of scientific and technical problems.

Students are able to solve engineering problems applying numerical methods, to solve a problem within a fixed time-frame in a team and to show their results in a concluding presentation.

Content
The course offers the basics to advanced studies. Key concepts of the lectures are: structured program design, iteration, recursion, data structures (in particular: arrays), procedural programming with functions and methods, developing application-oriented programs. In computer labs, the mathematical concepts will be implemented.

Fundamentals to solve problems in process engineering by applying numerical methods.
5.10 Module: Control Engineering and System Dynamics [M-MACH-101300]

Responsible: Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-102126 *Control Engineering and System Dynamics* 5 CR Stiller

Competence Certificate

Type of Examination: written exam
Duration of Examination: 120 minutes

Prerequisites

Compulsory preconditions: none
Recommendation: courses of 1st -3rd semester

Competence Goal

Provision of linear system theory and simple controls for technical systems to CIW and BIW engineers.

Content

Dynamic systems, Properties of important systems and modeling, Stability, Controller design, Estimation

Module grade calculation

grade of the written examination

Workload

150 hours

Learning type

2138332 Regelungstechnik und System-dynamik, 2V, 2 LP, compulsory course
2138333 Übungen zu Regelungstechnik und Systemdynamik, 1Ü, 2 LP, compulsory course

Literature

Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag
5.11 Module: Downstream Processing [M-CIWVT-105698]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101897 | Downstream Processing | 5 CR | Hubbuch |

Competence Certificate
Learning control is a written examination of 120 min duration according to § 4 Abs. 2 SPO

Prerequisites
None

Competence Goal
Overview on unit operations for protein separations and respective analytics used in the biotechnological industry.

Content
The lecture series addresses fundamentals in biotechnological purification of bio-products and respective analytics.

Module grade calculation
Grade of the written examination

Workload
Lectures and exercises: 56 h
Homework: 50 h
preparation of examination: 44 h

Recommendation
Courses of 1st - 3rd semester

Literature
will be announced

Base for
Special subject Biotechnology
Module: Electrochemical Energy Technologies [M-ETIT-105690]

Responsible: Prof. Dr.-Ing. Ulrike Krewer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Mandatory Elective Courses (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-111352</td>
<td>Electrochemical Energy Technologies</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Type of Examination: Written exam
Duration of Examination: approx. 120 minutes

Prerequisites

none

Competence Goal

Students have well-grounded knowledge of electrochemical energy technologies for conversion and storage of electrical energy. They know the working principle of fuel cells, batteries and electrolyzers and their components. They understand the underlying electrochemical, electrical and physical processes, and the resulting loss processes as function of operation and cell design. Participation in the course puts them in a position to build cells and evaluate and understand their performance and operating behavior. Furthermore, they can select the appropriate electrochemical cell for a given application, analyse, interpret and operate it.

Content

Lecture:

- Application and operating principle of fuel cells, batteries and electrolyzers
- Thermodynamics, potential and voltage of electrochemical cells
- Kinetics and electrochemical reactions
- Transport processes in electrochemical cells
- Composition and types of fuel cells and electrolyzers
- Composition and types of batteries
- Operation and characterization of electrochemical cells
- Electrochemical systems

Exercise:

- Application of the theory to batteries and fuel cells including example calculations.

Module grade calculation

The module grade is the grade of the written exam.

Workload

1. Attendance in lectures: 30 * 45 Min. = 22,5 h
2. Attendance in exercises: 15 * 45 Min. = 11,25 h
3. Preparation/follow-up Vorlesungen und Übungen: 76,25 h (approx. 1,75 h per lecture/exercise)
4. Preparation of and attendance in examination: 40 h

In total: 150 h = 5 LP
5.13 Module: Elementary Physics [M-PHYS-100993]

Responsible: Prof. Dr. Ralph Engel
Organisation: KIT Department of Physics
Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101577</td>
<td>Elementary Physics</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
See components of this module

Prerequisites
The modules Advanced Mathematics I and Advanced Mathematics II have to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-MATH-100280 - Advanced Mathematics I** must have been passed.
2. The module **M-MATH-100281 - Advanced Mathematics II** must have been passed.

Recommendation
Contents of *Engineering Mechanics: Dynamics*
Module: Energy and Environmental Engineering [M-CIWVT-101145]

Responsible: Prof. Dr. Reinhard Rauch
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

Credits: 12
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 2 terms
Language: German
Level: 4
Version: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103527</td>
<td>Energy and Environmental Engineering Project Work</td>
<td>4 CR</td>
<td>Rauch, Trimis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-108254</td>
<td>Energy and Environmental Engineering</td>
<td>8 CR</td>
<td>Rauch, Trimis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The module comprises two graded success controls according to § 4 (2) No. 1, 3 SPO:
- written examination, duration 120 minutes
- project work
The module grade is calculated from the LP-weighted mean of both parts of the module.
Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Prerequisites
Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal
The students will be able to discuss, analyze and compare applications in energy engineering and environmental protection (primary/secundary means, efficiency, raw materials etc.).

Content
Introduction into production of fuels (chemical energy carriers) from fossil and renewable sources and their use, prevention of formation of pollutants, removal of pollutants, review and selected examples, fundamentals and applications of high temperature energy conversion.

Workload
Attendance time: 60 h
Excursions: 20 h
Self-Study: 90 h
Project work: 90 h
Exam preparation: 100 h

Recommendation
Courses of 1st - 4 th semester
Literature
lecture notes and specific literature indicated during lectures, additionally:
M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010

Responsible: Prof. Dr.-Ing. Thomas Kolb
Prof. Dr.-Ing. Nikolaos Zarzalis

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101889</td>
<td>Energy Process Engineering</td>
<td>5 CR</td>
<td>Kolb</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Learning control is a written examination of 150 min duration according to § 4 Abs. 2 SPO.

Prerequisites

None.

Competence Goal

Students learn to classify energy and the different appearances of energy, knowledge of the different energy sources and the national and global energy demand, knowledge and solution of simple tasks in energy conversion with different conversion methods.

Content

Basics: Concepts, forms of appearance of energy, systems and balances

Process Engineering: Energy carriers, energy conversion, energy transportation and storage, decentral energy systems

Ecology / Economy / Policy

Module grade calculation

Grade of the written examination.

Workload

lectures: 56 h
self-study: 50 h
preparation of examination: 44 h

Recommendation

Thermodynamik

Literature

In the lecture stated literature, additionally:
VDI-Gesellschaft Energietechnik (Hrsg.): Energietechnische Arbeitsmappe, Springer-Verlag, Berlin 2000
M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010

Responsible: Prof. Dr.-Ing. Roland Dittmeyer
TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101877</td>
<td>Engineering Mechanics: Dynamics, Exam</td>
<td>5 CR</td>
</tr>
<tr>
<td>T-CIWVT-106290</td>
<td>Engineering Mechanics: Dynamics</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment of success takes place via

1. a written examination of 90 minutes according to § 4, passage 2 of the Studies and Examinations Regulations (SPO)
2. prerequisite

Prerequisites
None

Competence Goal
Students possess basic knowledge in Engineering Mechanics/Dynamics, they are familiar with problem solving and able to use this knowledge for theoretical analysis and solution of practical engineering problems.

Content
Kinematics and dynamics of mass point;
Kinematics and dynamics of rigid body;
The principle of linear momentum, angular momentum, work and energy theorem;
Oscillation of the systems with one or more freedom degrees;
Relative movement of mass point;
Methods in analytical Mechanics, Lagrange equation;

Module grade calculation
grade of the written examination. Superior preliminary test can be credited according to §7,13 SPO.

Workload
lectures and exercises: 56 h
self study: 56 h
preparation for examination 40h

Recommendation
modules of 1. - 2. semester.

Literature
Kühlhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
Hibbler: Dynamik, Pearson 2006, 10. Auflage
Wriggers/Nackenhorst/Beuermann/Spiess/Löhner: Technische Mechanik kompakt, Teubner 2006

Responsible: Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: Fundamentals of Scientific Engineering (Usage from 10/1/2017)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111054</td>
<td>Engineering Mechanics: Statics</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning Control consists of:

- A written examination "Statics" according § 4 (2) No 1 SPO. Duration: 90 minutes.
- A written examination "Strength of Material" according § 4 (2) No 1 SPO. Duration: 90 minutes.

Prerequisites

None

Content

forces and momentums, static balance, bearings, frameworks, tension/ elongagion in general (3D), internal force variables of beams, friction, principle of virtual work, tension/ elongation in rods, hypothesis of stability, torsion, buckling

Module grade calculation

Weighted average by credits.

Workload

Attendance time: 120 h
Self-study: 120 h
Exam preparation: 60 h

Literature

Gross/Hauger/Schnell/Schröder: Technische Mechanik
Hibbeler:
Technische Mechanik 1- Statik, Pearson 2005, 10. Auflage;
Technische Mechanik 2 - Festigkeitslehre,
Pearson (2006) 5. Auflage,
Mechanics of Materials, Pearson (2004),
Kühhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner 2006
Müller/Ferber: Technische Mechanik für Ingenieure (mit CD-Rom), Fachbuchverlag Leipzig 2005;
5.18 Module: Enzyme Technology [M-CIWVT-105518]

Responsible: Dr. Jens Rudat
Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111064</td>
<td>Biochemistry</td>
<td>3</td>
<td>CR</td>
<td>Rudat</td>
</tr>
<tr>
<td>T-CIWVT-111074</td>
<td>Enzyme Technology</td>
<td>3</td>
<td>CR</td>
<td>Syldatk</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning Control consists of:

- written examination biochemistry according to § 4 Abs. 2 Nr. 1 SPO.
- written examination enzyme technology according to § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Module grade calculation
The grade of module ist the grade of written examination.

Workload
- Lectures: 60 h
- Homework: 40 h
- Exam Preparation: 50 h

Literature
- Voet/Voet/Pratt: "Lehrbuch der Biochemie" (Wiley-VCH)
- Koolman/Röhm Taschenatlas der Biochemie (Thieme)
5.19 Module: Ethics and Global Material Cycles [M-CIWVT-101149]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of: Soft Skill Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101887</td>
<td>Ethics and Global Material Cycles</td>
<td>3 CR</td>
<td>Rauch</td>
</tr>
<tr>
<td>T-CIWVT-109219</td>
<td>Ethics and Global Material Cycles - Prerequisite</td>
<td>0 CR</td>
<td>Rauch</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination consists of

1. Prerequisite: regular attendance at lectures and exercises; short presentation
2. Written elaboration/ written examination (ungraded)

Prerequisites
None

Competence Goal
Basic understanding of: Examples of global material cycles and effects caused by human societies, Important limitations for material and energy conversion by human societies (civilization, industrialization), Basic knowledge in engineering ethics, Competences in “handling” with ethical questions for engineers

Content
Bio-geosphere as environment for human life. selected examples of global material cycles. limits of man-made material and energy conversion. sustainability as term. priority rules for sustainability and for shaping the future. technology assessment, engineering codes. responsibility individual, collective, corporate

Workload
- lectures and exercises: 15 h
- homework: 45 h
- preparation of examination: 30 h

Literature
5.20 Module: Fluidodynamics [M-CIWVT-101131]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: Thermodynamics and Transport Processes

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101882</td>
<td>Fluidodynamics, Exam</td>
<td>5 CR Nirschl</td>
</tr>
<tr>
<td>T-CIWVT-101904</td>
<td>Fluidodynamics, Tutorial</td>
<td>0 CR Nirschl</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control consists of:
1. written exam of 120 minutes duration according to § 4 (2) SPO.
2. Non-graded precondition for participation according to § 4 (3) SPO: either 4 of 5 compulsory exercises have to be approved or a group presentation has to be given during the lecture

Prerequisites
none

Competence Goal
The students have the ability to analyse, to structure and to describe problems in fluid dynamics. The also can use the specific methods for the calculation of specific flows with the studied tools. Besides they are able to discuss the different procedures critically.

Content
Fundamentals of fluid dynamics: hydrostatic, aerostatik, compressible and incompressible flows, turbulent flows, Navier-Stokes equations, boundary layer theory

Module grade calculation
grade of the written examination

Workload
lecture 2 SWH, exercises 2 SWH: 56 h
self-study: 56 h
preparation of examination: 56 h

Recommendation
Courses of 1st - 3rd semester

Literature
Nirschl, Zarzalis: Skriptum Fluidmechanik
Zierep: Grundzüge der Strömungslehre, Teubner 2008
Prandtl: Führer durch die Strömungslehre, Teubner 2008
Module: Food Biotechnology [M-CIWVT-101126]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101898</td>
<td>Food Biotechnology</td>
<td>5 CR</td>
<td>Karbstein</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-101899</td>
<td>Food Biotechnology - Prerequisite</td>
<td>0 CR</td>
<td>Karbstein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The Module comprises two success controls:

1. written examination
2. non-granded precondition for the admission to the examination: Ilias-Test

Prerequisites

None

Competence Goal

The students will know about basics to secure food (and life science product) safety.

Content

The students will learn about microorganisms being important for food safety and biotechnological food production. Based on some historical products student will learn modern process technology. Technologies to secure food (and life science product safety) will be taught. Using actual case studies students will learn how food process engineers work. Process and product design will be rehearsed and practised in exercises and commented students' presentations.

Module grade calculation

grade of the written examination.

Workload

Attendence time: 60 h
Preparation of presentation: 10 h
Exam Preparation: 20 h
homework: 60 h

Recommendation

Courses of 1st and 2nd semester.

Voluntary completion of homework sheets in ILIAS is recommended as exam preparation.

Literature

- Lebensmittelmiokrobiologie (J. Krämer, UTB Ulmer)
- Lebensmittelbiotechnologie (Heinz Rutloff, Akademie Verlag)
- Lebensmittelverfahrenstechnik, Teil A (Schuchmann, Wiley)
- Lebensmittelbiotechnologie: eine Einführung (P. Czermak, GIT)
- Lebensmittelbiotechnologische (R. Heiss, Springer)
- Lexikon der Lebensmitteltechnologie (B. Kunz, Springer)
- Taschenatlas der Biotechnologie und Gentechnik (Rolf D. Schmid, Wiley)
- Mikroorganismen in Lebensmitteln (H. Keweloh, Pfanneberg)
- Mikrobiologie der Lebensmittel (G. Müller, H. Weber, Behr's)
- Grundzüge der Lebensmitteltechnik (H.-D. Tscheuschner, Behr's)
- Vorlesungssfolien, Skripte mit Übungsfragen, Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)
Base for
special subject food technology
5.22 Module: Food Technology [M-CIWVT-101148]

- **Responsible:** PD Dr.-Ing. Azad Emin
- **Organisation:** KIT Department of Chemical and Process Engineering
- **Part of:** Specialization/ Project Work

Credits
- 12

Grading scale
- Grade to a tenth

Duration
- 2 terms

Language
- German

Level
- 4

Version
- 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103528</td>
<td>Food Technology</td>
<td>5 CR</td>
<td>Emin</td>
</tr>
<tr>
<td>T-CIWVT-103529</td>
<td>Food Technology Project Work</td>
<td>7 CR</td>
<td>Emin</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two graded success controls according to § 4 (2) No 2, 3 SPO:

1. Oral examination, duration about 45 minutes
2. Project work (presentation and report of results)

The module grade is calculated from the LP-weighted mean of both parts of the module.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Prerequisites
Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal
The students are able to design and evaluate simple food products. They learned to define, focus and solve tasks milestone-oriented as an interdisciplinary team. The gained in depth insight in the influence of recipe and process parameters on food quality parameters using a selected product produced on pilot scale. They will be able to present targets and results of their team project in a clear, conceptual and comprehensible manner.

Content
Lecture: Basic introduction to the design and quality assurance of selected foods; project work (team work): definition, production and evaluation of selected products as a team; presentation and defense of the project and its results incl. degustation in a bigger group; field trip to industrial production plants

Module grade calculation
Weighted mean based on LP

Workload
Attendance time: 115 h
(lecture 1 SWS, exercises 1 SWS, project work 5 SWS)
self study: 185 h
exam preparation: 60 h
Literature
Will be offered within the lecture, depending on products available
5.23 Module: Fundamentals of Heat and Mass Transfer [M-CIWVT-101132]

| Responsible: | Prof. Dr.-Ing. Wilhelm Schabel
	Prof. Dr.-Ing. Thomas Wetzel
Organisation:	KIT Department of Chemical and Process Engineering
Part of:	Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Success control is a written examination, duration 180 minutes according to § 4 Abs. 2 SPO.

Prerequisites
none

Competence Goal
Elaborating the fundamental physics and laws of heat and mass transfer and at the provision of knowledge about of the methodological tools required for solving engineering tasks in these fields.

Content
Heat Transfer: Definitions - System, balances and conservation equations, konetics of heat transfer (Fourier's law), dimensionless numbers, heat conduction, heat radiation, heat transfer in solids an between solids and moving fluids as well as in packings and fluidized beds.
Mass Transfer: Kinetics of mass transfer (Fickian law), equilibrium, diffusion and mass flow, Knudsen- and multicomponent-diffusion, Lewis analogy of heat and mass transfer

Module grade calculation
Grade of the written examination

Workload
lecture: 75 h
self-study: 55 h
preparation of examination: 80 h

Recommendation
Courses of 1st - 3rd semester, especially fundamentals of thermodynamics.

Literature
Schabel: Stoffübertragung I, Skript
Module: Fundamentals of Refrigeration [M-CIWVT-104457]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109117</td>
<td>Fundamentals of Refrigeration, oral examination</td>
<td>6 CR</td>
<td>Grohmann</td>
</tr>
<tr>
<td>T-CIWVT-109118</td>
<td>Fundamentals of Refrigeration, Project Work</td>
<td>6 CR</td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two graded success controls according to § 4 (2) No 2,3:

1. Project work/ presentation
2. Oral exam of about 30 minutes duration

The project work is a prerequisite for the oral examination.
The module grade is calculated from the LP-weighted mean of both parts of the module.
Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Prerequisites
Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal
Students are able to explain and apply the fundamentals of refrigeration to various refrigeration technologies. They are able to describe properties of refrigerants and working fluids, and to assess their environmental impact based in different criteria. The students can develop concepts of refrigeration and heat pump processes using phase diagrams and fluid property models, and they are able to explore the energy consumption based on first and second law analyses. They are able to design various circuit configurations, to dimension and select refrigeration compressors and heat exchangers, and to design suitable control systems.

Content
Introduction to the fundamentals of refrigeration, phase diagrams, energy transformation based on first and second law analyses, refrigerants and working fluids including their environmental impact, design of common refrigeration and heat pump processes, major circuit components and process control.

Module grade calculation
Weighted mean based on LP
Workload
Attendance time: Lecture 2 SWS, Exercises 1 SWS: 45 h
Self-Study: 60 h
Exam Preparation: 75 h
Project work including presentation: 180 h

Recommendation
None

Literature
v. Cube, H.L. (Hrsg.), Lehrbuch der Kältetechnik Band 1 und 2, 4. Auflage (1997), C.F. Müller, Heidelberg
Berliner, P., Kältetechnik Vogel-Verlag, Würzburg (1986 und frühere)
Kältemaschinenregeln, Deutscher Kälte- und Klimatechnischer Verein (DKV) (Herausgeber)
DKV-Arbeitsblätter für die Wärme- und Kältetechnik in: C.F. Müller Verlag, Hüthig Gruppe, Heidelberg, wird jeweils aktualisiert (Sept. 2008)
Module: General and Inorganic Chemistry [M-CHEMBIO-101117]

Responsible: Prof. Dr. Mario Ruben
Organisation: KIT Department of Chemistry and Biosciences
Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-CHEMBIO-101866 General and Inorganic Chemistry 6 CR Ruben

Competence Certificate
graded: written examination (150 min)

Prerequisites
none

Competence Goal
The students get a basic understanding of the inorganic chemistry. With the knowledge of the periodic table of the elements and basic knowledge of the chemical bond the students are able to describe different compounds and to estimate different reactivities.

Content
Structure of the matter, nuclear models, periodic table of the elements. The chemical bond. Structure of Metals, ion crystals, covalent bonds, metal complexes. Chemical reactions, chemical equilibrium, law of mass action, solubility product. Acids and bases, redox reactions

Module grade calculation
grade of the written examination

Workload
Lectures and exercises: 56h
Homework and preparation of examination: 94h

Literature
Mortimer, Müller (aktuelle Auflage): Chemie, Thieme Verlag
Riedel (aktuelle Auflage): Moderne Anorganische Chemie, de Gruyter Verlag
Hollemann, Wieberg (aktuelle Auflage): Lehrbuch der Anorganischen Chemie, de Gruyter Verlag

Base for
Anorganisch chemisches Praktikum
5.26 Module: Industrial Business Administration [M-WIWI-100528]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Soft Skill Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>pass/fail</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100796</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a ungraded written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites
None

Competence Goal
Students are able to describe and differentiate legal forms for industrial enterprises.
Students will gain knowledge about different ways of financing to raise capital.
The students gain knowledge about the basics of financial accounting and are able to record and book performance and capital flows occurring in companies.
The students gain knowledge about different types of cost accounting and are able to apply them.
Students gain knowledge of the basics of investment planning and are able to evaluate investments economically.
The students gain knowledge about the basics of linear optimization and can solve simple optimization problems with the Simplex algorithm.
The students gain knowledge about basic marketing methods and can describe and differentiate them from each other.
The students gain knowledge about basic methods of project management and can apply them to practical examples.

Content
- Goals and basics
- Legal framework for industrial enterprises
- Financial accounting
- Cost accounting
- Investment calculation
- Optimisation
- Network technique

Workload
The total workload for this course is approximately 90 hours.
5.27 Module: Industrial Microbiology [M-CIWVT-105517]

Responsible:
apl. Prof. Dr. Matthias Franzreb
Prof. Dr. Harald Horn
Prof. Dr.-Ing. Jürgen Hubbuch
Prof. Dr. Christoph Syldatk

Organisation:
KIT Department of Chemical and Process Engineering

Part of:
Mandatory Elective Courses (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>CR</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111065</td>
<td>Microbiology</td>
<td>2 CR</td>
<td>Neumann, Syldatk</td>
</tr>
<tr>
<td>T-CIWVT-110128</td>
<td>Bioprocess Engineering</td>
<td>3 CR</td>
<td>Franzreb, Horn, Hubbuch</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning Control consists of:

- Written examination Microbiology with a duration of 90 minutes (section 4, subsection 2 No. 1 SPO).
- Written examination Bioprocess Engineering with a duration of 90 minutes (section 4, subsection 2 No. 1 SPO).

Prerequisites
None

Module grade calculation
The grade of module ist the grade of written examination.

Workload

- Lectures: 60 h
- Homework: 30 h
- Exam Preparation: 60 h

Literature

- Munk "Taschenlehrbuch Mikrobiologie" (Thieme)
- Cypionka "Grundlagen der Mikrobiologie" (Springer)
- Ratledge & Kristiansen: Basic Biotechnology (Cambridge University Press)
- Posten: Integrated Bioprocesses, De Gruyter, Berlin;
- Vorlesungsunterlagen
5.28 Module: Industrial Organic Chemistry [M-CIWVT-101137]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101890 | Industrial Organic Chemistry | 5 CR | Hubbuch, Rauch, Wörner |

Competence Certificate
Learning control is a written examination of 120 min duration according to § 4 Abs. 2 SPO.

Prerequisites
Organic Chemistry

Competence Goal
Consolidate knowledge of organic materials and types of chemical reactions; understand logic relations between types of chemical reaction and technical processes, for selected examples; understand industrial material conversion pathways from raw materials to final products.

Content
Feedstock's for industrial processes of organic chemistry, industrial production of basic chemicals and intermediates using practical examples, digitalization and industry 4.0 in the chemical industry.

Mechanism during formation of synthetic macromolecules, production and properties of plastics and polymers, spectroscopic methods of analyzing organic molecules.

Module grade calculation
grade of the written examination

Workload
lecture: 60 h
self-study: 40 h
preparation of examination: 50 h

Literature
Handouts
Onken, Behr: Chem. Prozeßkunde, Wiley-VCH 1996
Brahm: Polymerchemie kompakt, Hirzel 2009
Tieke: Makromolekulare Chemie, Wiley-VCH 2014
Hesse u.a.: Spektroskop. Methoden in der OC, Thieme 2011
Module: Intercultural Sensitivity and Competence [M-CIWVT-105847]

<table>
<thead>
<tr>
<th>Organisation</th>
<th>KIT Department of Chemical and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of</td>
<td>Soft Skill Qualifications (Usage from 10/1/2021)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Module: International Concepts of Water Technologies [M-CIWVT-101972]

Responsible: Prof. Dr. Andrea Schäfer
Organisation: KIT Department of Chemical and Process Engineering
Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103704</td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment is an assignment of 25 pages and an oral presentation of 15 minutes.

Prerequisites
English language proficiency

Competence Goal
The students can explain concepts of water technologies (e.g. desalination, water reuse, decentralised systems, water & sanitation in international development) in their international context. The fundamentals of relevant water technologies will be understood and mass balances of water, contaminants and energy calculated. Based on these calculations decisions will be made how available water will be treated. After an overview on relevant renewable energies water technologies that are powered with renewable energies will be considered. An important ability in the international context are an understanding of the varying circumstances that are essential for decision making and successful system integration. Contributing factors of cost, operating strategies, cultural awareness, local environment and infrastructure availability are some of those factors to be considered.

Content
Global water issues, international water quality guidelines, concepts of water technologies, desalination, water reuse, water energy nexus, decentralised systems, emergency water supplies, water & sanitation in international development, renewable energies, operating concepts.

Module grade calculation
The result is a composite of the Case study report (assignment) and presentation.

Annotation
The course is held in English and the assignment/presentation are to be prepared in English. Presence is mandatory!

Recommendation
None.

Literature
Web of Science & Reference list for basic principles (provided in lectures) predominantly in English language.
5.31 Module: Lab Work Process Engineering [M-CIWVT-101138]

Responsible: Dr. Sokratis Sinanis
Organisation: KIT Department of Chemical and Process Engineering
Part of: Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108291</td>
<td>Safety Instruction</td>
<td>0 CR</td>
<td></td>
<td>Sinanis</td>
</tr>
<tr>
<td>T-CIWVT-108292</td>
<td>Laboratory Work Process Engineering</td>
<td>6 CR</td>
<td></td>
<td>Sinanis</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control consists of two ungraded course works according to § 4 section. 3 SPO:

1. safety instruction
2. practical course (experiments and written final test).

Successful completion of the safety instruction is a prerequisite for participation in the experiments.

- The practical course is passed if all experiments as well as the final exam are passed.
- An experiment is passed if both colloquium and protocol are passed.
- A failed protocol may be revised once. If an experiment is not passed, it may be repeated during the same semester. In total, a maximum of three experiments may be repeated once each.
- The final test may be repeated once.
- If the practical part is not passed or the final test is not passed in the second attempt, the entire course must be repeated.
- Unexcused absence leads to repetition of the entire internship.

Prerequisites
Written exam "General and Inorganic Chemistry" must be passed.

Competence Goal
Carrying out successful experiments. Measurement of physical properties. Evaluation of data and writing a report.

Content
Lecture and seminar on process engineering practical course

- Introduction to good scientific practice
- Error calculation and error estimation for measurements of physical quantities
- Overview of the content and objectives of the experiments to be performed in the practical course

Practical part: Basic experiments from all areas of process engineering (each group performs 10 of the following experiments):

- Viscosimetry
- Sieve analysis
- Particle separation from air
- Liquid-liquid extraction
- Fractional distillation
- Molar mass determination
- Material data of gasoline and diesel
- Energy balance of a furnace
- Volume flow measurement of gases
- Freezing of food: Ice crystallization from sugar-containing solutions
- Soft drink
- Iron kinetics
- Determination of Avogadro constants
- Vapor pressure curve of water
- Determination of residence times
Module grade calculation
non-graded

Workload
Lab course/ Presence time: 60 h
(10 Experiments)
self study (preparation an reports): 120 h

Literature
Documents from each institute for the experiments. All required documentation for the course will be provided in ILIAS.
Module: Laboratory course: Electrochemical Energy Technologies [M-ETIT-105703]

Responsible: Prof. Dr.-Ing. Ulrike Krewer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Mandatory Elective Courses (Usage from 10/1/2021)

Credits: 5 Grading scale: Grade to a tenth Recurrence: Each summer term
Duration: 1 term Language: German Level: 3 Version: 2

Mandatory
T-ETIT-111376 Laboratory course: Electrochemical Energy Technologies 5 CR Röse

Competence Certificate
The examination consists of a different kind of graded assessment including four experiments. The overall impression is rated. To pass the module, all experiments must be successfully completed. In case of failure, the laboratory course has to be repeated completely.

Attendance at the safety briefing and participation in an entry colloquium is mandatory (ungraded).

Prerequisites
The prerequisite for admission to the module is that students have successfully passed the module "M-ETIT-105690 – Electrochemical Energy Technologies".

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-ETIT-105690 - Electrochemical Energy Technologies must have been passed.

Competence Goal
The students deepen and strengthen their previously learned basic knowledge from the lecture "Electrochemical Energy Technologies". They understand how to experimentally analyze and quantitatively describe processes at interfaces under substrate conversion by charge transfer. They are able to build electrochemical cells, understand their functional principle and are able to determine electrochemical processes. Furthermore, they are able to apply electrochemical measurement methods specifically to questions that are relevant for the analysis of modern energy converters and storage technologies.

They are also able to document and evaluate measured data and to critically discuss the results. They can competently carry out error estimations and confidently master computer-assisted data evaluation.

Content
Four selected electrochemistry experiments will be carried out:

Experiment 1: Determination of transport parameters of reversible systems
- Voltammetry at a stationary electrode
- Voltammetry at a rotating disc electrode

Experiment 2: Determination of hydrogen and oxygen overvoltage

Experiment 3: Construction of a polymer electrolyte membrane fuel cell

Experiment 4: Investigation of the self-constructed PEM fuel cell under various operating conditions

Module grade calculation
The module grade results of the assessment of the written reports. Details will be given during the lecture.

Workload
1. attendance in laboratory practical course: 4x 5 h (block course)
2. preparation / follow-up: 30 h
3. preparation of written reports: 100 h

Chemical and Process Engineering Bachelor 2015 (Bachelor of Science (B.Sc.))
Module Handbook as of 01/03/2022
5.33 Module: Laboratory Work in General and Inorganic Chemistry [M-CIWVT-101964]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-101867</td>
<td>Laboratory Work in General and Inorganic Chemistry Part I</td>
<td>4</td>
<td>Ehrenberg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-108293</td>
<td>Safety Instruction</td>
<td>0</td>
<td>Abbt-Braun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-108294</td>
<td>Laboratory Work in General and Inorganic Chemistry Part II</td>
<td>2</td>
<td>Horn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Written exam "General and Inorganic Chemistry" must be passed.

Competence Goal

The students receive a basic knowledge of the general chemistry. They can handle chemicals and can perform qualitative and quantitative analysis in aqueous solutions. They can perform calculations, and can apply the necessary tools to understand the context.

Content

Lab experiments of qualitative analysis and reactions

Workload

Presence time: 120 h
Self-study: 60 h

Literature

Mortimer, Müller Chemie, 11. Auflage, Thieme Verlag 2014

Riedel, Meyer, Allgemeine und Anorganische Chemie, 11. Auflage, de Gruyter Verlag 2013

Horn, Abbt-Braun: Praktikumsskript, aktuelle Ausgabe, siehe ILIAS Studierendenportal oder Papierversion;
Ruben, Dsoke: Unterlagen im ILIAS Studierendenportal oder Papierversion
5.34 Module: Material Science and Engineering [M-MACH-102567]

- **Responsible:** Dr.-Ing. Johannes Schneider
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Examination</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105148</td>
<td>Examination Material Science I & II</td>
<td>9 CR</td>
<td>Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam

Prerequisites
None

Competence Goal
The students are able to describe the relationship between atomic structure, microscopical observations, and properties of solid materials.

The students can describe the typical property profiles and can name applications for the most important engineering materials.

The students are able to describe standard materials characterization methods and can explain the evaluation of these methods. They can judge materials on base of the data obtained by these methods.

The students are able to describe the basic mechanisms of hardening for ferrous and non-ferrous materials and reflect these mechanisms using phase and TTT diagrams.

The students can interpret given phase, TTT or other diagrams relevant for materials science, gather information from them and can correlate them regarding the microstructure evolution.

The students can describe the phenomena correlated with materials science in polymers, metals and ceramics and depict differences.

The students know about standard materials characterization methods and are able to asses materials on base of the data obtained by these methods.
Content

Atomic structure and atomic bonds

Structures of crystalline and amorphous solids

Defects in crystalline solids

Alloys

Transport and transformation phenomena in the solid state

Corrosion

Wear

Mechanical properties

Testing of materials

Ferrous materials

Non-ferrous metals and alloys

Polymers

Engineering ceramics

Composites

Module grade calculation

grade of the oral exam

Workload

regular attendance: 90 hours

self-study: 180 hours

Learning type

lectures and exercises

Literature

W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9

M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008

J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2008 (E-Book)

lecture notes and lab script
5.35 Module: Mechanical Design [M-MACH-101299]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Fundamentals of Scientific Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Crs</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110363</td>
<td>Mechanical Design Basics I and II</td>
<td>7 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110364</td>
<td>Mechanical Design Basics I, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110365</td>
<td>Mechanical Design Basics II, Tutorial</td>
<td>1 CR</td>
<td>Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination on the contents of Mechanical Design I&II

Duration: 90 min plus reading time

Preliminary examination: Successful participation in the preliminary work in the field of Mechanical Design I&II

Prerequisites

None
Competence Goal

Learning object springs:

- be able to recognize spring types and explain stress
- Identify and describe the properties of a resilient LSS in machine elements presented later on
- Understanding and explaining the principle of action
- Know and list areas of application for springs
- graphically illustrate the load and the resulting stresses
- be able to describe the degree of species usefulness as a means of lightweight construction
- be able to analyse different solution variants with regard to lightweight construction (use species efficiency)
- Being able to explain several springs as a circuit and calculate total spring stiffness

Learning objects Technical Systems:

- Being able to explain what a technical system is
- "Thinking in systems."
- Using system technology as an abstraction tool for handling complexity
- Recognizing functional relationships of technical systems
- Getting to know the concept of function
- be able to use C&C²-A as a means of system technology

Learning objects Visualization:

- Ability to create and interpret schematics
- Using freehand technical drawing as a means of communication
- To be able to apply the technical basics of freehand drawing
- Derivation of 2D representations into different perspective representations of technical structures and vice versa
- Master reading of technical drawings
- Dedicated dimensioning of technical drawings
- Create sectional views of technical systems as a technical sketch

Learning objects Bearings:

- be able to recognize bearings in machine systems and explain their basic functions
- name bearings (type/type/function) and recognize them in machine systems and technical drawings
- Being able to name areas of application and selection criteria for the various bearings and bearing arrangements and explain interrelationships
- Ability to functionally explain the design of the bearing definitions in different directions radially/axially and circumferentially
- Know and describe selection as an iterative process as an example
- be able to perform dimensioning of bearing arrangements as an example of the engineer's approach to dimensioning machine elements
- Develop first ideas for probabilities in predicting the life of machine elements
- Recognise from the damage pattern whether static or dynamic overload was the cause of material failure
- Calculate equivalent static and dynamic bearing loads from the catalogue and given external forces on the bearing
- Being able to name, explain and transfer the basic equation of the dimensioning to the bearing dimensioning

Learning objectives seals:

The students...

- can discuss the basic functions of seals
- can describe the physical causes for mass transfer
- can apply the C&C-Model on seals
- can name, describe and apply the three most important classification criteria of seals
- can explain the function of a contacting seal and a non-contacting seal.
- can differentiate the seal types and organize them to the classification criteria.
- can discuss the structure and the effect of a radial shaft seal
- can evaluate radial shaft seals, compression packings, mechanical seals, gap seals and labyrinth seals
- can describe and apply the constitutional principle of selffortification
- can describe the stick-slip phenomenon during the movement sequences of a reciprocating seal

Learning design:

The students...

- understand the meaning of design
- are able to recognize and implement basic rules and principles of design
- are able to design the connection of partial systems into the total system
- can name requirements of design and take them into account
- know the main groups of manufacturing methods
are able to explain the manufacturing processes
are able to depict a casted design in a drawing clearly, e.g. draft of the mold, no material accumulation, ...
know how components are designed
Know how the production of the components has an effect on their design
Know the requirements and boundary conditions on design

Learning bolted connections:
The students...

- can list and explain various bolt applications.
- can recognize bolt types and explain their function
- can build a C&C² model of a bolted joint and discuss the influences on its function
- can explain the function of a bolted connection with the help of a spring model
- can reproduce, apply and discuss the screw equation.
- Can estimate the load-bearing capacity of low-loaded bolted joints for dimensioning purposes
- Can indicate which bolted joint is to be calculated and which only roughly dimensioned.
- Can carry out the dimensioning of bolted connections as flange connections
- Can create, explain and discuss the force deflection diagram of a bolted connection

Content
MKL I:
Introduction to product development
Tools for visualization (technical drawing)
Product creation as a problem solution
Technical Systems Product Development
 - Systems theorie
 - Contact and Channel Approach C&C²-A

Basics of selected construction and machine elements
- Federn
- bearings and fence
- sealings

The lecture is accompanied by exercises with the following content:
gear workshop
Tools for visualization (technical drawing)
Technical Systems Product Development
 - Systemtheorie
 - Contact and Channel Approach C&C²-A

Exercises for springs
Exercises for bearings and fence

MKL II:
- sealings
- design
- dimensioning
- component connections
- bolts
Workload
MKL1:
presence: 33.5 h
Attendance in lectures: 15 * 1.5 h = 22.5 h
Presence in exercises: 8 * 1.5 h = 12 h
self-study: 56.5 h
Personal preparation and wrap-up of lecture and exercises including the processing of the test certificates and preparation for the exam: 56.5 h
Total: 90 h = 3 LP
MKL2:
Presence: 33 h
Attendance in lectures: 15 * 1.5 h = 22.5 h
Presence in exercises: 7 * 1.5 h = 10.5 h
Self study: 87 h
Personal preparation and wrap-up of lectures and exercises, including the processing of the test certificates and preparation for the exam: 87 h
Total: 150 h = 5 LP
Additional expenditure for degree programs from other disciplines MKL1 + MKL2 in total: 30 h = 1 LP

Learning type
Lecture
Tutorial
Project work during the semester
Online-test
5.36 Module: Mechanical Design III+IV [M-MACH-102829]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: Mandatory Elective Courses

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

- T-MACH-104810: Mechanical Design III & IV
 - CR: 11
 - Teacher: Matthiesen

- T-MACH-110955: Mechanical Design III, Tutorial
 - CR: 1
 - Teacher: Matthiesen

- T-MACH-110956: Mechanical Design IV, Tutorial
 - CR: 1
 - Teacher: Matthiesen

Competence Certificate

Written examination, consisting of theoretical and constructive part.
The theoretical examination lasts 1 hour plus reading time
The constructional examination takes 3 hours plus reading time.
Both parts of the examination must be passed in order to pass the overall examination for machine design apprenticeship III+IV.

Prerequisites

None

Competence Goal

In mechanical design, students acquire skills in analysis and synthesis using examples (= leading examples). The examples include individual machine elements such as bearings or springs as well as more complex systems such as gears or clutches. After completing the machine design course, the students can apply the learned contents to further technical systems - even those not known from the lecture - by transferring the exemplary learned operating principles and basic functions to other contexts. This enables students to independently analyze unknown technical systems and to synthesize systems suitable for given problems.

Content

tolerances and fits
component connections
gears
basics of component dimensioning
shaft clutches
fundamentals of fluid technology
electrical machines
Workload
MKL 3:
Presence: 45 h
Attendance time lecture (15 L): 22,5h
Attendance time exercises (7 exercises): 10,5h
Attendance time milestones project work (3x 4h): 12h
Self-study: 135h
Project work in a team: 90h
Personal preparation and follow-up of lecture and exercise: 45h
MKL 4:
Presence: 40,5 h
Attendance lectures (13 L): 19,5h
Attendance time exercises (6 exercises): 9h
Attendance time milestones project work (3x 4h): 12h
Self-study: 169,5 h
Project work in a team: 105h
Personal preparation and follow-up of lecture and exercise, incl. preparation for the exam: 64,5h
Total: 390 h = 13 LP

Learning type
Lecture
Tutorial
Project work during the semester
5.37 Module: Mechanical Processing [M-CIWVT-101135]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: Fundamentals of Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101886</td>
<td>Mechanical Processing</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Success control is a written examination, 120 minutes duration, according to § 4 Abs. 2 No. 1 SPO.

Prerequisites

None

Competence Goal

Students have a basic understanding of properties & behavior of particulate systems in important engineering applications; they are able to use this understanding for calculations and design of selected processes.

Content

- Unit operations of mechanical processing - introduction and overview
- Particle size distribution - determination, depiction, conversion
- Forces on particles in flows
- Separating function - characterization of a separations process
- Fundamentals of mixing and stirring
- Introduction to dimensional analysis
- Characterizations of packings
- Capillarity in porous systems
- Flow through porous systems
- Fundamentals of agglomeration
- Fundamentals of storage and conveyance

Module grade calculation

The mark of the module is equal to the mark of the written examination.

Workload

Lectures and exercises: 60 h
Self-study: 45 h (about three hours per week)
Preparation of examination: 75 h

Recommendation

Courses of 1st - 4th semester

Literature

Dittler, Skriptum MVT
Löffler, Raasch: Grundlagen der Mechanischen Verfahrenstechnik, Vieweg 1992
Schubert, Heidenreich, Liepe, Neese: Mechanische Verfahrenstechnik, Deutscher Verlag Grundstoffindustrie, Leipzig 1990
Dialer, Onken, Leschonski: Grundzüge Verfahrenstechnik&Reaktionstechnik, Hanser Verlag 1986
Zogg: Einführung in die Mechanische Verfahrenstechnik, Teubner 1993
5.38 Module: Mechanical Separation Technology [M-CIWVT-101147]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Dr.-Ing. Marco Gleiß</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Part of</td>
<td>Specialization/ Project Work</td>
</tr>
<tr>
<td>Credits</td>
<td>12</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Duration</td>
<td>2 terms</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103448</td>
<td>Mechanical Separation Technology Exam</td>
<td>8 CR</td>
<td>Gleiß</td>
</tr>
<tr>
<td>T-CIWVT-103452</td>
<td>Mechanical Separation Technology Project Work</td>
<td>4 CR</td>
<td>Gleiß</td>
</tr>
</tbody>
</table>

Competence Certificate

The control of success in this module comprises 2 graded major course assessments according to §4 para.2 Nr.3 of the SPO:

1. An oral individual examination with a volume of about 30 minutes for the lecture “22987 Mechanical Separation Technology” and “22988 Exercises to 22987”

2. Project work. Practical collaboration, written report and oral presentation of the results are rated.

The module grade is calculated from the LP-weighted mean of both parts of the module.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Prerequisites

Participation requires:

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal

The students are able to explain the fundamental laws and the derived physical principles of the particle separation from liquids and not only to relate them to the principally suited separation apparatuses but also special variants. They have the ability to apply the relationship between product operation and design parameters to different separation techniques. They can analyse separation problems with scientific methods and give alternative problem solution proposals. The students are able to execute their fundamental and process knowledge practically to the example of beer brewing.

Content

Physical fundamentals, apparatuses, applications, strategies; characterisation of particle systems and slurries; pretreatment methods to enhance the separability of slurries; fundamentals, apparatuses and process technology of static and centrifugal sedimentation, flotation, depth filtration, crossflow filtration, cake forming vacuum and gas overpressure filtration, filter centrifuges and press filters; filter media; selection criteria and scale-up methods for separation apparatuses and machines; apparatus combinations; case studies to solve separation problems.

Module grade calculation

The module grade is calculated from the LP-weighted mean of both parts of the module.
Workload
lecture 3SWH, exercises 1SWH, presence time: 60h
self-study: 80h
examination preparation: 80h
project work presence time and self-study: 140h

Recommendation
Modules of 1st - 4th semester

Literature
Anlauf: Script "Mechanische Separationstechnik - Fest/Flüssig-Trennung"
Module: Micro Process Engineering [M-CIWVT-101154]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103666</td>
<td>Micro Process Engineering</td>
<td>7 CR</td>
<td>Pfeifer</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-103667</td>
<td>Micro Process Engineering</td>
<td>5 CR</td>
<td>Pfeifer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module comprises two success controls according to § 4(2) No 2,3 SPO:

1. Oral examination of about 25 minutes duration
2. project work

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Prerequisites

Participation requires:

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal

The students are able apply the methods of process intensification by microstructuring of the reaction zone and are capable of analyzing the advantages and disadvantages while transferring given processes into microreactors. With knowledge of special production processes for micro reactors, students are able to design microstructured systems in terms of heat exchange and to analyze the possibilities of transferring processes from conventional technology into the microreactor with regard to heat transfer performance. They understand also how the mechanisms of mass transport and mixing interact in microstructured flow mixers, and are able to apply this knowledge to the combination of mixing and reaction. They can also analyze possible limitations in the process adaptation and are thus able to design microstructured reactors for homogeneous reactions appropriately. The students understand the significance of the residence time distribution for the conversion and selectivity and are capable of analyzing the interaction of mass transport by diffusion and hydrodynamic residence time in microstructured equipment in given applications.

Content

Basic knowledge of micro process engineering systems: fabrication of microstructured systems and interaction with processes, intensification of heat exchange and special effects by heat conduction, residence time distribution in reactors and peculiarities in microstructured systems, structured flow mixers (designs and characterization) and dimensioning of structured reactors with regard to heat and mass transfer.

Workload

360 h

Recommendation

Courses of 1st - 4th semester
Literature
Scriptum (slides collection), text books:
Micro Process Engineering - A Comprehens (Hardcover), Volker Hessel (Editor), Jaap C. Schouten (Editor), Albert Renken (Editor), Yong Wang (Editor), Junichi Yoshida (Editor), 3 Bände, 1500 Seiten, Wiley VCH, ISBN-10: 3527315500
Module: Module Bachelor Thesis [M-CIWVT-103204]

Responsible: Prof. Dr.-Ing. Achim Dittler
apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of: Bachelor Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Bachelor-thesis</th>
<th>12 CR</th>
</tr>
</thead>
</table>

Prerequisites

§ 14 (1) SPO

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 120 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Specialization / Project Work
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal

Students are able to work on specialised problems with scientific methods independently and within a defined time frame.
5.41 Module: Organic Chemistry for Engineers [M-CHEMBIO-101115]

Responsible: Prof. Dr. Michael Meier

Organisation: KIT Department of Chemistry and Biosciences

Part of: Fundamentals of Mathematics and Natural Sciences

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-101865</td>
<td>Organic Chemistry for Engineers</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
graded: written examination

Prerequisites
none

Competence Goal
Relevance of Organic Chemistry; fundamental and method-oriented knowledge; correlation between structure and reactivity; knowledge of important concepts and principles; self-solving of problems in Organic Chemistry

Content
Nomenclature, electronic structure and bonding of organic molecules; Organic substance classes and functional groups; Reaction mechanisms and synthesis of organic compounds; Stereoisomers and optical activity; Synthetic polymers and biopolymers; Identification of organic compounds

Module grade calculation
grade of the written examination

Workload
- Lectures and exercises: 34h
- Homework and preparation of examination: 86h

Literature
5.42 Module: Particle Technology [M-CIWVT-101141]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103654</td>
<td>Particle Technology</td>
<td>7 CR</td>
<td>Dittler</td>
</tr>
<tr>
<td>T-CIWVT-103655</td>
<td>Particle Technology</td>
<td>5 CR</td>
<td>Dittler</td>
</tr>
</tbody>
</table>

Competence Certificate
The Module comprises two graded success controls according to § 4 (2) No 2,3 SPO:
1. oral examination, duration 30 minutes (60 %)
2. project work (60 %)

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Prerequisites
Participation requires
- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal
Students understand transport behavior and methods of size distribution measurement of airborne fine particles in the context of environmental and nanotechnology. They are able to apply this knowledge to solve basic problems of particle technology in a team oriented approach.

Content
The classes provide a knowledge base of methods of particle dispersion, particle transport processes in gases, as well as methods for their characterization with applications in the environment and industrial product design. Practical experience related to these concepts is developed in a team based lab project.

Workload
Attendance time: 56 h (V+Ü) + 120 (project work) + 10 (Excursion)
Self-Study: 24 h
Oral examination: 140 h

Recommendation
Courses of 1st - 4th semester

Literature
Skriptum Gas-Partikel-Messtechnik
5.43 Module: Practical Course in Organic Chemistry for Chemical Engineers [M-CHEMBIO-101116]

- **Responsible:** Dr. Andreas Rapp
- **Organisation:** KIT Department of Chemistry and Biosciences
- **Part of:** Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CHEMBIO-101868 | Practical Course in Organic Chemistry for Chemical Engineers | 5 CR | Rapp |

Competence Certificate

protocols and analytical results

Prerequisites

Compulsory preconditions: written examination OC

Competence Goal

After that course the students should be able to build up a reaction apparatus, to handle hazardous materials and perform chemical reactions. Furthermore the students get an insight in most important purification procedures, e.g. distillation, extraction.

Content

Key reactions in Organic Chemistry, e.g.: nucleophilic substitution, electrophilic aromatic substitution, carbony compounds, additions to non-activated double bonds

Module grade calculation

average out of lab experiments/ analytical results

Workload

lectures and exercises: 45h
homework and preparation of examination: 75h

Literature

Schwetlick: Organikum, Wiley-VCH
Module: Process Development and Scale-up [M-CIWVT-101153]

Responsible: Prof. Dr.-Ing. Jörg Sauer
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103530</td>
<td>Process Development and Scale-up</td>
<td>8 CR</td>
<td>Sauer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-103556</td>
<td>Process Development and Scale-up Project Work</td>
<td>4 CR</td>
<td>Sauer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-111005</td>
<td>Exercises Process Development and Scale-up</td>
<td>0 CR</td>
<td>Sauer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The module comprises two sucess controls according to § 4 (2) No 2,3 SPO:
- project work/ presentation and report
- Online-tests (prerequisite for oral examination)
- individual oral examination, duration 30 minutes

The module grade is calculated from the mean of both parts of the module. Additionally Online-Quick-Tests can be done accompanying the lecture. These are included in the oral examination mark with 20%.

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6).

Prerequisites
Participation requires
- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal
The students are capable of developing energy and material balances for complex processes in process technology and to analyze processes in terms of potentials for optimization. They are able to derive suitable methods for the optimization of such processes.

The students are able to calculate the costs of major pieces of equipment and to apply estimation methods for investment costs of production plants. Together with the calculation of variable production costs they are able to analyze the profitability of a chemical process plant. Furthermore the students learn basic concepts of project management, they are enabled to work in teams and guided for independent scientific work.

Content
Introduction into the basics of process development and project management for the development of chemical processes from the lab into production scale, including the design of a chemical process, design of miniplants and scale-up into production scale. Overview over methods for the economic, technical evaluation of processes and the preparation of business concepts.

Module grade calculation
50 % oral examination, 50 % project work.
Annotation
As part of the project study a visit to the IKFT and the bioliq plant at the Campus North is intended.

Workload
Lecture and Exercise:
Attendance time: 45 h
Self-study: 90 h
Exam preparation: 45 h
Project work: 180 h

Recommendation
Courses of 1st - 4th semester

Literature
Belbin, R.M., Management Teams, Why They Succeed or Fail, Routledge, NY, 2013.
5.45 Module: Process Machines [M-CIWVT-101139]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering

Part of: Laboratories

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101903 | Laboratory Work Process Machines | 5 CR | Gleiß |

Competence Certificate

Not graded, passed/not passed during lab course for each experiment starting colloquium oral/written, practical work, written report

Prerequisites

Written exam "organic chemistry" must be passed.

Competence Goal

The students are able to explain fundamentals of process design for selected process apparatuses and machines. They have the ability to carry out practical experiments to these processes by themselves after advice and according to a manual, to collect experimental data, to describe and to interpret them. They can make easy calculations regarding the design of the examined processes.

Content

Pumps, electroseparator, power input into stirred vessels, heat transfer in and out stirred vessels, refrigerator/heat pump, heat transfer co-current and counter-current, error calculation, emulsification/ice cream machine, flow-characteristics of emulsions, biomass-transport in a scrw-reactor

Module grade calculation

Non graded

Workload

Presence time: 7 experiments, 30 h
Preparation and reports: 120 h

Literature

Scripts for lecture and manuals for lab course
Module: Rheology and Product Design [M-CIWVT-101144]

Responsible: Dr.-Ing. Claude Oelschlaeger

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103522</td>
<td>Rheology and Product Design</td>
<td>8 CR</td>
<td></td>
<td></td>
<td>Oelschlaeger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-103524</td>
<td>Rheology and Product Design Project Work</td>
<td>4 CR</td>
<td></td>
<td></td>
<td>Oelschlaeger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The module comprises two grades success controls according to § 4 (2) No 2,3 SPO:
- project work (teamwise)
- oral examinations (courses)

The oral examinations have to be passed as a precondition for project work.

The overall grade of the module: average weighted according to the credit points.

1/3 project work
2/3 oral examinations

Each of the course has to be passed ("ausreichend"). A failed course can be repeated one time, according to the SPO § 9 (2) - (6) of SPO.

Prerequisites
Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions
The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal
Basic knowledge about the design of complex fluids based on dispersions or emulsions by chemical engineering processes. Fundamental comprehension of applications and working properties, flow behavior an colloidal stability of disperse systems. Applying this knowledge in context of their project work. They gather experience in teamoriented problem solving.

Content
Representation of a systematic of the relation between the quality aspects of products and their physico-chemical properties. Furthermore, these properties are generated in the respective production processes. This systematics is taught in the lecture "Basics of Product Design". In the lecture "Fabrications an characterization of dispersions and emulsions" this systematics is elaborated in a more specific manner. The application of this systematics is practiced on specific case studies.

Module grade calculation
final grade = 2/3 x oral examination + 1/3 x project work

Workload
lectures and exercises: 135h
homework and preparation of examination: 225h
Literature
Scriptum, articles out of scientific journals, text books:
Lagaly/Schulz/Zimehl: Dispersionen und Emulsionen, Steinkopff (1997),
Barnes/Hutton/Walters: An Introduction to Rheology, Elsevier (1989),
Module: SmartMentoring [M-CIWVT-105848]

Responsible: Dr.-Ing. Barbara Freudig
Organisation: KIT Department of Chemical and Process Engineering
Part of: Soft Skill Qualifications (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111761</td>
<td>SmartMentoring - Group Management</td>
<td>2 CR</td>
<td>Freudig</td>
</tr>
</tbody>
</table>
Module: Thermal Process Engineering [M-CIWVT-101134]

Responsible
Prof. Dr.-Ing. Matthias Kind

Organisation
KIT Department of Chemical and Process Engineering

Part of
Fundamentals of Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
Students can explain fundamental knowledge in the field of Thermal Separations. Emphasis is laid on the difference between methodological tools and their application for the description of selected unit operations. They can work on standard types of problems in the field of Thermal Process Engineering. They can solve it mathematically and can apply methodological tools adequate. Furthermore, the students can quantitatively apply these tools and skills to processes and problems which are new to them.

Content
The taught methodological tools are balancing of conservative quantities, thermodynamic equilibrium and their application to single- and multi-stage processes. Within this module the following unit operations are introduced: Distillation, Rectification, Absorption, Extraction, Evaporation, Crystallisation, Drying, Adsorption/Chromatography.

Module grade calculation
The mark of the module is equal to the mark of the written examination.

Workload
- Attendance time (lecture and tutorials): 56 h
- Self study: 44 h
- Examination preparation: 80 h

Recommendation
Courses of 1st - 4th semester

Literature
personal prints, scientific text books
Module: Thermodynamics I [M-CIWVT-101129]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

- T-CIWVT-101878 Thermodynamics I, Tutorial
- T-CIWVT-101879 Thermodynamics I, Exam

Competence Certificate

Written examination 120 min
Precondition for participation: 2 of 3 compulsory exercises have to be approved

Prerequisites

none

Competence Goal

Students are able to analyse and to design energy conversion processes by applying the first and second law of thermodynamics. They understand the behaviour of real pure substances, and they are able to explain thermodynamic processes with and without phase change by means of state diagrams and process schemes.

Content

Fundamental terms; thermodynamic equilibrium and temperature; properties and equation of state for ideal gases; energy and first law for closed systems; balances for open systems; entropy and thermodynamic potentials; second law; equations of state for pure component caloric properties; phase change behavior of pure component systems and state diagrams; thermodynamic cycles for power generation, refrigeration and heat pumps; exergy

Module grade calculation

grade of the written examination

Workload

Lectures and exercises: 70 h
Homework: 80 h
Preparation of Examination: 60 h

Recommendation

courses of 1st and 2nd semester

Literature

Schaber, K.: Skriptum Thermodynamik I (www.ttk.uni-karlsruhe.de)
Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006
5.50 Module: Thermodynamics II [M-CIWVT-101130]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Thermodynamics and Transport Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101880</td>
<td>Thermodynamics II, Tutorial</td>
<td>0 CR</td>
<td></td>
<td>Enders</td>
</tr>
<tr>
<td>T-CIWVT-101881</td>
<td>Thermodynamics II, Exam</td>
<td>7 CR</td>
<td></td>
<td>Enders</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination 120 min

Precondition for participation: 2 of 3 compulsory exercises have to be approved

Prerequisites

none

Competence Goal

Students understand the behavior of real gases, gas-vapor mixtures, simple real mixtures, chemical equilibria of ideal gases. They are able to explain and to analyse corresponding thermodynamic processes by means of state diagrams and process schemes. They are able to analyse and to design these processes based on balance equations and phase equilibria.

Content

Real gases and liquefaction of gases; thermodynamic potentials; characterization of mixtures; mixtures of ideal gases; gas-vapor mixtures and processes with humid air; phase equilibria and phase diagrams, laws of Raoult and Henry, liquid-liquid equilibria; enthalpy of mixtures; general description of mixtures and chemical potential; reaction equilibria of ideal gases; fundamentals of combustion processes.

Module grade calculation

Grade of the written examination

Workload

Lectures and exercises: 70 h

Homework: 80 h

Preparation of Examination: 60 h

Recommendation

Courses of 1st - 3rd semester

Thermodynamics I

Literature

Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialization/ Project Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-103650</td>
<td>Water Quality and Process Engineering of Water and Waste Water Treatment</td>
<td>8 CR</td>
</tr>
<tr>
<td>T-CIWVT-103651</td>
<td>Water Quality and Process Engineering of Water and Waste Water Treatment</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

There is an oral examination of the lectures and a grading of the project thesis. The overall grade of the module is taken as an average from the individual grades of the oral examination of the lectures and of the project thesis, weighted according to the credit points.

Lectures: overall oral examination of 30 min according to § 4 Abs. 2 No 2 SPO of the lectures “22603 Scientific Principles for Water Quality Assessment” and “22607 Water Quality and Process Engineering of Water and Waste Water Treatment”.

Project thesis: individual grades of the written report and the oral presentation, according to § 4 Abs. 2 No. 3 SPO.

Each of the course has to be passed (“ausreichend”). A failed course can be repeated one time, according to the SPO 9 (2) - (6).

Prerequisites

Participation requires

- minimum 60 ECTS
- minimum 1 lab course

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to have earned at least 60 credits in the following fields:
 - Fundamentals of Scientific Engineering
 - Fundamentals of Mathematics and Natural Sciences
 - Laboratories
 - Thermodynamics and Transport Processes
 - Soft Skill Qualifications
 - Fundamentals of Process Engineering
 - Mandatory Elective Courses

Competence Goal

The students can explain the basic processes of drinking water supply and waste water treatment. They can describe and apply the basic principles and the criteria for water quality assessment. They can perform calculations, and can evaluate, compare and interpret the data and the results. They are able to use the methodical tools and to analyze the context.

Content

Hydrological cycle: different sources and needs, water treatment, water supply, water quality, analytical tools for quality assessment, practical thesis to optimize a treatment step, including experimental lab work, application of different tools for analysis, excursions to drinking water treatment plants and to waste water treatment plants.

Module grade calculation

The overall grade of the module is taken as an average from the individual grades of the oral examination of the lectures and of the project thesis, weighted according to the credit points.
Workload
Attendance time: 60 h
Exam preparation: 60 h
Practical course: 40 h lab, 80 h self-study/report

Recommendation
Courses of 1st - 4th semester

Literature
- Frimmel (1998): Wasser und Gewässer, Spektrum Verlag, Heidelberg
- Crittenden et al. (2005): Water Treatment, Principles and Design. Wiley & Sons
- Scriptum of the lectures will be available in ILIAS (ILIAS Studierendenportal)
- Script of the lab work
6 Courses

6.1 Course: Advanced Mathematics I [T-MATH-100275]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsible:
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-100280 - Advanced Mathematics I

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4 SWS</td>
<td>Lecture / Online</td>
<td>Griesmaier</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Lecture / Online</td>
<td>Griesmaier</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A “pass” result on the pre-requisite in AM I is a requirement for registration for the examination in AM I.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100525 - Tutorial Advanced Mathematics I must have been passed.
6.2 Course: Advanced Mathematics II [T-MATH-100276]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-100281 - Advanced Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2022</th>
<th>0180800</th>
<th>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</th>
<th>4 SWS</th>
<th>Lecture</th>
<th>Arens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST 2022</td>
<td>0181000</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A “pass” result on the pre-requisite in AM II is a requirement for registration for the examination in AM II.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-100526 - Tutorial Advanced Mathematics II must have been passed.
6.3 Course: Advanced Mathematics III [T-MATH-100277]

Responsible:
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
- M-MATH-100282 - Advanced Mathematics III

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
<th>Credits</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Details</th>
<th>Lecture</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>0131400</td>
<td>Höhere Mathematik III für die Fachrichtungen Maschinenbau, Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und das Lehramt Maschinenbau</td>
<td>Lecture / 🧩</td>
<td>Hettlich</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗑 Cancelled

Competence Certificate
Learning assessment is carried out by written examination of 120 minutes length.

Prerequisites
A "pass" result on the pre-requisite in AM III is a requirement for registration for the examination in AM III.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course **T-MATH-100527 - Tutorial Advanced Mathematics III** must have been passed.
6 COURSES

Course: Application of Numerics in Engineering [T-CIWVT-101876]

Responsible: Dr.-Ing. Peter Habisreuther
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101956 - Computational Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (oral)</td>
<td>3</td>
<td>pass/fail</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>22545</th>
<th>Practical Course Numerics in Engineering Science</th>
<th>3 SWS</th>
<th>Practical course / Trimis, und Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td></td>
<td>Practical Course Numerics in Engineering Science</td>
<td></td>
<td>Practical course / Trimis, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
Written Examination T-MATH-102250 - Einstieg in die Informatik und algorithmische Mathematik

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MATH-102250 - Introduction to Informatics and Algorithmic Mathematics - Exam must have been started.
6.5 Course: Applied Apparatus Engineering [T-CIWVT-106562]

Responsible: Dr. Martin Neuberger

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103297 - Applied Apparatus Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4 SWS</td>
<td>Applied Apparatus Engineering</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗞 On-Site, ✗ Cancelled

Competence Certificate
Learning Control is a written examination, 90 minutes duration.

Prerequisites
None

Responsible: Dr.-Ing. Benjamin Dietrich
Dr. Philip Scharfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104458 - Applied Thermal Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22826</td>
<td>Grundlagen der Angewandten Thermischen Verfahrenstechnik</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Dietrich, Scharfer</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 22827</td>
<td>Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Dietrich, Scharfer</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 22828</td>
<td>Praktikum zu Angewandte Thermische Verfahrenstechnik (Projektarbeit)</td>
<td>2 SWS</td>
<td>Practical course</td>
<td>Dietrich, Scharfer, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None

Responsible: Dr.-Ing. Benjamin Dietrich
Dr. Philip Scharfer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104458 - Applied Thermal Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22826</td>
<td>Grundlagen der Angewandten Thermischen Verfahrenstechnik (Profilfach)</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Dietrich, Scharfer</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>22827</td>
<td>Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik (Profilfach)</td>
<td>Seminar</td>
<td>2 SWS</td>
<td></td>
<td>Dietrich, Scharfer</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>22828</td>
<td>Praktikum zu Angewandte Thermische Verfahrenstechnik (Profilfach)</td>
<td>Practical course</td>
<td>2 SWS</td>
<td></td>
<td>Dietrich, Scharfer, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.8 Course: Bachelor-Thesis [T-CIWVT-106365]

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103204 - Module Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Final Thesis

This course represents a final thesis. The following periods have been supplied:

- **Submission deadline** 4 months
- **Maximum extension period** 2 weeks
- **Correction period** 6 weeks
6.9 Course: Biochemistry [T-CIWVT-111064]

Responsible: Dr. Jens Rudat
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105518 - Enzyme Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 22406 | Biology for Engineers II | 2 SWS | Lecture / 🗣 | Rudat |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written Examination with a duration of 90 minutes; Section 4, subsection 2 No. 1 SPO.

Prerequisites
None
6.10 Course: Bioprocess Engineering [T-CIWVT-110128]

Responsible: apl. Prof. Dr. Matthias Franzreb
Prof. Dr. Harald Horn
Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105517 - Industrial Microbiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>22947</th>
<th>Bioprocess Engineering</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Hubbuch, Franzreb, Horn</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🕺 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written examination with a duration of 120 minutes (section 4 subsection 2 No. 1 SPO).
6.11 Course: Biotechnology [T-CIWVT-103668]

Responsible: Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101143 - Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 22711 | Profile Subject Biotechnology for BSc BIW/CIW - Instrumental Bioanalytics | 2 SWS | Lecture / 🗣️ | Wörner, Müller |

Prerequisites

None
6.12 Course: Biotechnology [T-CIWVT-103669]

Responsible:
Dr.-Ing. Iris Perner-Nochta

Organisation:
KIT Department of Chemical and Process Engineering

Part of:
M-CIWVT-101143 - Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22723</td>
<td>Profile Subject Biotechnology for BSc BIW/CIW - Management of Scientific Projects</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Perner-Nochta, Kindervater, Hirsch-Weber, und Mitarbeiter</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22724</td>
<td>Profile Subject Biotechnology for BSc BIW/CIW - Laboratory Work (22723)</td>
<td>6</td>
<td>Practical course / 🗣</td>
<td>Perner-Nochta, und Mitarbeiter</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22725</td>
<td>Profile Subject Biotechnology for BSc BIW/CIW - Exercises on Management of Scientific Projects (22723)</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Perner-Nochta, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Cancelled

Prerequisites
None
6.13 Course: Cell Biology [T-CIWVT-111062]

Responsible: apl. Prof. Dr. Hans-Eric Gottwald

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101624 - Biology for Engineers I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination with a duration of 90 minutes (section 4, subsection 2 Nr. 1 SPO).

Prerequisites
None
6.14 Course: Chemical Process Engineering [T-CIWVT-101884]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101133 - Chemical Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22101</td>
<td>Chemische Verfahrenstechnik (Bach.)</td>
<td>2</td>
<td>Lecture</td>
<td>Kraushaar-Czarnetzki</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22102</td>
<td>Übung zu 22101 Chemische Verfahrenstechnik (Bach.)</td>
<td>2</td>
<td>Practice</td>
<td>Kraushaar-Czarnetzki, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites

None
6.15 Course: Control Engineering and System Dynamics [T-MACH-102126]

Responsible: Prof. Dr.-Ing. Christoph Stiller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101300 - Control Engineering and System Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Control Engineering and System Dynamics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Stiller</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Exercises on control engineering and system dynamics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Stiller, Fischer, Le Large</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
written exam

Prerequisites
none
6.16 Course: Downstream Processing [T-CIWVT-101897]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105698 - Downstream Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>22721</th>
<th>Downstream Processing</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Hubbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22722</td>
<td>Exercises on Downstream Processing (22721)</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Hubbuch, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Prerequisites

None
6.17 Course: Electrochemical Energy Technologies [T-ETIT-111352]

Responsible: Prof. Dr.-Ing. Ulrike Krewer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105690 - Electrochemical Energy Technologies

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each winter term

Version

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 2304236</td>
<td>Electrochemical Energy Technologies</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Krewer</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22 2304237</td>
<td>Exercise for 2304236 Electrochemical Energy Technologies</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Krewer, Wilde, Mitarbeiter*innen</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
Type of Examination: Written exam
Duration of Examination: approx. 120 minutes

Prerequisites
none
6.18 Course: Elementary Physics [T-PHYS-101577]

Responsible: Prof. Dr. Ralph Engel
Organisation: KIT Department of Physics
Part of: M-PHYS-100993 - Elementary Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4040321</td>
<td>Physikalische Grundlagen für Chemie- und Bioingenieure und Verfahrenstechniker</td>
<td>4</td>
<td>Lecture / 🗣</td>
<td>Schmidt, Engel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4040322</td>
<td>Übungen zu Physikalische Grundlagen für Chemie- und Bioingenieure und Verfahrenstechniker.</td>
<td>2</td>
<td>Practice / 🧩</td>
<td>Engel, Schmidt, Huber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam (usually about 180 min)
6.19 Course: Energy and Environmental Engineering [T-CIWVT-108254]

Responsible: Prof. Dr. Reinhard Rauch
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101145 - Energy and Environmental Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22562</td>
<td>Verfahren zur Erzeugung chemischer Energieträger</td>
<td>2</td>
<td>Lecture</td>
<td>Rauch</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22564</td>
<td>Fundamentals of High Temperature Energy Conversion</td>
<td>2</td>
<td>Lecture</td>
<td>Trimis</td>
</tr>
</tbody>
</table>

Prerequisites

None
6.20 Course: Energy and Environmental Engineering Project Work [T-CIWVT-103527]

Responsible: Prof. Dr. Reinhard Rauch
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101145 - Energy and Environmental Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22566</td>
<td>Projektarbeit im Profilfach Energie- und Umwelttechnik</td>
<td>Project (P / 🔊)</td>
<td>Trimis, Rauch, Kolb</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏢 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Prerequisites
None
6.21 Course: Energy Process Engineering [T-CIWVT-101889]

Responsible: Prof. Dr.-Ing. Thomas Kolb

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101136 - Energy Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Event</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>22524</td>
<td>WT 21/22</td>
<td>Energieverfahrenstechnik</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Online</td>
<td>5</td>
</tr>
<tr>
<td>22525</td>
<td>WT 21/22</td>
<td>Übung zu 22524 Energieverfahrenstechnik</td>
<td>Practice</td>
<td>1 SWS</td>
<td>On-Site</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisites

None

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Responsible: Prof. Dr.-Ing. Roland Dittmeyer
TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101128 - Engineering Mechanics: Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture</th>
<th>Practice</th>
<th>Tutorial</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Lecture</td>
<td>Dittmeyer</td>
<td></td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Dittmeyer</td>
</tr>
<tr>
<td>22112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technische Mechanik: Dynamik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Practice</td>
<td>Klahn</td>
<td></td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Klahn</td>
</tr>
<tr>
<td>22113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übungen zu Technische Mechanik: Dynamik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Tutorial</td>
<td>Dittmeyer</td>
<td></td>
<td>1 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Dittmeyer</td>
</tr>
<tr>
<td>22114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorium zu Technische Mechanik: Dynamik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Responsible: Prof. Dr.-Ing. Roland Dittmeyer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101128 - Engineering Mechanics: Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22112</td>
<td>Technische Mechanik: Dynamik</td>
<td>2 SWS</td>
<td>Lecture / 🛥️</td>
<td>Dittmeyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 22113</td>
<td>Übungen zu Technische Mechanik: Dynamik</td>
<td>2 SWS</td>
<td>Practice / 🛥️</td>
<td>Klahn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 22114</td>
<td>Tutorium zu Technische Mechanik: Dynamik</td>
<td>1 SWS</td>
<td>Tutorial / 🗣️</td>
<td>Dittmeyer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🛥️ Online, 🕺 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-106290 - Engineering Mechanics: Dynamics must have been passed.

Responsible: Dr.-Ing. Bernhard Hochstein
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104006 - Engineering Mechanics: Statics and Strength of Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22910 Technische Mechanik: Statik</td>
<td>2 SWS</td>
<td>Lecture / Lecture</td>
<td>Willenbacher, Hochstein</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22911 Übungen zu Technische Mechanik: Statik (22910)</td>
<td>2 SWS</td>
<td>Practice / Practice</td>
<td>Hochstein, und Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22912 Technische Mechanik - Fragen und Antworten</td>
<td>Others (sons / Practice)</td>
<td>Hochstein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Legend: 📱 Online, 🧩 Blended (On-Site/Online), ┅ On-Site, ✗ Cancelled

Responsible: Dr.-Ing. Bernhard Hochstein
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104006 - Engineering Mechanics: Statics and Strength of Materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 22913 | Technische Mechanik - Festigkeitslehre (CIW) | 2 SWS | Lecture / 🗣 | Hochstein |
| ST 2022 | 22915 | Technische Mechanik - Fragen und Antworten zu Festigkeitslehre | 2 SWS | Others (sons / 🗣) | Hochstein |

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None
6.26 Course: Enzyme Technology [T-CIWVT-111074]

Responsible: Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105518 - Enzyme Technology

Type
Written examination

Credits
3

Grading scale
Grade to a third

Version
1

Competence Certificate
Written examination with a duration of 90 minutes (section 4 subsection 2 No. 1 SPO).

Prerequisites
None
6.27 Course: Ethics and Global Material Cycles [T-CIWVT-101887]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101149 - Ethics and Global Material Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 22330 | **Ethik und Stoffkreisläufe** | 2 SWS | Lecture / 🗣 | Hillerbrand, Rauch |

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None.
Course: Ethics and Global Material Cycles - Prerequisite [T-CIWVT-109219]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101149 - Ethics and Global Material Cycles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 22330 | **Ethik und Stoffkreisläufe** | 2 SWS | Lecture / 🗣 | Hillerbrand, Rauch |

Legend: 🖥 Online, 💻 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None
6.29 Course: Examination Material Science I & II [T-MACH-105148]

Responsible: Dr.-Ing. Johannes Schneider

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102567 - Material Science and Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 2181555 | Materials Science and Engineering I for ciw, vt, MIT | 4 SWS | Lecture / Practice (/ 🗣) | Schneider |
| ST 2022 | 2182562 | Materials Science and Engineering II for ciw, vt, mit | 4 SWS | Lecture / Practice (/ 🗣) | Schneider |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate

oral; 30 to 40 minutes

No tools and reference tools are allowed!

Prerequisites

none
6.30 Course: Exercises Process Development and Scale-up [T-CIWVT-111005]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101153 - Process Development and Scale-up
6.31 Course: Fluiddynamics, Exam [T-CIWVT-101882]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101131 - Fluiddynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Mode</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22944</td>
<td>Fluiddynamics</td>
<td>3</td>
<td>Online, Blended (On-Site/Online)</td>
<td>Nirschl</td>
</tr>
<tr>
<td>ST 2022</td>
<td>22945</td>
<td>Practical in Fluiddynamics</td>
<td>1</td>
<td>On-Site</td>
<td>Nirschl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, 🗑 Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-101904 - Fluiddynamics, Tutorial must have been passed.
6.32 Course: Fluiddynamics, Tutorial [T-CIWVT-101904]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101131 - Fluiddynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22944</td>
<td>Fluiddynamics</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>Nirschl</td>
</tr>
<tr>
<td>ST 2022</td>
<td>22945</td>
<td>Practical in Fluiddynamics</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>Nirschl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
6.33 Course: Food Biotechnology [T-CIWVT-101898]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101126 - Food Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>22227</th>
<th>Lebensmittelbiotechnologie (Bachelor BIW)</th>
<th>3 SWS</th>
<th>Lecture</th>
<th>Karbstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22228</td>
<td>Übung Lebensmittelbiotechnologie (Bachelor BIW) (22227)</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Karbstein, Rütten</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

This module is successfully completed by a written exam of 120 min (according to § 4 Abs. 2 Nr. 1 SPO).

Prerequisites

The Pre-Condition must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-101899 - Food Biotechnology - Prerequisite must have been passed.
6.34 Course: Food Biotechnology - Prerequisite [T-CIWVT-101899]

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101126 - Food Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22227</td>
<td>Lebensmittelbiotechnologie (Bachelor BIW)</td>
<td>3 SWS</td>
<td>Lecture / 🖥</td>
<td>Karbstein</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22228</td>
<td>Übung Lebensmittelbiotechnologie (Bachelor BIW) (22227)</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Karbstein, Rütten</td>
</tr>
</tbody>
</table>

Prerequisites

none
6.35 Course: Food Technology [T-CIWVT-103528]

Responsible: PD Dr.-Ing. Azad Emin
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101148 - Food Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Semester</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Module</th>
<th>Lecturer</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22230</td>
<td>Einführung in das Profilfach Lebensmitteltechnologie</td>
<td>1 SWS</td>
<td>Lecture / 🖥</td>
<td>Emin, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22232</td>
<td></td>
<td>1 SWS</td>
<td>Project (P / 🗣)</td>
<td>Emin, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>22231</td>
<td>Übung zu 22232</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Emin, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>22252</td>
<td>Exkursion im Profilfach Lebensmitteltechnologie</td>
<td>1 SWS</td>
<td>Excursion (E / 🗣)</td>
<td>Emin, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗣 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Die Erfolgskontrolle ist eine mündliche Gruppenprüfung im Umfang von ca. 45 Minuten zu den Inhalten der Lehrveranstaltungen 22230, 22231 und 22232 nach § 4 Abs. 2 Nr. 2 der SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015.

Prerequisites

None.
6.36 Course: Food Technology Project Work [T-CIWVT-103529]

Responsible: PD Dr.-Ing. Azad Emin
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101148 - Food Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
<th>Credits</th>
<th>7</th>
<th>Grading scale</th>
<th>Grade to a third</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22232</td>
<td>Projektarbeit im Profilfach Lebensmitteltechnologie</td>
<td>4 SWS</td>
<td>Project (P / 🗣️)</td>
<td>Emin, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
None

Responsible: Prof. Dr.-Ing. Wilhelm Schabel
Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101132 - Fundamentals of Heat and Mass Transfer

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>22830</th>
<th>Wärme- und Stoffübertragung</th>
<th>3 SWS</th>
<th>Lecture / Online</th>
<th>Wetzel, Schabel</th>
</tr>
</thead>
</table>
| ST 2022 | 22831 | Übung zu Wärme- und Stoffübertragung (22830) | 2 SWS | Practice / Online | Wetzel, Schabel, und Mitarbeiter

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.38 Course: Fundamentals of Refrigeration, oral examination [T-CIWVT-109117]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104457 - Fundamentals of Refrigeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22026</td>
<td>2 SWS</td>
<td>Refrigeration A</td>
<td></td>
<td>Lecture / 🗣️</td>
<td>6</td>
<td></td>
<td></td>
<td>Grohmann</td>
</tr>
<tr>
<td>WT 21/22 22027</td>
<td>1 SWS</td>
<td>Refrigeration A - Exercises</td>
<td></td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
<td></td>
<td>Grohmann, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, 🔴 Cancelled

Competence Certificate
Learning Control is an oral examination about the lecture "Grundlagen der Kältetechnik", duration about 30 minutes.

Prerequisites
Projects Work

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-109118 - Fundamentals of Refrigeration, Project Work must have been started.

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104457 - Fundamentals of Refrigeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>22046</th>
<th>Projektarbeit zum Profilfach Thermodynamik und Kältetechnik</th>
<th>2 SWS</th>
<th>Practice / Grohmann</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Prerequisites

None
6.40 Course: General and Inorganic Chemistry [T-CHEMBIO-101866]

Responsible: Prof. Dr. Mario Ruben
Organisation: KIT Department of Chemistry and Biosciences
Part of: M-CHEMBIO-101117 - General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 5004</td>
<td>3</td>
<td>Lecture / 🖥️</td>
<td></td>
<td>Ruben</td>
<td></td>
</tr>
<tr>
<td>Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 5005</td>
<td>2</td>
<td>Seminar / 🗣️</td>
<td></td>
<td>Scheiba</td>
<td></td>
</tr>
<tr>
<td>Seminar zur Vorlesung Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 📦 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
6.41 Course: Genetics [T-CIWVT-111063]

Responsible: Dr. Anke Neumann
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101624 - Biology for Engineers I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination with a duration of 90 minutes (section 4 subsection 2 No. 1 SPO).

Prerequisites
None
6.42 Course: Industrial Business Administration [T-WIWI-100796]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-100528 - Industrial Business Administration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2581040</td>
<td>Industriebetriebswirtschaftslehre</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), ⬆️ On-Site, ✗ Cancelled

Competence Certificate
The assessment of this course is a ungraded written examination.

Prerequisites
None
6.43 Course: Industrial Organic Chemistry [T-CIWVT-101890]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Prof. Dr. Reinhard Rauch
Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101137 - Industrial Organic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22703</td>
<td>Organic Chemical Process Science</td>
<td>3</td>
<td>Lecture / 📚</td>
<td>Rauch, Wörner</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22704</td>
<td>Exercises on Organical Chemical Process Science (22703)</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Rauch, Wörner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been started.
6.44 Course: International Concepts of Water Technologies [T-CIWVT-103704]

Responsible: Prof. Dr. Andrea Schäfer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101972 - International Concepts of Water Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 22644</td>
<td>4 SWS</td>
<td>Lecture /</td>
<td>International Concepts in Water Treatment</td>
<td>Schäfer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Introduction to Informatics and Algorithmic Mathematics - Exam [T-MATH-102250]

- **Responsible:** Prof. Dr. Willy Dörfler
 Dr. rer. nat. Mathias Krause
- **Organisation:** KIT Department of Mathematics
- **Part of:** M-CIWVT-101956 - Computational Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
<td>WT 21/22 0101100 Einstieg in die Informatik und algorithmische Mathematik 2 SWS Lecture / On-Site Krause, Simonis, Veszelka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WT 21/22 0101200 Übungen zu 0101100 2 SWS Practice / On-Site Krause, Veszelka, Simonis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WT 21/22 0101300 Rechnerpraktikum zu 0101100 2 SWS Practical course / On-Site Krause, Veszelka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ST 2022 0150700 Einstieg in die Informatik und Algorithmische Mathematik (für Bio- und Chemie-Ingenieurwesen) 2 SWS Lecture Krause, Veszelka</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ST 2022 0150800 Übungen zu 0150700 1 SWS Practice Krause</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ST 2022 0150900 Praktikum zu 0150700 2 SWS Practical course Krause</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ☠ Cancelled
6.46 Course: Laboratory course: Electrochemical Energy Technologies [T-ETIT-111376]

Responsible: Dr. Philipp Röse
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105703 - Laboratory course: Electrochemical Energy Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2313212</td>
<td>Laboratory Electrochemical Energy Technologies</td>
<td>3</td>
<td>Practical course</td>
<td>Röse</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination consists of a different kind of graded assessment including four experiments. The overall impression is rated. To pass the module, all experiments must be successfully completed. In case of failure, the laboratory course has to be repeated completely.

Attendance at the safety briefing and participation in an entry colloquium is mandatory (ungraded).

Prerequisites

The prerequisite for admission to the module is that students have successfully passed the module "M-ETIT-105690 – Electrochemical Energy Technologies".
6.47 Course: Laboratory Work in General and Inorganic Chemistry Part I [T-CHEMBIO-101867]

Responsible: Prof. Dr. Helmut Ehrenberg

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 5050 | Anorganisch-chemisches Praktikum für Studierende des Chemieingenieurwesens (Teil I) | 4 SWS | Practical course | Ehrenberg, Dsoke, Assistenten, Breher, Feldmann, Powell, Roesky |

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101117 - General and Inorganic Chemistry must have been passed.
6.48 Course: Laboratory Work in General and Inorganic Chemistry Part II [T-CIWVT-108294]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101117 - General and Inorganic Chemistry must have been passed.
2. The module M-CIWVT-101138 - Lab Work Process Engineering must not have been started.
3. The course T-CIWVT-108293 - Safety Instruction must have been passed.
6.49 Course: Laboratory Work Process Engineering [T-CIWVT-108292]

Responsible: Dr. Sokratis Sinanis
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101138 - Lab Work Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Modeled Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22999</td>
<td>Practical Course: Process Engineering</td>
<td>The module M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry must not have been started. The course T-CHEMBIO-101866 - General and Inorganic Chemistry must have been passed. The course T-CIWVT-108291 - Safety Instruction must have been passed.</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry must not have been started.
2. The course T-CHEMBIO-101866 - General and Inorganic Chemistry must have been passed.
3. The course T-CIWVT-108291 - Safety Instruction must have been passed.
6.50 Course: Laboratory Work Process Machines [T-CIWVT-101903]

Responsible: Dr.-Ing. Marco Gleiß

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101139 - Process Machines

Type
Completed coursework (practical)

Credits
5

Grading scale
pass/fail

Recurrence
Each winter term

Version
4

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Grading scale</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22973</td>
<td>Practical course /</td>
<td></td>
<td>Each winter term</td>
<td>pass/fail</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Praktikum Verfahrenstechnische Maschinen

Prerequisites

Written Exam "Organic Chemistry" must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been passed.
2. The module M-CHEMBIO-101116 - Practical Course in Organic Chemistry for Chemical Engineers must not have been started.

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled
6.51 Course: Mechanical Design Basics I and II [T-MACH-110363]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2145131</td>
<td>Mechanical Design Basics I</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2146131</td>
<td>Mechanical Design Basics II</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Written Exam (90min) on the topics of MKLG1 and MKLGII.

Prerequisites

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110364 - Mechanical Design Basics I, Tutorial must have been passed.
2. The course T-MACH-110365 - Mechanical Design Basics II, Tutorial must have been passed.
6.52 Course: Mechanical Design Basics I, Tutorial [T-MACH-110364]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Tutorials Mechanical Design Basics I</th>
<th>SWS</th>
<th>Practice /</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2145132</td>
<td>Tutorials Mechanical Design Basics I</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

To pass the preliminary work, attendance at 3 workshop sessions of the MKL1 transmission workshop and the passing of a colloquium at the beginning of each workshop are prerequisites.

Prerequisites

None
6.53 Course: Mechanical Design Basics II, Tutorial [T-MACH-110365]

Responsible: Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101299 - Mechanical Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>2146132</th>
<th>Tutorials Mechanical Design Basics II</th>
<th>2 SWS</th>
<th>Practice / 🗣</th>
<th>Albers, Matthiesen, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

CIW/ VT/ IP-M/ WiING/ MATH/ MWT: For passing the prerequisite it is necessary that a design task is successfully completed as a technical hand drawing.

MIT: To pass the preliminary examination, attendance at workshop sessions and a colloquium at the beginning of each workshop are required.

NWT:

For students of the subject area NWT, the creation of a teaching video for the teaching of a technical system must be completed instead as a preliminary examination.

Prerequisites

None
6.54 Course: Mechanical Design III & IV [T-MACH-104810]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Mechanical Design III</td>
<td>2 SWS</td>
<td>Lecture / ‟</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Mechanical Design III (Lecture)</td>
<td>2 SWS</td>
<td>Lecture / ‟</td>
<td>Albers, Matthiesen, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Mechanical Design IV</td>
<td>2 SWS</td>
<td>Lecture / ‟</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Mechanical Design IV Lecture</td>
<td>2 SWS</td>
<td>Lecture / ‟</td>
<td>Albers, Matthiesen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🟪 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
written exam consisting of:
• written part duration 60 min and
• design part duration 180 min

Sum: 240 min

Prerequisites
Admission to the exam only with successful completion of the Mechanical Design III, Tutorial and Mechanical Design IV, Tutorial.

Modeled Conditions
You have to fulfill one of 2 conditions:
1. The course T-MACH-110955 - Mechanical Design III, Tutorial must have been passed.
2. The course T-MACH-110956 - Mechanical Design IV, Tutorial must have been passed.
6.55 Course: Mechanical Design III, Tutorial [T-MACH-110955]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>2145153</th>
<th>Tutorials Mechanical Design III</th>
<th>2 SWS</th>
<th>Practice / Online</th>
<th>Albers, Matthiesen, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2145154</td>
<td>Mechanical Design III Workshop</td>
<td>1 SWS</td>
<td>Practical course / On-Site</td>
<td>Albers, Matthiesen, Albers Assistenten</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3145017</td>
<td>Mechanical Design III (Tutorial)</td>
<td>2 SWS</td>
<td>Practice / On-Site</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>3145018</td>
<td>Mechanical Design III (Workshop)</td>
<td>1 SWS</td>
<td>/ On-Site</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕗 Blended (On-Site/Online), 🔔 On-Site, ✗ Cancelled

Competence Certificate
Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single CAD-workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites
None
6.56 Course: Mechanical Design IV, Tutorial [T-MACH-110956]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102829 - Mechanical Design III+IV

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2022	2146184	Tutorials Mechanical Design IV	1 SWS	Practice /.parsers/	Albers, Matthiesen, Mitarbeiter
ST 2022	2146187	Workshop 'Mechanical Design IV'	1 SWS	/parsers/	Albers, Matthiesen, Mitarbeiter
ST 2022	3146021	Mechanical Design IV Tutorials	1 SWS	Practice /parsers/	Albers, Mitarbeiter
ST 2022	3146022	Mechanical Design IV Workshop	1 SWS	/parsers/	Albers, Mitarbeiter

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled. The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites

None
6.57 Course: Mechanical Processing [T-CIWVT-101886]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101135 - Mechanical Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22901</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik (Bach.)</td>
<td>2</td>
<td>Lecture</td>
<td>Dittler</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22902</td>
<td>Übung zu 22901 Mechanische Verfahrenstechnik (Bach.)</td>
<td>2</td>
<td>Practice</td>
<td>Dittler, Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
6.58 Course: Mechanical Separation Technology Exam [T-CIWVT-103448]

Responsible: Dr.-Ing. Marco Gleiß

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101147 - Mechanical Separation Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22987</td>
<td>Mechanische Separationstechnik</td>
<td>Lecture / 🗣</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Gleiß</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22988</td>
<td>Übung zu 22987 Mechanische Separationstechnik</td>
<td>Practice / 🗣</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Gleiß</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ⌫ Cancelled

Prerequisites

None
6.59 Course: Mechanical Separation Technology Project Work [T-CIWVT-103452]

Responsible: Dr.-Ing. Marco Gleiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101147 - Mechanical Separation Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>22972</th>
<th>Project Work for Profile Subject Mechanical Separation Techniques</th>
<th>1 SWS</th>
<th>Practice /</th>
<th>Gleiß, und Mitarbeiter</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), ⚠ On-Site, ⏼ Cancelled

Prerequisites

none
6.60 Course: Micro Process Engineering [T-CIWVT-103666]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101154 - Micro Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22145</td>
<td>Lecture / Practice</td>
<td>Pfeifer</td>
</tr>
</tbody>
</table>

Competence Certificate

Die Erfolgskontrolle ist eine mündliche Einzelprüfung nach § 4 Abs. 2 Nr. 2 der SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015 im Umfang von ca. 25 Minuten zu Lehrveranstaltung "Auslegung von Mikroreaktoren".

Prerequisites

None
6.61 Course: Micro Process Engineering [T-CIWVT-103667]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101154 - Micro Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 22138 Projektarbeit im Profilfach Mikroverfahrenstechnik</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Pfeifer, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art (Projektarbeit) nach § 4 Abs. 2 Nr. 3 der SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015. Es werden die praktische Mitarbeit, der schriftliche Bericht sowie die mündliche Präsentation der Ergebnisse individuell bewertet.

Prerequisites

None
6.62 Course: Microbiology [T-CIWVT-111065]

Responsible: Dr. Anke Neumann
Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105517 - Industrial Microbiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22407</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biology for Engineers II - Microbiology</th>
<th>2 SWS</th>
<th>Syldatk</th>
</tr>
</thead>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written Examination with a duration of 90 minutes.
6.63 Course: Organic Chemistry for Engineers [T-CHEMBIO-101865]

Responsible: Prof. Dr. Michael Meier

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CHEMBIO-101115 - Organic Chemistry for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Credits</th>
<th>Event Name</th>
<th>SWS</th>
<th>Lecture.Mode</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 5142</td>
<td>2 SWS</td>
<td>Organische Chemie für CIW/VT und BIW</td>
<td>Levkin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 5143</td>
<td>2 SWS</td>
<td>Übungen zu Organische Chemie für CIW/VT und BIW</td>
<td>Levkin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☡ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

acc. to module catalogue
6.64 Course: Particle Technology [T-CIWVT-103654]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101141 - Particle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 22917 | Gas-Partikel-Messtechnik | 2 SWS | Lecture / 🗣 | Dittler |
| WT 21/22 | 22918 | Übungen in kleinen Gruppen zu 22917 | 1 SWS | Practice / 🗣 | Dittler, und Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None
6.65 Course: Particle Technology [T-CIWVT-103655]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101141 - Particle Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 22963</td>
<td></td>
<td></td>
<td>Exkursion zum Profilfach</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td>Partikeltechnik</td>
<td></td>
</tr>
<tr>
<td>ST 2022 22977</td>
<td></td>
<td></td>
<td>Projektarbeit im Profilfach</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
<td>Partikeltechnik</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☞ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
None
6.66 Course: Practical Course in Organic Chemistry for Chemical Engineers [T-CHEMBIO-101868]

Responsible: Dr. Andreas Rapp

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CHEMBIO-101116 - Practical Course in Organic Chemistry for Chemical Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework (practical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>5123</td>
<td>Organisch-Chemisches Praktikum für Studierende des Chemie- und Bioingenieurwesens</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏛 Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CHEMBIO-101115 - Organic Chemistry for Engineers must have been passed.
6.67 Course: Process Development and Scale-up [T-CIWVT-103530]

Responsible: Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101153 - Process Development and Scale-up

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Lecture</th>
<th>Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22333</td>
<td>Prozessentwicklung und Scale-up</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td>WT 21/22 22334</td>
<td>Übung zu 22333</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course **T-CIWVT-111005 - Exercises Process Development and Scale-up** must have been passed.
6.68 Course: Process Development and Scale-up Project Work [T-CIWVT-103556]

Responsible: Prof. Dr.-Ing. Jörg Sauer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101153 - Process Development and Scale-up

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22318</td>
<td>Presentation Profile Course "Process Development and Scale-up"</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>ST 2022</td>
<td>22335</td>
<td>Project Work in the Profile Course "Process Development and Scale-up"</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
6.69 Course: Rheology and Product Design [T-CIWVT-103522]

Responsible: Dr.-Ing. Claude Oelschlaeger
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101144 - Rheology and Product Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22816</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Kind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der</td>
<td></td>
</tr>
<tr>
<td>Produktgestaltung</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22916</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Oelschlaeger, Willenbacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilität</td>
<td></td>
</tr>
<tr>
<td>disperser Systeme</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>22949</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Hochstein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheometrie und</td>
<td></td>
</tr>
<tr>
<td>Rheologie</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎓 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

None
6.70 Course: Rheology and Product Design Project Work [T-CIWVT-103524]

Responsible: Dr.-Ing. Claude Oelschlaeger
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101144 - Rheology and Product Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>22960</th>
<th>Profilfach Rheologie und Produktgestaltung (Projektarbeit)</th>
<th>Project (P / 🗣️)</th>
<th>Oelschlaeger, Willenbacher, und Mitarbeiter</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-103522 - Rheology and Product Design must have been passed.
6.71 Course: Safety Instruction [T-CIWVT-108293]

Responsible: Dr. Gudrun Abbt-Braun

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101964 - Laboratory Work in General and Inorganic Chemistry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None
6.72 Course: Safety Instruction [T-CIWVT-108291]

Responsible: Dr. Sokratis Sinanis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101138 - Lab Work Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
6.73 Course: SmartMentoring - Group Management [T-CIWVT-111761]

Responsible: Dr.-Ing. Barbara Freudig

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105848 - SmartMentoring

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Thermal Process Engineering [T-CIWVT-101885]

Responsible: Prof. Dr.-Ing. Matthias Kind
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101134 - Thermal Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22805</td>
<td>Thermische Verfahrenstechnik</td>
<td>2 SWS</td>
<td></td>
<td>Kind, Dietrich</td>
</tr>
<tr>
<td>WT 21/22 22806</td>
<td>Übung zu 22805 Thermische Verfahrenstechnik</td>
<td>2 SWS</td>
<td></td>
<td>Kind, Dietrich, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⛽ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.75 Course: Thermodynamics I, Exam [T-CIWVT-101879]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101129 - Thermodynamics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22002</td>
<td>Thermodynamics I</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>WT 21/22 22003</td>
<td>Thermodynamics I - Exercises</td>
<td>2 SWS</td>
<td>Practice / Blended</td>
</tr>
<tr>
<td>WT 21/22 22007</td>
<td>Tutorial Thermodynamics I and II</td>
<td>2 SWS</td>
<td>Tutorial (/ Blended</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔔 On-Site, ✗ Cancelled

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-101878 - Thermodynamics I, Tutorial must have been passed.
6.76 Course: Thermodynamics I, Tutorial [T-CIWVT-101878]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101129 - Thermodynamics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Credits</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 22002</td>
<td></td>
<td></td>
<td>Thermodynamics I</td>
<td>3 SWS</td>
<td>Enders</td>
</tr>
<tr>
<td>WT 21/22 22003</td>
<td></td>
<td></td>
<td>Thermodynamics I - Exercises</td>
<td>2 SWS</td>
<td>Enders, und Mitarbeiter</td>
</tr>
<tr>
<td>WT 21/22 22007</td>
<td></td>
<td></td>
<td>Tutorial Thermodynamics I and II</td>
<td>2 SWS</td>
<td>Enders, und Mitarbeiter, Roth</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Prerequisites
None
6.77 Course: Thermodynamics II, Exam [T-CIWVT-101881]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101130 - Thermodynamics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 22004</td>
<td>3 SWS</td>
<td>Technische Thermodynamik II</td>
<td>Lecture</td>
<td>Enders</td>
</tr>
<tr>
<td>ST 2022 22005</td>
<td>2 SWS</td>
<td>Übungen zu 22004 Technische</td>
<td>Practice</td>
<td>Enders, und Mitarbeiter</td>
</tr>
<tr>
<td>ST 2022 22007</td>
<td>2 SWS</td>
<td>Tutorium Thermodynamik II</td>
<td>Tutorial</td>
<td>Enders, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
Precondition for participation: 2 of 3 compulsory exercises have to be approved

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-101880 - Thermodynamics II, Tutorial must have been passed.
6.78 Course: Thermodynamics II, Tutorial [T-CIWVT-101880]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101130 - Thermodynamics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22004</td>
<td>Technische Thermodynamik II</td>
<td>3 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture / 🗣</td>
<td>Enders</td>
</tr>
<tr>
<td>ST 2022</td>
<td>22005</td>
<td>Übungen zu 22004 Technische Thermodynamik II</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice / 🗣</td>
<td>Enders, und Mitarbeiter</td>
</tr>
<tr>
<td>ST 2022</td>
<td>22007</td>
<td>Tutorium Thermodynamik II</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorial (/ 🗣)</td>
<td>Enders, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None
Course: Tutorial Advanced Mathematics I [T-MATH-100525]

Responsible:
- PD Dr. Tilo Arens
- Prof. Dr. Roland Griesmaier
- PD Dr. Frank Hettlich

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-100280 - Advanced Mathematics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Griesmaier</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Griesmaier</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛡 Blended (On-Site/Online), 🔔 On-Site, ✗ Cancelled

Competence Certificate
Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites
None.
6.80 Course: Tutorial Advanced Mathematics II [T-MATH-100526]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-100281 - Advanced Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 0180900 | Übungen zu 0180800 | 2 SWS | Practice | Arens |
| ST 2022 | 0181100 | Übungen zu 0181000 | 2 SWS | Practice | Arens |

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisite). Exact requirements will be communicated in the lectures.

Prerequisites

None.
6.81 Course: Tutorial Advanced Mathematics III [T-MATH-100527]

Responsible: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Organisation: KIT Department of Mathematics

Part of: M-MATH-100282 - Advanced Mathematics III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 0131500 | Übungen zu 0131400 | 2 SWS | Practice / 🧩 | Hettlich |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning assessment is carried out by written assignments (pre-requisites). Exact requirements will be communicated in the lectures.

Prerequisites

None.
6.82 Course: Water Quality and Process Engineering of Water and Waste Water Treatment [T-CIWVT-103651]

Responsible: Dr. Andrea Hille-Reichel
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101152 - Water Quality and Process Engineering of Water and Waste Water Treatment

Type
Examination of another type

Credits
4

Grading scale
Grade to a third

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>22643</td>
<td>Project Work in Subject "Water, Technology and Environment"</td>
<td>Examination of another type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project (P / 🗣)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horn, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Project thesis: individual grades of the written report and the oral presentation.
(According to § 4 Abs. 2 Nr. 3 SPO Bachelor Bioengineering 2015)

Prerequisites
None

Responsible: Dr. Gudrun Abbt-Braun
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101152 - Water Quality and Process Engineering of Water and Waste Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>22603</td>
<td>Scientific Principles for Water Quality Assessment</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>22607</td>
<td>Process Engineering in Water Technology</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤝 Blended (On-Site/Online), 🗤 On-Site, ✗ Cancelled

Competence Certificate
Sucess control is an overall oral examination of about 30 min according to § 4 Abs. 2 der SPO Bachelor Bioingenieurwesen 2015 of the lectures "22603 Scientific Principles for Water Quality Assessment" and "22607 Water Quality and Process Engineering of Water and Waste Water Treatment".

Prerequisites
None
Nichtamtliche Lesefassung für die Studien- und Prüfungsordnung für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

Nichtamtliche Lesefassung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

Diese Lesefassung berücksichtigt:

- Die Satzung vom 05. August 2015
 (Amtliche Bekanntmachung des KIT Nr. 76 vom 6. August 2015)
- Die Satzung vom 24. Februar 2020
 (Amtliche Bekanntmachung des KIT Nr. 5 vom 26. Februar 2020)

Bei der vorliegenden Version handelt es sich um eine nichtamtliche Lesefassung, in der die oben genannten (Änderungs-) satzungen eingearbeitet sind. Es wird keine Gewähr für die Richtigkeit der nichtamtlichen Lesefassung gegeben. Rechtlich verbindlich sind ausschließlich die in den amtlichen Bekanntmachungen des KIT veröffentlichten Studien- und Prüfungsordnungen.

Auf den Seiten der Universitätsverwaltung finden Sie die Amtlichen Bekanntmachungen.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich
§ 2 Ziele des Studiums, Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Bachelorarbeit
§ 15 Zusatzleistungen
§ 15 a Mastervorzug
§ 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschuss
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Stendiendekan
Chemical and Process Engineering Bachelor 2015 (Bachelor of Science (B.Sc.))
Module Handbook as of 01/03/2022

Präambel
Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik am KIT.

§ 2 Ziel des Studiums, Akademischer Grad
(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.
(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“.

Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg)

(2) Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5.

Eine qualifizierte Teilnahme liegt vor, wenn die Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan

(6) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
 1. in den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
 2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
3. nachweist, dass er in dem Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

(5) Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/m Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche
Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
§ 7 Bewertung von Studien- und Prüfungsleistungen

(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

- sehr gut (very good) : hervorragende Leistung
- gut (good) : eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
- befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforderungen entspricht,
- ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
- nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

- 1,0; 1,3 : sehr gut
- 1,7; 2,0; 2,3 : Gut
- 2,7; 3,0; 3,3 : Befriedigend
- 3,7; 4,0 : Ausreichend
- 5,0 : nicht ausreichend

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden
durch den Studierendendienst des KIT verwaltet.
(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht
proportional zu den ausgewiesenen Leistungspunkten der Module ein.
(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulenten lauten:

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>Sehr gut</td>
</tr>
<tr>
<td>von 1,6 bis 2,5</td>
<td>gut</td>
</tr>
<tr>
<td>von 2,6 bis 3,5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>von 3,6 bis 4,0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs
(1) Die Modulprüfungen in den Modulen Höhere Mathematik I und Allgemeine Anorganische
Chemie sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen
(Orientierungsprüfungen).
(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende
des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den
Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu
vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des
Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.
Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn
eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne
ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine
Fristüberschreitung von
1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte
 Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester
 nachweist oder
2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte
 Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern
 nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die
beim Studierendendienst des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende
des Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester
verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen
der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der
Orientierungsprüfung sind, nur einmal jährlich angeboten werden.
(3) Ist die Bachelorprüfung bis zum Ende des Prüfungszeitraums des 12. Fachsemesters
einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der
Prüfungsanspruch im Studiengang Chemieingenieurwesen und Verfahrenstechnik, es sei
denn, dass die Fristüberschreitung nicht selbst zu vertreten ist. Die Entscheidung über eine
Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss
unter Beachtung der in § 32 Abs. 6 LHG genannten Tätigkeiten auf Antrag des/der

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
Studierenden. Der Antrag ist schriftlich in der Regel bis sechs Wochen vor Ablauf der in Satz 1 genannten Studienhöchstdauer zu stellen. Absatz 2 Satz 3 bis 5 gelten entsprechend.

(4) Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(7) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(8) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(9) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

(10) Die Bachelorarbeit kann bei einer Bewertung mit „nicht ausreichend“ (5,0) einmal wiederholt werden. Eine zweite Wiederholung der Bachelorarbeit ist ausgeschlossen.

§ 10 Abmeldung; Versäumnis, Rücktritt
(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in
begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselterngeld- und Elterzeitgesetz – BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen...

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit
(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan

(3) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

(5) Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben." Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
„nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschuss

(1) Für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik wird ein Prüfungsausschuss gebildet. Er besteht aus vier stimmberechtigten Mitgliedern: drei Hochschullehrer/innen / leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG / Privatdozentinnen bzw. -dozenten, akademischen Mitarbeiterinnen und Mitarbeiter nach § 52 LHG / wissenschaftlichen Mitarbeiter/inne gemäß § 14 Abs. 3 Ziff. 2 KITG und einer bzw. einem Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik erhöht sich die Anzahl der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je eine bzw. einer dieser Beiden aus dem Bachelor- und aus dem

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
Nichtamtliche Lesefassung für die Studien- und Prüfungsordnung für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

Masterstudiengang stammt. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/der Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
Nichtamtliche Lesefassung für die Studien-und Prüfungsordnung für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamt betrachtung zu verwenden. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworben Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
Nichtamtliche Lesefassung für die Studien- und Prüfungsordnung für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung

(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 und 3 sowie dem Modul Bachelorarbeit (§ 14).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:

1. Fach: Mathematisch - Naturwissenschaftliche Grundlagen
 Modul(e) im Umfang von 47 LP,

2. Fach: Ingenieurwissenschaftliche Grundlagen
 Modul(e) im Umfang von 38 LP,

3. Fach: Thermodynamik und Transportprozesse
 Modul(e) im Umfang von 26 LP,

4. Fach: Verfahrenstechnische Grundlagen
 Modul(e) im Umfang von 18 LP,

5. Fach: Wahlpflichtfächer
 Modul(e) im Umfang von 10 LP,

6. Fach: Praktika
 Modul(e) im Umfang von 11 LP,

7. Fach: Profilfach
 Module im Umfang von 12 LP

8. Fach: Überfachliche Qualifikationen
 im Umfang von mindestens 6 LP gemäß § 16.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.

§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.

Dabei wird die Note des Moduls Bachelorarbeit mit dem doppelten Gewicht der Noten der übrigen Fächer berücksichtigt.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen

Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades

(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan
Nichtamtliche Lesefassung für die Studien- und Prüfungsordnung für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 25 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften

[(1) Inkrafttreten, Übergangsvorschriften sind den o. g. Amtliche Bekanntmachungen des KIT zu entnehmen.]

[(4), (5) Übergangsvorschriften sind der Amtliche Bekanntmachung des KIT Nr. 5 vom 26. Februar 2020 zu entnehmen.]

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan

[Ende des Dokuments]

01.10.2020 Prof. Dr.-Ing. Achim Dittler, Studiendekan