Table Of Contents

1. General Information ... 8

2. Field of study structure .. 15
 2.1. Master's Thesis ... 15
 2.2. Advanced Fundamentals .. 15
 2.3. Technical Supplement Course .. 16
 2.4. Specialized Course I ... 21
 2.4.1. Applied Rheology .. 21
 2.4.2. Automation and Process Systems Engineering .. 22
 2.4.3. Biopharmaceutical Process Engineering ... 22
 2.4.4. Fuel Technology .. 23
 2.4.5. Chemical Process Engineering .. 23
 2.4.6. Energy Process Engineering .. 23
 2.4.7. Energy and Combustion Technology .. 24
 2.4.8. Entrepreneurship in Process Engineering ... 24
 2.4.9. Gas Particle Systems .. 24
 2.4.10. Food Process Engineering .. 25
 2.4.11. Product Design .. 25
 2.4.12. Bioresource Engineering .. 26
 2.4.13. Mechanical Process Engineering .. 27
 2.4.14. Thermal Process Engineering .. 27
 2.4.15. Technical Thermodynamics ... 28
 2.4.16. Technical Biology ... 28
 2.4.17. Environmental Process Engineering .. 29
 2.4.18. Combustion Technology .. 29
 2.4.19. Water Technology .. 30
 2.5. Internship .. 30

3. Modules .. 31
 3.1. Additive Manufacturing for Process Engineering - M-CIWVT-105407 ... 31
 3.2. Air Pollution Control - Laws, Technology and Application - M-CIWVT-106314 .. 32
 3.3. Applied Combustion Technology - M-CIWVT-105201 ... 33
 3.4. Applied Molecular Thermodynamics - M-CIWVT-104361 .. 34
 3.5. Batteries and Fuel Cells - M-ETIT-100532 .. 35
 3.7. Bioelectrochemistry and Biosensors - M-CIWVT-104268 .. 37
 3.8. Biofilm Systems - M-CIWVT-103441 ... 38
 3.11. BioMEMS - Microsystems Technologies for Life Sciences and Medicine II - M-MACH-100490 41
 3.13. Biomimetic Interfaces and Bioconjugation - M-CIWVT-104272 ... 43
 3.15. Bioprocess Development - M-CIWVT-104347 ... 45
 3.16. Bioprocess Development - M-CIWVT-106297 ... 46
 3.17. Biotechnological Production - M-CIWVT-104384 ... 48
 3.18. Biotechnological Use of Renewable Resources - M-CIWVT-105295 ... 49
 3.20. Catalytic Micro Reactors - M-CIWVT-104451 .. 51
 3.21. Catalytic Micro Reactors (including practical course) - M-CIWVT-104491 ... 52
 3.22. Catalytic Processes in Gas Technologies - M-CIWVT-104287 .. 53
 3.23. Chem-Plant - M-CIWVT-104461 .. 54
 3.25. Combustion Technology - M-CIWVT-103069 ... 56
 3.27. Complex Phase Equilibria - M-CIWVT-106358 .. 59
 3.28. Computational Fluid Dynamics - M-CIWVT-103072 ... 60
 3.30. Control of Distributed Parameter Systems - M-CIWVT-106318 ... 62
Table Of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.31. Cryogenic Engineering - M-CIWVT-104356</td>
<td>63</td>
</tr>
<tr>
<td>3.32. Data Analysis and Statistics - M-CIWVT-104345</td>
<td>64</td>
</tr>
<tr>
<td>3.33. Data-Based Modeling and Control - M-CIWVT-106319</td>
<td>65</td>
</tr>
<tr>
<td>3.34. Design of a Jet Engine Combustion Chamber - M-CIWVT-105206</td>
<td>66</td>
</tr>
<tr>
<td>3.35. Design of Micro Reactors - M-CIWVT-104286</td>
<td>67</td>
</tr>
<tr>
<td>3.36. Development of an Innovative Food Product - M-CIWVT-104388</td>
<td>68</td>
</tr>
<tr>
<td>3.38. Digitization in Particle Technology - M-CIWVT-104973</td>
<td>70</td>
</tr>
<tr>
<td>3.39. Dimensional Analysis of Fluid Mechanic Problems - M-CIWVT-104327</td>
<td>71</td>
</tr>
<tr>
<td>3.40. Drying Technology - M-CIWVT-104370</td>
<td>72</td>
</tr>
<tr>
<td>3.41. Electrocatalysis - M-ETIT-105883</td>
<td>73</td>
</tr>
<tr>
<td>3.42. Energy and Environment - M-CIWVT-104453</td>
<td>74</td>
</tr>
<tr>
<td>3.43. Energy from Biomass - M-CIWVT-105207</td>
<td>76</td>
</tr>
<tr>
<td>3.44. Energy Technology - M-CIWVT-104293</td>
<td>77</td>
</tr>
<tr>
<td>3.45. Environmental Biotechnology - M-CIWVT-104320</td>
<td>78</td>
</tr>
<tr>
<td>3.46. Estimator and Observer Design - M-CIWVT-106320</td>
<td>79</td>
</tr>
<tr>
<td>3.47. Extrusion Technology in Food Processing - M-CIWVT-105996</td>
<td>80</td>
</tr>
<tr>
<td>3.49. Fluid Mechanics of Non Newtonian Fluids - M-CIWVT-104322</td>
<td>82</td>
</tr>
<tr>
<td>3.50. Fluidized Bed Technology - M-CIWVT-104292</td>
<td>83</td>
</tr>
<tr>
<td>3.51. Food Chemistry Basics - M-CHEMBIO-104620</td>
<td>84</td>
</tr>
<tr>
<td>3.52. Food Science and Functionality - M-CIWVT-104263</td>
<td>85</td>
</tr>
<tr>
<td>3.53. Formulation of (Biopharmaceutical Therapeutics - M-CIWVT-104266</td>
<td>86</td>
</tr>
<tr>
<td>3.54. Fuel Technology - M-CIWVT-104289</td>
<td>87</td>
</tr>
<tr>
<td>3.55. Gas Particle Measurement Technology - M-CIWVT-104337</td>
<td>88</td>
</tr>
<tr>
<td>3.56. Gas Particle Separation Processes - M-CIWVT-104340</td>
<td>89</td>
</tr>
<tr>
<td>3.57. Heat Exchangers - M-CIWVT-104371</td>
<td>90</td>
</tr>
<tr>
<td>3.58. Heat Transfer II - M-CIWVT-103051</td>
<td>91</td>
</tr>
<tr>
<td>3.60. Hydrogen and Fuel Cell Technologies - M-CIWVT-104296</td>
<td>93</td>
</tr>
<tr>
<td>3.61. Industrial Aspects in Bioprocess Technology - M-CIWVT-105412</td>
<td>95</td>
</tr>
<tr>
<td>3.62. Industrial Crystallization - M-CIWVT-104364</td>
<td>96</td>
</tr>
<tr>
<td>3.63. Industrial Genetics - M-CIWVT-104274</td>
<td>97</td>
</tr>
<tr>
<td>3.64. Industrial Wastewater Treatment - M-CIWVT-105903</td>
<td>98</td>
</tr>
<tr>
<td>3.67. Instrumental Analytics - M-CIWVT-104560</td>
<td>102</td>
</tr>
<tr>
<td>3.68. Internship - M-CIWVT-104527</td>
<td>103</td>
</tr>
<tr>
<td>3.69. Introduction to Sensory Analysis - M-CIWVT-105933</td>
<td>104</td>
</tr>
<tr>
<td>3.70. Liquid Transportation Fuels - M-CIWVT-105200</td>
<td>105</td>
</tr>
<tr>
<td>3.71. Mass Transfer II - M-CIWVT-104369</td>
<td>106</td>
</tr>
<tr>
<td>3.72. Materials and Processes for Electrochemical Storage - M-CIWVT-104353</td>
<td>107</td>
</tr>
<tr>
<td>3.73. Measurement Techniques in Chemical Processing - M-CIWVT-104490</td>
<td>108</td>
</tr>
<tr>
<td>3.74. Measurement Techniques in Chemical Processing (including practical course) - M-CIWVT-104450</td>
<td>109</td>
</tr>
<tr>
<td>3.75. Measurement Techniques in the Thermo-Fluid Dynamics - M-CIWVT-104297</td>
<td>110</td>
</tr>
<tr>
<td>3.76. Membrane Reactors - M-CIWVT-105663</td>
<td>112</td>
</tr>
<tr>
<td>3.77. Membrane Technologies in Water Treatment - M-CIWVT-105380</td>
<td>113</td>
</tr>
<tr>
<td>3.78. Microbiology for Engineers - M-CIWVT-104319</td>
<td>114</td>
</tr>
<tr>
<td>3.79. Microfluidics - M-CIWVT-104350</td>
<td>115</td>
</tr>
<tr>
<td>3.80. Microfluidics and Case Studies - M-CIWVT-105205</td>
<td>116</td>
</tr>
<tr>
<td>3.81. Micro rheology and High Frequency Rheology - M-CIWVT-104395</td>
<td>117</td>
</tr>
<tr>
<td>3.82. Mixing, Stirring, Agglomeration - M-CIWVT-105399</td>
<td>118</td>
</tr>
<tr>
<td>3.83. Modeling Wastewater Treatment Processes - M-BGU-106113</td>
<td>119</td>
</tr>
<tr>
<td>3.84. Module Master's Thesis - M-CIWVT-104526</td>
<td>121</td>
</tr>
<tr>
<td>3.85. Multiphase Reaction Engineering - M-CIWVT-104277</td>
<td>122</td>
</tr>
<tr>
<td>3.86. Nanoparticles - Structure and Function - M-CIWVT-104339</td>
<td>123</td>
</tr>
<tr>
<td>3.87. NMR for Engineers - M-CIWVT-104401</td>
<td>124</td>
</tr>
<tr>
<td>3.88. NMR Methods for Product and Process Analysis - M-CIWVT-105890</td>
<td>125</td>
</tr>
<tr>
<td>3.89. Nonlinear Process Control - M-CIWVT-106316</td>
<td>126</td>
</tr>
</tbody>
</table>
3.91. Nutritional Consequences of Food Processing - M-CIWVT-104255
3.92. Optimal and Model Predictive Control - M-CIWVT-106317
3.93. Organ Support Systems - M-MACH-102702
3.94. Particle Technology - M-CIWVT-104378
3.95. Physical Chemistry (incl. Lab) - M-CHEMBIO-104486
3.96. Physical Foundations of Cryogenics - M-CIWVT-103068
3.97. Power-to-X – Key Technology for the Energy Transition - M-CIWVT-105891
3.98. Practical Course Combustion Technology - M-CIWVT-104321
3.99. Practical Course in Water Technology - M-CIWVT-103440
3.100. Principles of Ceramic and Powder Metallurgy Processing - M-CIWVT-104886
3.102. Principles of Medicine for Engineers - M-MACH-102720
3.108. Process Technology - M-CIWVT-104374
3.110. Processing of Nanostructured Particles - M-CIWVT-103073
3.111. Product Design II - M-CIWVT-104396
3.112. Product Development – Methods of Product Engineering - M-MACH-102718
3.113. Project Centered Software-Lab - M-MATH-102938
3.114. Reaction Kinetics - M-CIWVT-104283
3.115. Refinery Technology - Liquid Fuels - M-CIWVT-104291
3.117. Rheology and Processing of Disperse Systems - M-CIWVT-104336
3.118. Rheology and Processing of Polymers - M-CIWVT-104335
3.119. Rheology and Rheometry - M-CIWVT-104326
3.120. Rheology of Complex Fluids and Advanced Rheometry - M-CIWVT-104331
3.121. Rheology of Disperse Systems - M-CIWVT-104391
3.122. Rheology of Polymers - M-CIWVT-104329
3.123. Selected Formulation Technologies - M-CIWVT-103064
3.124. Seminar - M-MATH-103276
3.125. Seminar of Food Processing in Practice - M-CIWVT-105932
3.126. Sol-Gel Processes - M-CIWVT-104489
3.127. Sol-Gel Processes (Including Practical Course) - M-CIWVT-104284
3.128. Solid Liquid Separation - M-CIWVT-104342
3.129. Stability of Disperse Systems - M-CIWVT-104330
3.130. Statistical Thermodynamics - M-CIWVT-103059
3.131. Structure and Reaction of Aquatic Humic Substances - M-CIWVT-104302
3.132. Students Innovation Lab - M-CIWVT-106017
3.133. Supercritical Fluid Technology - M-CIWVT-104362
3.136. Thermal Separation Processes II - M-CIWVT-104365
3.137. Thermal Transport Processes - M-CIWVT-104377
3.138. Thermodynamics III - M-CIWVT-103058
3.139. Thermodynamics of Interfaces - M-CIWVT-103063
3.140. Thermodynamics of Phase Equilibria - M-CIWVT-104360
3.142. Unit Operations and Process Chains for Food of Plant Origin - M-CIWVT-104420
3.143. Vacuum Technology - M-CIWVT-104478
3.144. Wastewater Treatment Technologies - M-BGU-104917
3.145. Water Quality Assessment - M-CIWVT-104301
3.146. Water Technology - M-CIWVT-103407

4. Courses
4.1. Additive Manufacturing for Process Engineering - Examination - T-CIWVT-110902
4.2. Air Pollution Control - Laws, Technology and Application - T-CIWVT-112812
4.3. Applied Combustion Technology - T-CIWVT-110540

Chemical and Process Engineering Master 2016 (Master of Science (M.Sc.))
Module Handbook as of 23/03/2023
4.4.	Applied Molecular Thermodynamics - T-CIWVT-108922	..	194
4.5.	Batteries and Fuel Cells - T-ETIT-100983	..	195
4.6.	Biobased Plastics - T-CIWVT-109369	..	196
4.7.	Bioelectrochemistry and Biosensors - T-CIWVT-108807	..	197
4.8.	Biofilm Systems - T-CIWVT-106841	..	198
4.10.	BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II - T-MACH-100967	200
4.11.	BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III - T-MACH-100968	201
4.12.	Biomimetic Interfaces and Bioconjugation - T-CIWVT-108810	202
4.15.	Bioprocess Development - T-CIWVT-112766	..	205
4.16.	Biotechnological Production - T-CIWVT-106030	...	206
4.17.	Biotechnology in Bioeconomy - T-CIWVT-108982	...	207
4.18.	Biotechnology in Bioeconomy - Seminar - T-CIWVT-110770	208
4.20.	Catalytic Processes in Gas Technologies - T-CIWVT-108827	210
4.21.	Chem-Plant - T-CIWVT-109127	..	211
4.22.	Combustion and Environment - T-CIWVT-108835	...	212
4.23.	Combustion Technology - T-CIWVT-106104	..	213
4.24.	Commercial Biotechnology - T-CIWVT-108811	..	214
4.25.	Complex Phase Equilibria - T-CIWVT-112883	..	215
4.28.	Control of Distributed Parameter Systems - T-CIWVT-112826	218
4.29.	Cryogenic Engineering - T-CIWVT-108915	..	219
4.31.	Data-Based Modeling and Control - T-CIWVT-112827	..	221
4.32.	Design of a Jet Engine Combustion Chamber - T-CIWVT-110571	222
4.33.	Design of Micro Reactors - T-CIWVT-108826	..	223
4.34.	Development of an Innovative Food Product - T-CIWVT-108960	224
4.35.	Development of an Innovative Food Product - presentation - T-CIWVT-111010	225
4.38.	Digitization in Particle Technology - T-CIWVT-110111	...	228
4.39.	Dimensional Analysis of Fluid Mechanic Problems - T-CIWVT-108882	229
4.40.	Drying Technology - T-CIWVT-108936	..	230
4.41.	Electrocatalysis - T-ETIT-111831	..	231
4.42.	Energy and Environment - T-CIWVT-110917	..	232
4.43.	Energy and Environment - T-CIWVT-109089	..	233
4.44.	Energy from Biomass - T-CIWVT-108828	..	234
4.45.	Energy from Biomass - T-CIWVT-110576	..	235
4.46.	Energy Technology - T-CIWVT-108833	..	236
4.47.	Entrepreneurship - T-WIWI-102864	..	237
4.48.	Environmental Biotechnology - T-CIWVT-106835	...	238
4.49.	Estimator and Observer Design - T-CIWVT-112828	...	239
4.50.	Excursions: Membrane Technologies - T-CIWVT-110864	240
4.52.	Extrusion Technology in Food Processing - T-CIWVT-112174	242
4.54.	Fluid Mechanics of Non-Newtonian Fluids - T-CIWVT-108874	244
4.55.	Fluidized Bed Technology - T-CIWVT-108832	..	245
4.56.	Food Chemistry Basics - T-CHEMBIO-109442	...	246
4.57.	Food Science and Functionality - T-CIWVT-108801	...	247
4.58.	Formulation of (Bio)pharmaceutical Therapeutics - T-CIWVT-108805	248
4.59.	Fuel Technology - T-CIWVT-108829	..	249
4.60.	Fully Renewable Fuel with Minimal Emission Levels for Marine Engines - T-CIWVT-112256	250
4.61.	Gas Particle Measurement Technology - T-CIWVT-108892	251
4.62.	Gas Particle Separation Processes - T-CIWVT-108895	...	252
4.63.	Heat Exchangers - T-CIWVT-108937	..	253
5. Study and examination regulations ... 353
6. Amendment of the study and examination regulations .. 370
1 General Information

<table>
<thead>
<tr>
<th>Field of study</th>
<th>Chemical and Process Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Academic degree</td>
<td>Master of Science (M.Sc.)</td>
</tr>
<tr>
<td>Exam regulations</td>
<td>Version 2016</td>
</tr>
<tr>
<td>Regular term</td>
<td>4 Semester</td>
</tr>
<tr>
<td>Credit points</td>
<td>120</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Grade scale</td>
<td>Tenth grades</td>
</tr>
<tr>
<td>Calculation scheme</td>
<td>Weighted average by credits</td>
</tr>
</tbody>
</table>

1.1 Qualification Profile Master Chemical and Process Engineering

The Master’s program Chemical and Process Engineering provides extensive detailed knowledge in theory and practice in engineering, mathematics and natural sciences with a focus on chemical process engineering, product design and plant engineering. The Master’s degree qualifies graduates to work scientifically and act responsibly within their professional activity and in the society. Chemical engineers make a crucial contribution to the development of technically feasible approaches on the way to a climate-neutral society by closing material cycles to a great extent.

Based on the Bachelor’s program, the compulsory program in the first year focuses on advanced methodical and qualified fundamental knowledge of mathematics, natural sciences and engineering. This knowledge is further advanced within two specialized courses elected by the students. In the scope of the Master’s thesis, students prove their ability to work on a problem within their field of expertise independently and in a defined time frame. They also prove their ability to use scientific methods that correspond to the current state of research and to put down their results in a scientific monograph. In addition, an internship provides insight into the fields of activity of an engineer.

Graduates are qualified to analyze and solve problems using scientific methods and to abstract and formulate complex problems. They are also able to develop new methods, processes and products. Graduates are qualified to combine knowledge from various professional areas and to familiarize themselves systematically with new tasks. They can reflect non-technical impacts of engineering activities and consider those impacts by acting responsibly. Graduates are qualified to analyze and solve problems using scientific methods and to abstract and formulate complex problems. They are also able to develop new methods, processes and products. Graduates are qualified to combine knowledge from various professional areas and to familiarize themselves systematically with new tasks. They can reflect non-technical impacts of engineering activities and consider those impacts by acting responsibly.
1.2 Contact

Dean of students Prof. Dr.-Ing. Achim Dittler
Study affairs/ study counseling Dr.-Ing. Barbara Freudig
Master Examination Board Prof. Dr. Reinhard Rauch
Examination office Marion Gärtner

Current information on degree programs and dates for information sessions can be found on the faculty web pages.

http://www.ciw.kit.edu/english/studium.php

1.3 Exam Regulations

The legal basis for the study program and the examinations is the „Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik“ dated 03 May 2016, amended on 24 February 2020. All references to the SPO in this module manual refer to the above-mentioned SPO.

The statute of 03 May 2016 as well as the amending statute can be found in the appendix of this module manual.
1.4 English Courses

Advanced Fundamentals
- Bioprocess Development 6 CP SS
- Membrane Technologies in Water Treatment 6 CP SS

Specialized Course Water Technology (Wassertechnologie)
- Water Technology 6 CP WS
- Process Engineering in Wastewater Treatment 6 CP WS
- Practical Course in Water Technology 4 CP WS
- Microbiology for Engineers 4 CP SS
- Biofilm Systems 4 CP SS
- Instrumental Analytics 4 CP SS
- Industrial Wastewater Treatment 4 CP SS

Specialized Course Technical Thermodynamics (Technische Thermodynamik)
- Physical Foundations of Cryogenics 6 CP SS
- Cryogenic Engineering 6 CP WS

Specialized Course Entrepreneurship in Process Engineering
- Innovative Concepts for Formulation and Processing of Printable Materials 6 CP SS
- Extrusion Technology in Food Processing 6 CP WS

Specialized Course Energy and Combustion Technology
- Applied Combustion Technology 4 CP SS
- Laboratory Work in Combustion Technology 4 CP SS
- Energy from Biomass 6 CP WS
- Liquid Transportation Fuels 6 CP WS
- Design of a Jet Engine Combustion Chamber 6 CP WS

Specialized Course Automation and Process Systems Engineering
- Nonlinear Process Control 6 CP WS
- Principles of Constrained Static Optimization 4 CP WS
- Optimal and Model Predictive Control 6 CP SS
- Data-Based Modeling and Control 6 CP WS
- Estimator and Observer Design 6 CP WS
- Advanced Methods in Nonlinear Control (ab SS 24) 4 CP SS
- Computer-Assisted Modeling and Control (ab SS 24) 4 CP SS

Technical Supplement Course
- Optimal and Model Predictive Control 6 CP SS
- Additive Manufacturing for Process Engineering 6 CP SS
- Digital Design in Process Engineering 6 CP WS
- Power-to-X – Key Technology for the Energy Transition 6 CP SS
- Electrocatalysis 6 CP SS
- Environmental Biotechnology 4 CP WS

Bachelor Courses
- International Concepts in Water Treatment 5 CP WS
- Catalysts for the Energy Transition 5 LP SS
1.5 New in summer term 2023

1.5.1 New courses in the summer term 2023

New Specialized Subject:
- Automation and Process Systems Engineering

New Modules:
- Bioprocess Development
 Prof. Dr.-Ing. Alexander Grünberger, 4 SWS/ 6 LP
- Air Pollution Control - Laws, Technology and Application
 Prof. Dr.-Ing. Achim Dittler, 2 SWS/ 4 LP
- Optimal and Model Predictive Control
 Prof. Dr.-Ing. Thomas Meurer, 3 SWS/ 6 LP
- Control of Distributed Parameter Systems
 Prof. Dr.-Ing. Thomas Meurer, 3 SWS/ 6 LP

1.5.2 New Courses from winter term 22/23

New Specialized Subject:
- Entrepreneurship in Process Engineering

New Modules:
- Innovative concepts for formulation and processing of printable materials
 Prof. Dr. N. Willenbacher, 2 SWS/ 4 CP
- Students Innovation Lab
 Prof. Dr. N. Willenbacher, Vorlesung + Projekt/ 9 CP
- Extrusion Technology in Food Processing
 PD Dr.-Ing. Azad Emin, 2 SWS/ 4 CP
- Batteries and Fuel Cells
 Prof. Dr.-Ing. U. Krewer, 3 SWS/ 5 CP
- Process Analysis: Modeling, Data Mining, Machine Learning
 Prof. Dr.-Ing. Michael Heizmann/ Dr.- Ing. Christian Borcher, 2 SWS/ 4 CP
- Modeling Wastewater Treatment Processes
 Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad, 3 SWS/ 6 CP

1.5.3 Expiring modules

- Applied Molecular Thermodynamics
- Bioelectrochemistry and Biosensors
- Biomimetic Interfaces and Bioconjugation
- Fundamentals of Motoric Exhaust Aftertreatment
- Energy and Environment
- High Temperature Process Engineering
- Optimization and Optimal Control
- Technical Systems for Thermal Waste Treatment
- Thermodynamics of Phase Equilibria
- Thermo- and Particle Dynamics of Particular Systems
- Supercritical Fluid Technology
- Economic Evaluation of Capital Projects.
1.6 Subject and module overview

<table>
<thead>
<tr>
<th>Subject</th>
<th>Module</th>
<th>Courses</th>
<th>Responsible</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Fundamentals</td>
<td>Mandatory: Process Technology</td>
<td>Lecture/ Exercise</td>
<td>Kolb</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praktikum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective: 4 Modules/ 24 Credits from:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Chemistry</td>
<td>Lecture</td>
<td>Meier/ Kubar</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kinetics und Catalysis</td>
<td>Lecture/ Exercise</td>
<td>N. N.r</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Particle Technology</td>
<td>Lecture/ Exercise</td>
<td>Dittler</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Computational Fluid Dynamics</td>
<td>Lecture/ Exercise</td>
<td>Nirschl</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Thermodynamics III</td>
<td>Lecture/ Exercise</td>
<td>Enders</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Thermal Transport Processes</td>
<td>Lecture/ Exercise</td>
<td>Kind</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Selected Formulation</td>
<td>Lecture/ Exercise</td>
<td>Karbstein</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternatively:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 1 elective module from the Advanced Fundamentals of the Master’s program Bioengineering.</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Study plan: Approval of the examination board required prior to registration for examinations in specialized courses and modules in the technical supplement courses!

<table>
<thead>
<tr>
<th>Course</th>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Course I</td>
<td>3 elective modules</td>
<td>16</td>
</tr>
<tr>
<td>Specialized Course II</td>
<td>3 elective modules</td>
<td>16</td>
</tr>
<tr>
<td>Technical Supplement Course</td>
<td>2 – 3 elective modules</td>
<td>10</td>
</tr>
<tr>
<td>Soft Skills</td>
<td>e. g. offers oft he House of Competence</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>internship</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Master thesis</td>
<td>30</td>
</tr>
</tbody>
</table>
The study program can be started in the summer semester as well as in the winter semester. In the first two semesters it is recommended to complete the modules of the subjects Advanced Fundamentals, Technical Supplement Course and Soft Skill Qualifications as well as to attend lectures in the Specialized Courses. The first half of the third semester is then used to prepare for the specialization examinations, some of which are offered as block examinations (all modules of a specialized course in one common date). Following the specialization examinations, the internship can be completed. The master’s thesis is written in the fourth semester.

Start in summer semester

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>October</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>PAT Teil II 3 LP</td>
<td>PAT Teil I 5 LP</td>
<td>Pr K</td>
<td>Pr K</td>
</tr>
<tr>
<td>WP I 6 LP K</td>
<td>WP I 6 LP K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>WP II 6 LP K</td>
<td>WP II 6 LP K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 6 LP M</td>
<td>TE I 4 LP M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF I 4 LP</td>
<td>VF I 4 LP</td>
<td>P 8 LP</td>
<td>P 8 LP</td>
</tr>
<tr>
<td>VF II 4 LP</td>
<td>VF II 4 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÜQ 2 LP S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 LP</td>
<td>29 LP</td>
<td>30 LP</td>
<td>30 LP</td>
</tr>
<tr>
<td>Prüfungen benotet: 4</td>
<td>Prüfungen benotet: 3</td>
<td>Prüfungen benotet: 6</td>
<td></td>
</tr>
<tr>
<td>Prüfungen unbenotet: 1</td>
<td>Praktikum unbenotet: 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAT: Prozess und Anlagentechnik (Erweiterte Grundlagen) K: Klausur
WP: Wahlpflicht (Erweiterte Grundlagen) M: Mündliche Prüfung
TE: Technisches Ergänzungsfach S: Studienleistung
ÜQ: Überfachliche Qualifikationen Pr: Praktikum
VF: Vertiefungsfach P: Vorbereitung und Abschlussprüfung Vertiefungsfach

Start in winter semester

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>October</td>
<td>April</td>
<td>October</td>
</tr>
<tr>
<td>PAT Teil II 3 LP</td>
<td>PAT Teil I 5 LP</td>
<td>Pr K</td>
<td>Pr K</td>
</tr>
<tr>
<td>WP I 6 LP K</td>
<td>WP I 6 LP K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>WP II 6 LP K</td>
<td>WP II 6 LP K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 6 LP M</td>
<td>TE I 4 LP M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF I 4 LP</td>
<td>VF I 4 LP</td>
<td>P 8 LP</td>
<td>P 8 LP</td>
</tr>
<tr>
<td>VF II 4 LP</td>
<td>VF II 4 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÜQ 2 LP S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 LP</td>
<td>29 LP</td>
<td>30 LP</td>
<td>30 LP</td>
</tr>
<tr>
<td>Prüfungen: 4</td>
<td>Prüfungen: 4</td>
<td>Prüfungen: 6</td>
<td></td>
</tr>
</tbody>
</table>

PAT: Prozess und Anlagentechnik (Erweiterte Grundlagen) K: Klausur
WP: Wahlpflicht (Erweiterte Grundlagen) M: Mündliche Prüfung
TE: Technisches Ergänzungsfach S: Studienleistung
ÜQ: Überfachliche Qualifikationen Pr: Praktikum
VF: Vertiefungsfach P: Vorbereitung und Abschlussprüfung Vertiefungsfach
1.8 Organizational

1.8.1 Recognition of achievements according to § 19 SPO

A request for recognition of services which

- At another university
- Abroad
- Outside the higher education system
- Within the scope of the master transfer account

can be submitted to the Master Examination Board within one semester. There, if necessary after consultation with the subject representative, it will be determined whether the performance is equivalent to a performance envisaged in the curriculum of the course of study and can be recognised. Achievements completed as part of a semester abroad can also be recognized at a later date.

If you have already completed a professional internship or practical semester, you can apply for recognition directly at the Internship Office.

1.8.2 Registration for examinations in the specialized courses/ in the technical supplement course

Before registering for module examinations in Specialized Courses subjects as well as in the Technical Supplement Course, a study plan must be submitted to the Master's Examination Board (Marion Gärtner) for approval. Only then are the modules added to the study schedule and online registration in the student portal is possible. For more information, see the faculty website at https://www.ciw.kit.edu/1619.php

Subsequent changes to the study plan must also be requested from Marion Gärtner.

1.8.3 additional achievements and interdisciplinary qualification

Additional credits and interdisciplinary qualifications cannot always be registered directly in the CAS system (e.g. some modules from another faculty). In any case, you must contact Marion Gärtner before the examination.

Exception: interdisciplinary qualification at the House of Competence (HoC) or Language Centre

If the Soft Skill Qualification is taken at the HoC or Language Centre, then no certificate of approval is required for an examination achievement, as the achievements are automatically posted in the CAS system under "unallocated credits".

If you want to credit a performance that is listed under "unallocated credits", you have submit a form to the Masters Examination Board.

For forms, please refer to the website of the KIT Faculty of Chemical and Process Engineering https://www.ciw.kit.edu/1619.php
2 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's Thesis</td>
<td>30 CR</td>
</tr>
<tr>
<td>Advanced Fundamentals</td>
<td>32 CR</td>
</tr>
<tr>
<td>Technical Supplement Course</td>
<td>10 CR</td>
</tr>
<tr>
<td>Specialized Course I</td>
<td>16 CR</td>
</tr>
<tr>
<td>Internship</td>
<td>14 CR</td>
</tr>
</tbody>
</table>

2.1 Master's Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104526 Module Master's Thesis</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

2.2 Advanced Fundamentals

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104374 Process Technology</td>
<td>8 CR</td>
</tr>
<tr>
<td>CIW (Election: at least 3 items)</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-103058 Thermodynamics III</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103064 Selected Formulation Technologies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103072 Computational Fluid Dynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104377 Thermal Transport Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104378 Particle Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-104486 Physical Chemistry (incl. Lab)</td>
<td>6 CR</td>
</tr>
<tr>
<td>BW (Election: at most 1 item)</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-103065 Biopharmaceutical Purification Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104384 Biotechnological Production</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105380 Membrane Technologies in Water Treatment</td>
<td>6 CR</td>
</tr>
<tr>
<td>First usage possible from 4/1/2021.</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-106297 Bioprocess Development</td>
<td>6 CR</td>
</tr>
<tr>
<td>First usage possible from 4/1/2023.</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Technical Supplement Course

Credits

Election regulations
Elections in this field require confirmation.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103051</td>
<td>Heat Transfer II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-103058</td>
<td>Thermodynamics III</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103059</td>
<td>Statistical Thermodynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103063</td>
<td>Thermodynamics of Interfaces</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-103064</td>
<td>Selected Formulation Technologies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103065</td>
<td>Biopharmaceutical Purification Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103066</td>
<td>Process Modeling in Downstream Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-103068</td>
<td>Physical Foundations of Cryogenics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103069</td>
<td>Combustion Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103072</td>
<td>Computational Fluid Dynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103073</td>
<td>Processing of Nanostructured Particles</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103075</td>
<td>High Temperature Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103407</td>
<td>Water Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103441</td>
<td>Biofilm Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104255</td>
<td>Nutritional Consequences of Food Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104263</td>
<td>Food Science and Functionality</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104266</td>
<td>Formulation of (Bio)pharmaceutical Therapeutics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104268</td>
<td>Bioelectrochemistry and Biosensors</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104272</td>
<td>Biomimetic Interfaces and Bioconjugation</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104273</td>
<td>Commercial Biotechnology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104274</td>
<td>Industrial Genetics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104277</td>
<td>Multiphase Reaction Engineering</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-CIWVT-104283</td>
<td>Reaction Kinetics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104284</td>
<td>Sol-Gel-Processes (Including Practical Course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104286</td>
<td>Design of Micro Reactors</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104287</td>
<td>Catalytic Processes in Gas Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104288</td>
<td>Biomass Based Energy Carriers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104289</td>
<td>Fuel Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104290</td>
<td>Technical Systems for Thermal Waste Treatment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104291</td>
<td>Refinery Technology - Liquid Fuels</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104292</td>
<td>Fluidized Bed Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104293</td>
<td>Energy Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104294</td>
<td>Flow and Combustion Instabilities in Technical Burner Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104295</td>
<td>Combustion and Environment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104296</td>
<td>Hydrogen and Fuel Cell Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104297</td>
<td>Measurement Techniques in the Thermo-Fluid Dynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104299</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104301</td>
<td>Water Quality Assessment</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104302</td>
<td>Structure and Reaction of Aquatic Humic Substances</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-104319</td>
<td>Microbiology for Engineers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104320</td>
<td>Environmental Biotechnology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104321</td>
<td>Practical Course Combustion Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104322</td>
<td>Fluid Mechanics of Non Newtonian Fluids</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104326</td>
<td>Rheology and Rheometry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104327</td>
<td>Dimensional Analysis of Fluid Mechanic Problems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104328</td>
<td>Continuum Mechanics and Fluid Mechanics of Non Newtonian Fluids</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104329</td>
<td>Rheology of Polymers</td>
<td>4 CR</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>M-CIWVT-104330</td>
<td>Stability of Disperse Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104331</td>
<td>Rheology of Complex Fluids and Advanced Rheometry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104335</td>
<td>Rheology and Processing of Polymers</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104336</td>
<td>Rheology and Processing of Disperse Systems</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104337</td>
<td>Gas Particle Measurement Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104339</td>
<td>Nanoparticles – Structure and Function</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104340</td>
<td>Gas Particle Separation Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104342</td>
<td>Solid Liquid Separation</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104345</td>
<td>Data Analysis and Statistics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104347</td>
<td>Bioprocess Development</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104350</td>
<td>Microfluidics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104351</td>
<td>Process Instruments and Machinery and their Process Integration</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104352</td>
<td>Process and Plant Safety</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104353</td>
<td>Materials and Processes for Electrochemical Storage</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104354</td>
<td>Refrigeration B - Foundations of Industrial Gas Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104355</td>
<td>Cryogenic Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104356</td>
<td>Thermodynamics of Phase Equilibria</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104357</td>
<td>Applied Molecular Thermodynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104358</td>
<td>Supercritical Fluid Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104359</td>
<td>Industrial Crystallization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104360</td>
<td>Thermal Separation Processes II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104361</td>
<td>Mass Transfer II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104362</td>
<td>Drying Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104363</td>
<td>Heat Exchangers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104364</td>
<td>Process Technology</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104365</td>
<td>Thermal Transport Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104366</td>
<td>Particle Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104367</td>
<td>Biotechnological Production</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104368</td>
<td>Development of an Innovative Food Product</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104369</td>
<td>Rheology of Disperse Systems</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-104370</td>
<td>Microrheology and High Frequency Rheology</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-104371</td>
<td>Product Design II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104372</td>
<td>Innovation Management for Products & Processes in the Chemical Industry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104373</td>
<td>NMR for Engineers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104374</td>
<td>Unit Operations and Process Chains for Food of Plant Origin</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-104375</td>
<td>Unit Operations and Process Chains for Food of Animal Origin</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-104376</td>
<td>Processes and Process Chains for Renewable Resources</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104377</td>
<td>Measurement Techniques in Chemical Processing (including practical course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104378</td>
<td>Catalytic Micro Reactors</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104379</td>
<td>Surface Effects in Process Engineering</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104380</td>
<td>Energy and Environment</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104381</td>
<td>Chem-Plant</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100489</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100490</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100491</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine III</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100492</td>
<td>Product Development – Methods of Product Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-104486</td>
<td>Physical Chemistry (incl. Lab)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104478</td>
<td>Vacuum Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>M-CIWVT-104489</td>
<td>Sol-Gel Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104490</td>
<td>Measurement Techniques in Chemical Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104491</td>
<td>Catalytic Micro Reactors (including practical course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104560</td>
<td>Instrumental Analytics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104570</td>
<td>Biobased Plastics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MATH-102932</td>
<td>Numerical Methods in Fluid Mechanics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MATH-102938</td>
<td>Project Centered Software-Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102702</td>
<td>Organ Support Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102720</td>
<td>Principles of Medicine for Engineers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-104620</td>
<td>Food Chemistry Basics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104866</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-BGU-104917</td>
<td>Wastewater Treatment Technologies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103440</td>
<td>Practical Course in Water Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104399</td>
<td>Biotechnology in Bioeconomy</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104973</td>
<td>Digitization in Particle Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105200</td>
<td>Liquid Transportation Fuels</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105205</td>
<td>Microfluidics and Case Studies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105295</td>
<td>Biotechnological Use of Renewable Resources</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105380</td>
<td>Membrane Technologies in Water Treatment</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105399</td>
<td>Mixing, Stirring, Agglomeration</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105407</td>
<td>Additive Manufacturing for Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105663</td>
<td>Membrane Reactors</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MATH-103276</td>
<td>Seminar</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-CIWVT-105782</td>
<td>Digital Design in Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105890</td>
<td>NMR Methods for Product and Process Analysis</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105891</td>
<td>Power-to-X – Key Technology for the Energy Transition</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105903</td>
<td>Industrial Wastewater Treatment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-105883</td>
<td>Electrocatalysis</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-105932</td>
<td>Seminar of Food Processing in Practice</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-105933</td>
<td>Introduction to Sensory Analysis</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-ETIT-100532</td>
<td>Batteries and Fuel Cells</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-105993</td>
<td>Innovative Concepts for Formulation and Processing of Printable Materials</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105996</td>
<td>Extrusion Technology in Food Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-ETIT-105594</td>
<td>Process Analysis: Modeling, Data Mining, Machine Learning</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-BGU-106113</td>
<td>Modeling Wastewater Treatment Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106297</td>
<td>Bioprocess Development</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106314</td>
<td>Air Pollution Control - Laws, Technology and Application</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-106313</td>
<td>Principles of Constrained Static Optimization</td>
<td>4 CR</td>
</tr>
<tr>
<td>Module Code</td>
<td>Course Title</td>
<td>First Usage Possible</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>M-CIWVT-106316</td>
<td>Nonlinear Process Control</td>
<td>10/1/2023</td>
</tr>
<tr>
<td>M-CIWVT-106317</td>
<td>Optimal and Model Predictive Control</td>
<td>4/1/2023</td>
</tr>
<tr>
<td>M-CIWVT-106318</td>
<td>Control of Distributed Parameter Systems</td>
<td>4/1/2023</td>
</tr>
<tr>
<td>M-CIWVT-106319</td>
<td>Data-Based Modeling and Control</td>
<td>10/1/2023</td>
</tr>
<tr>
<td>M-CIWVT-106320</td>
<td>Estimator and Observer Design</td>
<td>10/1/2023</td>
</tr>
<tr>
<td>M-CIWVT-106321</td>
<td>Process Analysis: Modeling, Data Mining, Machine Learning</td>
<td>10/1/2023</td>
</tr>
<tr>
<td>M-CIWVT-106358</td>
<td>Complex Phase Equilibria</td>
<td>10/1/2023</td>
</tr>
</tbody>
</table>
2.4 Specialized Course I

<table>
<thead>
<tr>
<th>Specialized Course I (Election: 1 item)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Rheology</td>
<td>16 CR</td>
</tr>
<tr>
<td>Automation and Process Systems Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Biopharmaceutical Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Fuel Technology</td>
<td>16 CR</td>
</tr>
<tr>
<td>Chemical Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Energy Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Energy and Combustion Technology</td>
<td>16 CR</td>
</tr>
<tr>
<td>Entrepreneurship in Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Gas Particle Systems</td>
<td>16 CR</td>
</tr>
<tr>
<td>Food Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Product Design</td>
<td>16 CR</td>
</tr>
<tr>
<td>Bioresource Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Mechanical Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Thermal Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Technical Thermodynamics</td>
<td>16 CR</td>
</tr>
<tr>
<td>Technical Biology</td>
<td>16 CR</td>
</tr>
<tr>
<td>Environmental Process Engineering</td>
<td>16 CR</td>
</tr>
<tr>
<td>Combustion Technology</td>
<td>16 CR</td>
</tr>
<tr>
<td>Water Technology</td>
<td>16 CR</td>
</tr>
</tbody>
</table>

2.4.1 Applied Rheology

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Applied Rheology (Election: at least 16 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104322 Fluid Mechanics of Non Newtonian Fluids</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104326 Rheology and Rheometry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104327 Dimensional Analysis of Fluid Mechanic Problems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104328 Continuum Mechanics and Fluid Mechanics of Non Newtonian Fluids</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104329 Rheology of Polymers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104330 Stability of Disperse Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104331 Rheology of Complex Fluids and Advanced Rheometry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104335 Rheology and Processing of Polymers</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104336 Rheology and Processing of Disperse Systems</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104350 Microfluidics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104370 Drying Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104886 Principles of Ceramic and Powder Metallurgy Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105205 Microfluidics and Case Studies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105399 Mixing, Stirring, Agglomeration</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105993 Innovative Concepts for Formulation and Processing of Printable Materials</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
2.4.2 Automation and Process Systems Engineering

Part of: Specialized Course I

Credits: 16

Note regarding usage
First usage possible from 4/1/2023.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-106319</td>
<td>Data-Based Modeling and Control</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106320</td>
<td>Estimator and Observer Design</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106316</td>
<td>Nonlinear Process Control</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106317</td>
<td>Optimal and Model Predictive Control</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106313</td>
<td>Principles of Constrained Static Optimization</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-106321</td>
<td>Process Analysis: Modeling, Data Mining, Machine Learning</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-106318</td>
<td>Control of Distributed Parameter Systems</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

2.4.3 Biopharmaceutical Process Engineering

Part of: Specialized Course I

Credits: 16

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103066</td>
<td>Process Modeling in Downstream Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104266</td>
<td>Formulation of (Bio)pharmaceutical Therapeutics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104268</td>
<td>Bioelectrochemistry and Biosensors</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104272</td>
<td>Biomimetic Interfaces and Bioconjugation</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104273</td>
<td>Commercial Biotechnology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104347</td>
<td>Bioprocess Development</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100489</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100490</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-100491</td>
<td>BioMEMS - Microsystems Technologies for Life Sciences and Medicine III</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102702</td>
<td>Organ Support Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MACH-102720</td>
<td>Principles of Medicine for Engineers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105412</td>
<td>Industrial Aspects in Bioprocess Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105890</td>
<td>NMR Methods for Product and Process Analysis</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
Fuel Technology
Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103069</td>
<td>Combustion Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103075</td>
<td>High Temperature Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104287</td>
<td>Catalytic Processes in Gas Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104288</td>
<td>Biomass Based Energy Carriers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104289</td>
<td>Fuel Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104290</td>
<td>Technical Systems for Thermal Waste Treatment</td>
<td>4 CR</td>
</tr>
<tr>
<td></td>
<td>First usage possible until 9/30/2023.</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-104291</td>
<td>Refinery Technology - Liquid Fuels</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104292</td>
<td>Fluidized Bed Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104352</td>
<td>Process and Plant Safety</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104296</td>
<td>Hydrogen and Fuel Cell Technologies</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Chemical Process Engineering
Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104277</td>
<td>Multiphase Reaction Engineering</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-CIWVT-104283</td>
<td>Reaction Kinetics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104284</td>
<td>Sol-Gel-Processes (Including Practical Course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104286</td>
<td>Design of Micro Reactors</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104450</td>
<td>Measurement Techniques in Chemical Processing (including practical course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104451</td>
<td>Catalytic Micro Reactors</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104489</td>
<td>Sol-Gel Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104490</td>
<td>Measurement Techniques in Chemical Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104491</td>
<td>Catalytic Micro Reactors (including practical course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105663</td>
<td>Membrane Reactors</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Energy Process Engineering
Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103069</td>
<td>Combustion Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103075</td>
<td>High Temperature Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104288</td>
<td>Biomass Based Energy Carriers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104289</td>
<td>Fuel Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104292</td>
<td>Fluidized Bed Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104293</td>
<td>Energy Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104295</td>
<td>Combustion and Environment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104296</td>
<td>Hydrogen and Fuel Cell Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104297</td>
<td>Measurement Techniques in the Thermo-Fluid Dynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105206</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

 First usage possible from 10/1/2019.
2.4.7 Energy and Combustion Technology

Part of: Specialized Course I
Credits: 16

Note regarding usage
First usage possible from 10/1/2019.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104290</td>
<td>Technical Systems for Thermal Waste Treatment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104321</td>
<td>Practical Course Combustion Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105201</td>
<td>Applied Combustion Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105206</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105207</td>
<td>Energy from Biomass</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105200</td>
<td>Liquid Transportation Fuels</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

2.4.8 Entrepreneurship in Process Engineering

Part of: Specialized Course I
Credits: 16

Note regarding usage
First usage possible from 10/1/2022.

Election regulations
Elections in this field require confirmation.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104255</td>
<td>Nutritional Consequences of Food Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105200</td>
<td>Liquid Transportation Fuels</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105993</td>
<td>Innovative Concepts for Formulation and Processing of Printable Materials</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105996</td>
<td>Extrusion Technology in Food Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104330</td>
<td>Stability of Disperse Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-106017</td>
<td>Students Innovation Lab</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

2.4.9 Gas Particle Systems

Part of: Specialized Course I
Credits: 16

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104292</td>
<td>Fluidized Bed Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104327</td>
<td>Dimensional Analysis of Fluid Mechanic Problems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104337</td>
<td>Gas Particle Measurement Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104339</td>
<td>Nanoparticles – Structure and Function</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104340</td>
<td>Gas Particle Separation Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104345</td>
<td>Data Analysis and Statistics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104973</td>
<td>Digitization in Particle Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-106314</td>
<td>Air Pollution Control - Laws, Technology and Application</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
2.4.10 Food Process Engineering

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103407</td>
<td>Water Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104255</td>
<td>Nutritional Consequences of Food Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104263</td>
<td>Food Science and Functionality</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104319</td>
<td>Microbiology for Engineers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104370</td>
<td>Drying Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104420</td>
<td>Unit Operations and Process Chains for Food of Plant Origin</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-104421</td>
<td>Unit Operations and Process Chains for Food of Animal Origin</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-104620</td>
<td>Food Chemistry Basics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105380</td>
<td>Membrane Technologies in Water Treatment</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105399</td>
<td>Mixing, Stirring, Agglomeration</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105932</td>
<td>Seminar of Food Processing in Practice</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-105933</td>
<td>Introduction to Sensory Analysis</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-105996</td>
<td>Extrusion Technology in Food Processing</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

First usage possible from 4/1/2020.

2.4.11 Product Design

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104284</td>
<td>Sol-Gel-Processes (Including Practical Course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104326</td>
<td>Rheology and Rheometry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104329</td>
<td>Rheology of Polymers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104330</td>
<td>Stability of Disperse Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104339</td>
<td>Nanoparticles – Structure and Function</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104364</td>
<td>Industrial Crystallization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104420</td>
<td>Unit Operations and Process Chains for Food of Plant Origin</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-104421</td>
<td>Unit Operations and Process Chains for Animal Origin</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-104489</td>
<td>Sol-Gel Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104396</td>
<td>Product Design II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104886</td>
<td>Principles of Ceramic and Powder Metallurgy Processing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105399</td>
<td>Mixing, Stirring, Agglomeration</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103064</td>
<td>Selected Formulation Technologies</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

First usage possible from 4/1/2020.

First usage possible from 10/1/2022.
2.4.12 Bioresource Engineering

Part of: Specialized Course I

Credits: 16

<table>
<thead>
<tr>
<th>Bioresource Engineering (Election: at least 16 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104273 Commercial Biotechnology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104288 Biomass Based Energy Carriers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104397 Innovation Management for Products & Processes in the Chemical Industry</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104420 Unit Operations and Process Chains for Food of Plant Origin</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-CIWVT-104421 Unit Operations and Process Chains for Food of Animal Origin</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-CIWVT-104422 Processes and Process Chains for Renewable Resources</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104570 Biobased Plastics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-103441 Biofilm Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104399 Biotechnology in Bioeconomy</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CHEMBIO-104620 Food Chemistry Basics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104266 Formulation of (Bio)pharmaceutical Therapeutics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104342 Solid Liquid Separation</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-105380 Membrane Technologies in Water Treatment</td>
<td>6 CR</td>
</tr>
<tr>
<td>First usage possible from 4/1/2020.</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-105399 Mixing, Stirring, Agglomeration</td>
<td>6 CR</td>
</tr>
<tr>
<td>First usage possible from 4/1/2020.</td>
<td></td>
</tr>
<tr>
<td>M-CIWVT-103064 Selected Formulation Technologies</td>
<td>6 CR</td>
</tr>
<tr>
<td>First usage possible from 10/1/2022.</td>
<td></td>
</tr>
</tbody>
</table>
2.4.13 Mechanical Process Engineering

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Processes for Particle Engineering (Election: at least 16 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103073 Processing of Nanostructured Particles</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104284 Sol-Gel-Processes (Including Practical Course)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104327 Dimensional Analysis of Fluid Mechanic Problems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104339 Nanoparticles – Structure and Function</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104340 Gas Particle Separation Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104342 Solid Liquid Separation</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-104345 Data Analysis and Statistics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104347 Bioprocess Development</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104350 Microfluidics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104351 Process Instruments and Machinery and their Process Integration</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104353 Materials and Processes for Electrochemical Storage</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104401 NMR for Engineers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105890 NMR Methods for Product and Process Analysis</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MATH-102932 Numerical Methods in Fluid Mechanics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-MATH-102938 Project Centered Software-Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104560 Instrumental Analytics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104489 Sol-Gel Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104337 Gas Particle Measurement Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104973 Digitization in Particle Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105205 Microfluidics and Case Studies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105399 Mixing, Stirring, Agglomeration</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MATH-103276 Seminar</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-CIWVT-103064 Selected Formulation Technologies</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-106314 Air Pollution Control - Laws, Technology and Application</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

2.4.14 Thermal Process Engineering

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Thermal Process Engineering (Election: at least 16 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103051 Heat Transfer II</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-103059 Statistical Thermodynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103075 High Temperature Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104297 Measurement Techniques in the Thermo-Fluid Dynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104354 Refrigeration B - Foundations of Industrial Gas Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104360 Thermodynamics of Phase Equilibria</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104361 Applied Molecular Thermodynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104364 Industrial Crystallization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104365 Thermal Separation Processes II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104369 Mass Transfer II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104370 Drying Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104371 Heat Exchangers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104352 Process and Plant Safety</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
2.4.15 Technical Thermodynamics

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Name</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Technical Thermodynamics (Election: at least 16 credits)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Statistical Thermodynamics</td>
<td>M-CIWVT-103059</td>
</tr>
<tr>
<td>4</td>
<td>Thermodynamics of Interfaces</td>
<td>M-CIWVT-103063</td>
</tr>
<tr>
<td>6</td>
<td>Physical Foundations of Cryogenics</td>
<td>M-CIWVT-103068</td>
</tr>
<tr>
<td>6</td>
<td>Sol-Gel-Processes (Including Practical Course)</td>
<td>M-CIWVT-104284</td>
</tr>
<tr>
<td>6</td>
<td>Refrigeration B - Foundations of Industrial Gas Processing</td>
<td>M-CIWVT-104354</td>
</tr>
<tr>
<td>6</td>
<td>Cryogenic Engineering</td>
<td>M-CIWVT-104356</td>
</tr>
<tr>
<td>6</td>
<td>Thermodynamics of Phase Equilibria</td>
<td>M-CIWVT-104361</td>
</tr>
<tr>
<td>6</td>
<td>Applied Molecular Thermodynamics</td>
<td>M-CIWVT-104362</td>
</tr>
<tr>
<td>6</td>
<td>Supercritical Fluid Technology</td>
<td>M-CIWVT-104365</td>
</tr>
<tr>
<td>6</td>
<td>Thermal Separation Processes II</td>
<td>M-CIWVT-104478</td>
</tr>
<tr>
<td>6</td>
<td>Vacuum Technology</td>
<td>M-CIWVT-104489</td>
</tr>
<tr>
<td>6</td>
<td>Sol-Gel Processes</td>
<td>M-CIWVT-104461</td>
</tr>
<tr>
<td>6</td>
<td>Measurement Techniques in the Thermo-Fluid Dynamics</td>
<td>M-CIWVT-104283</td>
</tr>
<tr>
<td>6</td>
<td>Complex Phase Equilibria</td>
<td>M-CIWVT-104297</td>
</tr>
</tbody>
</table>

2.4.16 Technical Biology

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Name</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Technical Biology (Election: at least 16 credits)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Biofilm Systems</td>
<td>M-CIWVT-103441</td>
</tr>
<tr>
<td>4</td>
<td>Bioelectrochemistry and Biosensors</td>
<td>M-CIWVT-104268</td>
</tr>
<tr>
<td>4</td>
<td>Commercial Biotechnology</td>
<td>M-CIWVT-104273</td>
</tr>
<tr>
<td>6</td>
<td>Industrial Genetics</td>
<td>M-CIWVT-104274</td>
</tr>
<tr>
<td>6</td>
<td>Biomass Based Energy Carriers</td>
<td>M-CIWVT-104288</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Biotechnology</td>
<td>M-CIWVT-104320</td>
</tr>
<tr>
<td>6</td>
<td>Thermodynamics of Phase Equilibria</td>
<td>M-CIWVT-104360</td>
</tr>
<tr>
<td>6</td>
<td>Supercritical Fluid Technology</td>
<td>M-CIWVT-104362</td>
</tr>
<tr>
<td>6</td>
<td>Processes and Process Chains for Renewable Resources</td>
<td>M-CIWVT-104422</td>
</tr>
<tr>
<td>6</td>
<td>Biobased Plastics</td>
<td>M-CIWVT-104570</td>
</tr>
<tr>
<td>4</td>
<td>Bioprocess Development</td>
<td>M-CIWVT-104347</td>
</tr>
<tr>
<td>6</td>
<td>Biotechnology in Bioeconomy</td>
<td>M-CIWVT-104399</td>
</tr>
</tbody>
</table>
2.4.17 Environmental Process Engineering

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103407</td>
<td>Water Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104289</td>
<td>Fuel Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104340</td>
<td>Gas Particle Separation Processes</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104352</td>
<td>Process and Plant Safety</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104453</td>
<td>Energy and Environment</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-CIWVT-105200</td>
<td>Liquid Transportation Fuels</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105903</td>
<td>Industrial Wastewater Treatment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-106314</td>
<td>Air Pollution Control - Laws, Technology and Application</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104295</td>
<td>Combustion and Environment</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

2.4.18 Combustion Technology

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103069</td>
<td>Combustion Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103075</td>
<td>High Temperature Process Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104288</td>
<td>Biomass Based Energy Carriers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104289</td>
<td>Fuel Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104290</td>
<td>Technical Systems for Thermal Waste Treatment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104293</td>
<td>Energy Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104294</td>
<td>Flow and Combustion Instabilities in Technical Burner Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104295</td>
<td>Combustion and Environment</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104296</td>
<td>Hydrogen and Fuel Cell Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104297</td>
<td>Measurement Techniques in the Thermo-Fluid Dynamics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105206</td>
<td>Design of a Jet Engine Combustion Chamber</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104321</td>
<td>Practical Course Combustion Technology</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
2.4.19 Water Technology

Part of: Specialized Course I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-103407</td>
<td>Water Technology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-103441</td>
<td>Biofilm Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104301</td>
<td>Water Quality Assessment</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-104302</td>
<td>Structure and Reaction of Aquatic Humic Substances</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-CIWVT-104319</td>
<td>Microbiology for Engineers</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104401</td>
<td>NMR for Engineers</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105890</td>
<td>NMR Methods for Product and Process Analysis</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-103440</td>
<td>Practical Course in Water Technology</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-104560</td>
<td>Instrumental Analytics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-CIWVT-105380</td>
<td>Membrane Technologies in Water Treatment</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-CIWVT-105903</td>
<td>Industrial Wastewater Treatment</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

First usage possible from 4/1/2022.

Credits
16

2.5 Internship

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104527</td>
<td>Internship</td>
<td>14 CR</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-104527</td>
<td>Internship</td>
<td>14 CR</td>
</tr>
</tbody>
</table>
3 Modules

3.1 Module: Additive Manufacturing for Process Engineering [M-CIWVT-105407]

Responsible: TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage from 4/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110902</td>
<td>Additive Manufacturing for Process Engineering - Examination</td>
<td>5 CR</td>
<td>Klahn</td>
</tr>
<tr>
<td>T-CIWVT-110903</td>
<td>Practical in Additive Manufacturing for Process Engineering</td>
<td>1 CR</td>
<td>Klahn</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning control consists of:

- Practical (ungraded)
- Oral examination with a duration of about 30 minutes

Prerequisites

Competence Goal

Students are familiar with the concept of a fully digital fabrication chain using and linking together modeling and simulation, computer aided design and 3D printing. They know the most important 3D printing methods suitable for process engineering applications. Moreover, they are able to use standard tools for 3D data generation and they already own hands on practical experience with the use of a metal 3D printer for fabrication of highly precise parts with complex shape.

Content

The rationale for additive manufacturing and key aspects of this approach are explained. An overview of different methods and materials for 3D printing is given with a focus on the use of 3D printed parts or fully functional devices in chemical and process engineering. Tools for 3D data generation for additive manufacturing are introduced and design rules for selected 3D printing methods are explained. Illustrative examples for 3D printed components and functional devices in process engineering are presented and discussed based on literature and own research. In the practical, students will work together in small groups on a fully digital fabrication of functional parts by selective laser melting of metal powder going through a cycle of 3D data generation, 3D printing, and finishing of the printed parts.

Module grade calculation

Module grade is the grade of the oral examination.

Workload

- Lectures: 30 h
- Practical: 16 h (8 experiments)
- Homework: 90 h
- Exam Preparation: 44 h
- Total: 180 h

Literature

3.2 Module: Air Pollution Control - Laws, Technology and Application [M-CIWVT-106314]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage from 4/1/2023)
- Specialized Course I / Gas Particle Systems (Usage from 4/1/2023)
- Specialized Course I / Mechanical Process Engineering (Usage from 4/1/2023)
- Specialized Course I / Environmental Process Engineering (Usage from 4/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-112812 | Air Pollution Control - Laws, Technology and Application | 4 CR | Dittler |

Competence Certificate
Oral examination, duration approx. 20 minutes.

Prerequisites
None

Competence Goal
Students develop an understanding of the broad subject area of air pollution control. They are able to define application-oriented solutions for emission reduction and know the essential problems in the operational behavior of the respective components of the applied technologies for air pollution control / presentation of required limit values (oxidation catalyst, particulate filter, SCR catalyst, ammonia slip catalyst). The students learn to classify current issues in air pollution control objectively and to evaluate them independently.

Content
- Air pollutants - definition
- Legal framework: Legislation for emission and immission, EU, worldwide - meaning & differences
- Development of emissions and immissions, current problem areas
- Technologies for air pollution control
- Oxidation catalysts: Structure, function, design & application
- Particulate filters: structure, function & design of particulate filters, soot and ash separation; aging of systems due to ash deposits; ash removal
- DeNOx systems - exhaust gas cleaning by means of selective catalytic reduction: basic reactions; possible reducing agents; AdBlue® - specification & preparation; characterization of applied catalysts; structure, function & design of systems
- Combined exhaust gas aftertreatment systems - structure & mode of operation

Module grade calculation
The module grade is the grade of the oral exam.

Workload
- Attendance time: 30 h
- Self-study: 50 h
- Exam preparation: 40 h
3.3 Module: Applied Combustion Technology [M-CIWVT-105201]

Responsible: Dr.-Ing. Stefan Raphael Harth
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialized Course I / Energy and Combustion Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110540</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
- The students are able to describe and explain the characteristics of the different flames
- The students can apply the combustion characteristics for burner design.
- The students can test burners in order to investigate their operability and analyze the gained results.
- The students are able to evaluate burner operability with regard to the application.

Content
Basic principles of combustion; Fuels; Combustion characteristics; Structure and properties of stationary laminar and turbulent premixed and diffusion flames; Flame stability; Laws of similarity and burner scale-up; Combustion of liquid fuels; Heterogeneous combustion of solid fuels; Examples of industrial burners.

Workload
- Attendance time (Lecture): 30 h
- Homework: 20 h
- Exam Preparation: 70 h

Literature
- Joos, Technische Verbrennung
- Warnatz, U. Maas, Technische Verbrennung
- R. Turns, An Introduction to Combustion
3.4 Module: Applied Molecular Thermodynamics [M-CIWVT-104361]

Responsible: apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage until 9/30/2023)
- Specialized Course I / Thermal Process Engineering (Usage until 9/30/2023)
- Specialized Course I / Technical Thermodynamics (Usage until 9/30/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108922 | Applied Molecular Thermodynamics | 6 CR | Türk |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Annotation
The module is being phased out. Exams for students who have already attended the course will be offered until the end of September 2023.

Workload
- Attendance time (Lecture): 45 h
- Homework: 90 h
- Exam Preparation: 45 h

Literature
- Godnew, I.N.; Berechnung thermodynamischer Funktionen aus Moleküldaten; Frohn, A.; Einführung in die kinetische Gastheorie
- Hirschfelder, J.O., et al.; Molecular theory of gases and liquids
3.5 Module: Batteries and Fuel Cells [M-ETIT-100532]

Responsible: Prof. Dr.-Ing. Ulrike Krewer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Technical Supplement Course (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100983 | Batteries and Fuel Cells | 5 CR | Krewer |

Prerequisites

none
3.6 Module: Biobased Plastics [M-CIWVT-104570]

Responsible: Prof. Dr. Ralf Kindervater

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Technical Biology
Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109369</td>
<td>Biobased Plastics</td>
<td>4 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Verteilungsfach:
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).
Technisches Ergänzungsfach or a large number of students:
The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).
The grade of the oral examination is the module grade.

Prerequisites
None

Workload
120 h:
- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h
Module: Bioelectrochemistry and Biosensors [M-CIWVT-104268]

Responsible: Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage until 9/30/2023)
- Specialized Course I / Technical Biology (Usage until 9/30/2023)
- Specialized Course I / Biopharmaceutical Process Engineering (Usage until 9/30/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 CR</td>
<td>Bioelectrochemistry and Biosensors</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Content
Overview of Electrode Processes and Kinetics of Electrode Reactions; Electrochemical Methods (for the Characterization of the EC-Bio-Interface); Bioenergetics and Biological Electron Transport; Electrochemistry of Redox Enzymes; Biosensors and Sensor Applications; Biological Membranes and Membrane Mimics; Biofuel Cells; Organic Electrosynthesis and Bioelectrosynthesis; Photobioelectrochemistry and Biomimetic Photovoltaic Systems

Workload
- Attendance time (Lecture): 24 h
- Homework: 45 h
- Exam Preparation: 90 h

Literature
- Electrochemistry: Principles, Methods, and Applications
- Christopher M.A. Brett, Oxford University Press;
- Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, Philip Bartlett, John Wiley & Sons
3.8 Module: Biofilm Systems [M-CIWVT-103441]

Responsible: Dr. Andrea Hille-Reichel
Dr. Michael Wagner

Organisation: KIT Department of Chemical and Process Engineering

Part of:
Technical Supplement Course
Specialized Course I / Water Technology
Specialized Course I / Technical Biology
Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106841 | Biofilm Systems | 4 CR | Hille-Reichel, Wagner |

Competence Certificate

Oral exam, about 20 min

Prerequisites

None

Competence Goal

Students can describe the structure and function of biofilms in natural habitats as well as in technical systems. They can explain the major influencing factors and processes for the formation of biofilms. They are familiar with techniques for visualizing biofilm structures as well as with models for simulating biofilm growth. They are able to select appropriate methods for the analysis of biofilms and to evaluate the habitat conditions.

Content

Microorganisms typically organize in the form of biofilms in technical and natural aquatic systems. However, biofilms are not only accumulated microorganisms at interfaces: They are bound together by a matrix of extracellular polymeric substances (EPS). In this course, the structure and function of biofilms in different natural habitats and technical applications (biofilm reactors, biofilms in natural waters, biofouling in technical systems and biofilms for power generation in microbial fuel cells) are presented and discussed. Biofilm growth and abrasion as well as models for the simulation of these processes are introduced. Furthermore, microscopic techniques for the visualization of biofilm structures are presented.

Module grade calculation

Grade of the module is the grade of oral examination.

Workload

Attendance time: 30 h
Preparation/follow-up: 30 h
Examination + exam preparation: 60 h
3.9 Module: Biomass Based Energy Carriers [M-CIWVT-104288]

Responsible: Dr.-Ing. Siegfried Bajohr
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
- Specialized Course I / Fuel Technology
- Specialized Course I / Combustion Technology
- Specialized Course I / Technical Biology
- Specialized Course I / Energy Process Engineering
- Specialized Course I / Bioresource Engineering

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
The course mediates fundamentals and process engineering aspects of biomass conversion and conditioning processes. The students learn to understand and to evaluate processes for biomass utilization by balancing mass and energy streams. Taking into account regional and global feedstock potentials the students are enabled to choose the most efficient conversion technologies.

Content
Fundamentals on biomass and its production pathways to energy carriers like substitute natural gas (SNG), bio diesel or other fuels.
Production, properties, and characterization of biomass.
Potential and sustainability; energy demand and supply, potentials today and in the future, CO2 emissions and reduction potential.
Utilization and conversion of biogenic oils and fats.
Biochemical conversion to liquid products like alcohols; fermentation to biogas and its upgrading.
Thermochemical conversion of biomass via pyrolysis and gasification; examples for synthesis processes (FT-, CH4-, CH3OH-, DME-synthesis).

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h

Literature
3.10 Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine I [M-MACH-100489]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: Technical Supplement Course
Specialized Course I / Biopharmaceutical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100966</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (75 min)

Prerequisites
none

Competence Goal
The lecture will first address relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Introduction into various microtechnical manufacturing methods: LIGA, Micro milling, Silicon Micromachining, Laser Microstructuring, µEDM, Metal-Etching
Biomaterials, Sterilisation.
Examples of use in the life science sector: basic micro fluidic structures: micro channels, micro filters, micromixers, micropumps, microvalves, Micro and nanotiter plates, Microanalysis systems (µTAS), Lab-on-chip applications.

Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
3.11 Module: BioMEMS - Microsystems Technologies for Life Sciences and Medicine II [M-MACH-100490]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>4 CR Guber</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (75 min)

Prerequisites
None

Competence Goal
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and Microsystems in Life-Sciences und in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
- LabCD, Protein Cristallisation
- Microarrays
- Tissue Engineering
- Cell Chip Systems
- Drug Delivery Systems
- Micro reaction technology
- Microfluidic Cells for FTIR-Spectroscopy
- Microsystems Technology for Anesthesia, Intensive Care and Infusion
- Analysis Systems of Person’s Breath
- Neurobionics and Neuroprosthesis
- Nano Surgery

Workload
- Literature: 20 h
- Lessons: 21 h
- Preparation and Review: 50 h
- Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou: Fundamentals of Microfabrication

Responsible: Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: Technical Supplement Course
Specialized Course I / Biopharmaceutical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>4 CR</td>
<td>Guber</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (75 min)

Prerequisites
none

Competence Goal
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
3.13 Module: Biomimetic Interfaces and Bioconjugation [M-CIWVT-104272]

Responsible: Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage until 9/30/2023)

Specialized Course I / Biopharmaceutical Process Engineering (Usage until 9/30/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108810 | Biomimetic Interfaces and Bioconjugation | 4 CR | Wörner |

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites

None

Content

Design and Applications of biomimetic Membranes; Bioconjugation of Interfaces; Synthesis, Stabilization and Bioconjugation of Nanoparticles; Applications of biofunctionalized Nanoparticles for the Life Sciences; Nanomaterials for Theranostics;

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 24 h
- Homework: 45 h
- Exam Preparation: 90 h

Literature

- Nanotechnologies for the Life Sciences, Vol. 1: Biofunctionalization of Nanomaterials, C. Kumar, Wiley-VCH Verlag GmbH;
- Chemistry of Bioconjugates (Synthesis, Characterization, and Biomedical Applications), R. Narain, John Wiley & Sons;
3.14 Module: Biopharmaceutical Purification Processes [M-CIWVT-103065]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Advanced Fundamentals (BIW)

Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106029</td>
<td>Biopharmaceutical Purification Processes</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites

None

Competence Goal

Process development of biopharmaceutical processes

Content

Detailed discussion of biopharmaceutical purification processes

Workload

- Attendance time (Lecture): 60 h
- Homework: 90 h
- Exam Preparation: 30 h

Learning type

- 22705 - Biopharmazeutische Aufarbeitungsverfahren, 3V
- 22706 - Übung zu Biopharmazeutische Aufarbeitungsverfahren, 1Ü

Literature

Vorlesungsskript
Module: Bioprocess Development [M-CIWVT-104347]

Responsibility: Michael-Helmut Kopf
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Technical Supplement Course
- Specialized Course I / Mechanical Process Engineering
- Specialized Course I / Technical Biology
- Specialized Course I / Biopharmaceutical Process Engineering

Credits
- 4
Grading scale
- Grade to a tenth
Recurrence
- Each winter term
Duration
- 1 term
Language
- German
Level
- 4
Version
- 1

Mandatory
T-CIWVT-108902 Bioprocess Development

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
The Students:
- get familiar with processes and techniques to develop industrial scale, biotech-based processes
- gain insight into the workflow of large scale (double-digit kt/a) industrial bioprocess development
- learn to combine theoretical understanding with practical applications related to relevant industrial systems.
understand relevance of tecno-economic evaluation as a basis for developing competitive processes

Content
- **Process to develop new or alternative, bio-based production process:**
 Idea, Basic Concept, Critical analysis, Development steps
- **Value Proposition of novel product / process:**
 Quality, Performance, Price, Eco-efficiency, Regional aspects
- **Critical aspects along the development process:**
 Feedstock issues, Design to Cost, Specification and Performance, Regulatory Issues, Eco-efficiency (raw material and energy efficiency)
- **From Lab to Production (focus of lecture):**
 Phases of a development process: Explorative Research, Proof of Principle, Proof of Concept, Scale-up and Apparatus design, Plant design, Production
- **Competitor Intelligence:**
 Competitors with their “own” processes, Alternative products, similar in application
- **Benchmarking as a development tool:**
 Cost Benchmarking, CoP, as a development tool to identify optimization potential
- **Production scenarios:**
 Own investment, Toller,
 Production Partner

Workload
120 h:
- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h

Literature
Skriptum zur Vorlesung

Chemical and Process Engineering Master 2016 (Master of Science (M.Sc.))
Module Handbook as of 23/03/2023
M 3.16 Module: Bioprocess Development [M-CIWVT-106297]

Responsible: Prof. Dr.-Ing. Alexander Grünberger

Organisation: KIT Department of Chemical and Process Engineering

Part of:* Advanced Fundamentals (BIW) (Usage from 4/1/2023)

Technical Supplement Course (Usage from 4/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-112766</td>
<td>Bioprocess Development</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: English

Level: 4

Version: 1

Competence Certificate

Written examination; duration 120 minutes.

Prerequisites

None

Competence Goal

This course aims to provide students with a comprehensive understanding of the principles, techniques and application of bioprocess development regarding the production of biologically based products. Through a combination of lectures, discussions, and exercises, students will gain knowledge and experience about the various stages of bioprocess development. Upon completion of this module, students should have/be able to:

1. Developed an in-depth understanding of the principles and fundamentals of bioprocess development.
2. Developed a thorough understanding of the different types of bioprocesses and their applications.
3. Gained insight into the development of a successfully established industrial bioprocess.
4. Gained insight into cost and sustainability evaluation of bioprocesses.
5. Gained the ability to combine theoretical understanding and practical application.
6. Developed critical thinking and problem-solving skills necessary for identifying and addressing challenges that arise during bioprocess development.
7. Developed skills and knowledge to evaluate the potential of new methods and tools for accelerated bioprocess development.
8. Developed effective communication and teamwork skills necessary for success in a multidisciplinary bioprocess development environment.

Content

The lecture course covers and discusses various topics and their impact onto efficient bioprocess development. This includes:

- Identification and selection of biocatalyst
- Growth and microbial physiology
- Strain engineering
- Strain and process parameter screening
- Bioprocess optimization
- Bioprocess-scale-up
- Cost and sustainability estimation
- Case studies: Discussion of real-world examples of bioprocess development, including case studies of successful and unsuccessful bioprocess development efforts.

Optional topics include:

- Regulatory and quality control requirements for bioprocess development.
- Computational and mathematical modelling tools to simulate, support and optimize bioprocesses development.

Module grade calculation

The grade of the module is the grade of the written exam.
Workload

- Attendance time: Lectures and Exercises: 60 h
- Homework: 80 h
- Exam preparation: 40 h
M 3.17 Module: Biotechnological Production [M-CIWVT-104384]

Responsible: Prof. Dr. Christoph Syldatk
Organisation: KIT Department of Chemical and Process Engineering
Part of: Advanced Fundamentals (BIW)
Technical Supplement Course

Credits 6 Grading scale Grade to a tenth Recurrence Each summer term Duration 1 term Language German Level 4 Version 1

Mandatory
T-CIWVT-106030 Biotechnological Production 6 CR Syldatk
T-CIWVT-108492 Seminar Biotechnological Production 0 CR Syldatk

Competence Certificate
The success control consists of two partial services:

- Exam preparation: Seminar lecture of about 10 minutes during the course; Study achievement according to § 4 (3) SPO
- written examination of 120 minutes according to § 4 (2) Nr. 1 SPO

Module grade is the grade of the written exam.

Prerequisites
The Seminar "Biotechnological Production" is a precondition for admittance to the written exam.
The following knowledge is required: biochemistry, genetics, cell biology, microbiology.

Competence Goal
Students are able to apply the knowledge of processes for the biotechnological production of certain substances on issues relating to new production processes. They identify common principles and laws of the various processes. They can independently solve problems in the development of process schematics and can use the knowledge mediated in the lecture.

Content
After giving an overview of the historical development of biotechnology common basic principles of biotechnological production processes are presented. Using recent examples and selected products, processes and methods of industrial or microbial biotechnology, plant cell culture techniques and animal cell culture techniques are presented. Selected examples include e.g. the production of microbial biomass, organic acids, alcohols and ketones, amino acids, vitamins, antibiotics, enzymes, biopolymers, flavorings, natural substances with plant cell cultures, monoclonal antibodies and biopharmaceuticals with animal cell cultures in an industrial scale.

Workload
- Attendance time (Lecture): 60 h
- Homework: 40 h
- Preparation presentation at the seminar: 20 h
- Attendance time (Lecture): 60 h

Literature
Module: Biotechnological Use of Renewable Resources [M-CIWVT-105295]

Responsible: Prof. Dr. Christoph Syldatk
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108982 | Biotechnology in Bioeconomy | 4 CR | Syldatk |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
This lecture conveys the role of biotechnological processes in a future bioeconomy. Possible raw materials, their preparation and subsequent biotechnological implementation into energy carriers, platform chemicals and special microbial products are presented.

Content
After an introduction to the basics of a future bioeconomy and the comparison of chemical and biotechnological industrial processes using renewable resources, their preparation for biotechnological use and their implementation into energy sources (methane, ethanol), platform chemicals (lactate, dicarboxylic acids, amino acids) and special microbial products (polysaccharides, biosurfactants, flavoring substances) and coupling products like bioplastics. The examples of sugar production, papermaking and ethanol production explain various biorefinery concepts.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
Lectures: 45 h
Homework: 45 h
Exam Preparation: 30 h
Module: Biotechnology in Bioeconomy [M-CIWVT-104399]

Responsible: Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Technical Biology
- Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108982</td>
<td>Biotechnology in Bioeconomy</td>
<td>4 CR</td>
<td>Syldatk</td>
</tr>
<tr>
<td>T-CIWVT-110770</td>
<td>Biotechnology in Bioeconomy -Seminar</td>
<td>2 CR</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
This lecture conveys the role of biotechnological processes in a future bioeconomy. Possible raw materials, their preparation and subsequent biotechnological implementation into energy carriers, platform chemicals and special microbial products are presented.

Content
After an introduction to the basics of a future bioeconomy and the comparison of chemical and biotechnological industrial processes using renewable resources, their preparation for biotechnological use and their implementation into energy sources (methane, ethanol), platform chemicals (lactate, dicarboxylic acids, amino acids) and special microbial products (polysaccharides, biosurfactants, flavoring substances) and coupling products like bioplastics. The examples of sugar production, papermaking and ethanol production explain various biorefinery concepts. Integrated into the event are presentations by the participants on current developments in the bioeconomy and excursions.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
Lectures: 45 h
Homework: 60 h
Preraration of Seminar: 45 h
Exam Preparation: 30 h
Module: Catalytic Micro Reactors [M-CIWVT-104451]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

Specialized Course I / Chemical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-109087 | Catalyst Micro Reactors | 4 CR | Pfeifer |

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Lectures and Exercises: 30 h
- Homework: 50 h
- Exam preparation: 40 h
3.21 Module: Catalytic Micro Reactors (including practical course) [M-CIWVT-104491]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Chemical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109182</td>
<td>Practical Course Measurement Techniques in Chemical Processing</td>
</tr>
<tr>
<td>T-CIWVT-109087</td>
<td>Catalytic Micro Reactors</td>
</tr>
</tbody>
</table>

Competence Certificate

The Examination consists of:

1. Oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO)
2. Ungraded laboratory work (section 4 subsection 3 SPO)

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Practical course: 20 h, Elaboration: 30 h
- Homework: 50 h
- Exam Preparation: 50 h
Module: Catalytic Processes in Gas Technologies [M-CIWVT-104287]

Mandatory

| T-CIWVT-108827 | Catalytic Processes in Gas Technologies | 4 CR | Bajohr |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
The students know the relevant catalytic processes in gas technology. Understanding the interaction between thermodynamic, mass and heat transfer and reaction kinetic on the basis of concrete examples enables them to evaluate reactor concepts and develop new approaches for catalytic processes.

Content
Sources, utilization, demand and characterization of gaseous chemical energy carriers.
Catalytic processes for production, conditioning and utilization of gaseous energy carriers. Synthesis and utilization (e.g. methanation and steam reforming); exothermic vs. endothermic processes.
Catalytic processes for gas cleaning and conditioning.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 50 h
- Exam Preparation: 40 h

Literature
3.23 Module: Chem-Plant [M-CIWVT-104461]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

Specialized Course I / Technical Thermodynamics (Usage from 4/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-109127 | Chem-Plant | 4 CR | Enders |

Prerequisites

None

Competence Goal

The students are able to apply the knowledge of their academic education for the design of a concretely chemical plant and they are able to publish the obtained results.

Content

Design of a complete chemical plant for the production of selected product, participation on the Chem-Plant competition (organized by VDI)

Workload

- Attendance time (Lecture): 10 h
- Projekt work: 60 h
- Presentations and Conference participation: 50 h
3.24 Module: Combustion and Environment [M-CIWVT-104295]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
 - Specialized Course I / Environmental Process Engineering
 - Specialized Course I / Combustion Technology
 - Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-CIWVT-108835 Combustion and Environment 4 CR Trimis

Competence Certificate
Learning Control is an oral examination with a duration of about 20 minutes.

Prerequisites
None

Competence Goal
- The students are able to describe and explain why it is important to protect the environment.
- The students are able to name the major combustion pollutants and describe the effect on the environment.
- The students understand the physicochemical mechanisms of the formation of different pollutants in the combustion process.
- The students are able to name and describe primary measures to reduce emissions.
- The students understand the limitations of primary measures and are able to name and describe secondary measures to reduce emissions.
- The students understand and can assess differences of emissions from engine and gas turbine combustion.

Content
- Importance of environmental protection.
- Combustion pollutants and their effects.
- Pollutant formation mechanisms
- Combustion-related measures (primary measures) to reduce emissions.
- Exhaust gas cleaning: secondary measures to reduce emissions.
- Emissions from engine combustion and from combustion in gas turbines.

Workload
Lectures: 30 h
Homework: 60 h
Exam preparation: 30 h
3.25 Module: Combustion Technology [M-CIWVT-103069]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis
Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Fuel Technology
- Specialized Course I / Combustion Technology
- Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning Control is an oral examination with a duration of about 20 minutes (section 4 subsection 2 SPO). Grade of the module is the grade of the oral examination.

Prerequisites
None

Competence Goal
- The students are able to describe and explain the characteristics of the different flame types.
- The students can quantitatively estimate/calculate major combustion characteristics like flame temperature and flame velocity. They further understand the physicochemical mechanisms affecting flammability limits and quenching distances.
- The students understand and can assess the influence/interaction of turbulence, heat and mass transfer to reacting flows.
- The students understand the flame structure and the hierarchical structure of reaction kinetic mechanisms.
- The students understand and can assess the influence of interaction between different time scales of chemical kinetics and fluid flow in reacting flows.
- The students are able to assess and evaluate burner operability with regard to the application.

Content
- Introduction and significance of combustion technology
- Thermodynamics of combustion: Mass and energy/enthalpy balances
- Equilibrium composition
- Flame temperature
- Reaction mechanisms in combustion processes
- Laminar flame velocity and thermal flame theory
- Kinetics related combustion characteristics and experimental characterization: laminar flame velocity, flammability limits, ignition temperature, ignition energy, ignition delay time, quenching distance, flash point, octane and cetane number
- Turbulent flame propagation
- Industrial burner types

Workload
- Lectures and Exercises: 45 h
- Homework: 25 h
- Exam Preparation: 110 h
Literature

Module: Commercial Biotechnology [M-CIWVT-104273]

Responsible: Prof. Dr. Ralf Kindervater
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Technical Supplement Course
- Specialized Course I / Technical Biology
- Specialized Course I / Biopharmaceutical Process Engineering
- Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108811</td>
<td>Commercial Biotechnology</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). In case of large number of participants the examination is a written examination with a duration of 60 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites

None

Module grade calculation

The grade of the oral or written examination is the module grade.

Workload

- Lectures: 30 h
- Homework: 50 h
- Exam Preparation: 40 h (about one week)
Module: Complex Phase Equilibria [M-CIWVT-106358]

Responsible
Prof. Dr. Sabine Enders

Organisation
KIT Department of Chemical and Process Engineering

Part of
Technical Supplement Course (Usage from 10/1/2023)
Specialized Course I / Technical Thermodynamics (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-112883 | Complex Phase Equilibria | 6 CR | Enders |

Competence Certificate
Learning control is an oral exam, duration approx. 30 minutes.

Prerequisites
None

Competence Goal
Students are able to understand complex phase equilibria and they are able to calculate these complex phase equilibria and know the required thermodynamic models and the corresponding parameter fitting procedure.

Content
- Phase equilibria of multi-component mixtures (e.g. polymers, electrolyte solution)
- Numerical methods for calculation of complex phase equilibria
- Thermodynamic models
- Estimation of model parameters

Module grade calculation
The grade of the module is the grade of the oral exam.

Workload
- Lectures and Exercises: 90 hrs.
- Self-study: 45 hrs.
- Exam preparation: 45 hrs.

Literature
3.28 Module: Computational Fluid Dynamics [M-CIWVT-103072]

Responsible: Prof. Dr.-Ing. Hermann Nirschl

Organisation: KIT Department of Chemical and Process Engineering

Part of: Advanced Fundamentals (CIW)
Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106035</td>
<td>Computational Fluid Dynamics</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites
None

Competence Goal
Learning the fundamentals of CFD for the calculation of flow problems.

Content
Navier-Stokes equations, numerical schemes, turbulence, multiphase flows.

Workload
- Attendance time (Lecture): 64 h
- Homework: 56 h
- Exam Preparation: 601 h

Literature
- Nirschl: Skript zur Vorlesung CFD
- Ferziger, Peric: Numerische Strömungsmechanik
- Oertel, Laurien: Numerische Strömungsmechanik

Responsible: Dr.-Ing. Bernhard Hochstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Applied Rheology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108883 | Continuum Mechanics and Fluid Mechanics of Non Newtonian Fluids | 4 CR | Hochstein |

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The duration of the examination differs in the case of a specialized subject comprehensive examination and is approximately 15 minutes.

Prerequisites
None

Module grade calculation
The module grade is the grade of oral examination.

Workload
- Attendance time (Lecture): 30 h
- Homework: 70 h
- Exam Preparation: 20 h
3.00 Module: Control of Distributed Parameter Systems [M-CIWVT-106318]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr.-Ing. Thomas Meurer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Part of:</td>
<td>Technical Supplement Course (Usage from 4/1/2023) Specialized Course I / Automation and Process Systems Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-112826 | Control of Distributed Parameter Systems | 6 CR | Meurer |

Competence Certificate
Learning control is an oral examination with a duration of about 45 minutes.

Prerequisites
none

Module grade calculation
Modulnote ist die Note der mündlichen Prüfung.

Workload
Attendance time:
Lectures: 30 hrs.
Exercises: 15 hrs.
Self-study: 60 hrs.
Exam preparation: 75 hrs.

Literature
Module: Cryogenic Engineering [M-CIWVT-104356]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Technical Thermodynamics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108915</td>
<td>Cryogenic Engineering</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Grohmann

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Understanding the principle and modelling of regenerative cryocoolers; Understanding and applying of essential engineering methods and components for the conception and design of low-temperature plants and cryostat systems; Understanding of laboratory measurement principles, assessing and applying of sensors and instruments for cryogenic measurement tasks and analysing of measurement uncertainties

Content

Cryogenic applications; Regenerative cooling with cryocoolers; Fundamentals of low-temperature plant and cryostat design, including fluid mechanics and heat transfer, thermal contacts and thermal insulation, cryogenic pumping of gasses, regulations, design components and safety; General principles of measurement and uncertainties as well as cryogenic temperature, pressure and flow measurement

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 45 h
- Exam Preparation: 90 h
3.32 Module: Data Analysis and Statistics [M-CIWVT-104345]

Responsible: apl. Prof. Dr. Gisela Guthausen
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
- Specialized Course I / Gas Particle Systems
- Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108900 | Data Analysis and Statistics | 4 CR | Guthausen |

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

The students are familiar with statistical parameters and are able to judge. Out of the variety of statistical approaches for data analysis they are able to choose the most promising tool for a given question.

Content

Introduction into statistics and its application in data analysis. Descriptive statistics with typical quantities and parameters like standard deviation, distributions and their applications. The application of these tools leads to statistical tests, which are needed in approximation and regression. Chemometric data treatment and statistic processing of large data sets will be studied on the example of multivariate approaches for revealing correlations.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 30 h
- Exam Preparation: 60 h
3.33 Module: Data-Based Modeling and Control [M-CIWVT-106319]

Responsible: Prof. Dr.-Ing. Thomas Meurer
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 10/1/2023)
Specialized Course I / Automation and Process Systems Engineering (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-112827 | Data-Based Modeling and Control | 6 CR | Meurer |

Competence Certificate

Learning control is an oral examination with a duration of about 45 minutes.

Prerequisites

none

Content

The module covers basic concepts and fundamentals of data-based approaches for modeling and control design for dynamical systems and processes. Data-based approaches for modeling, also called system identification, are used to identify a mathematical description of the considered system from the available input and output data. Data-based approaches for control design compute the controller without an a priori known model of the system. Extensions to learning-based control are addressed, where in principle machine learning techniques are used to learn a model or a controller for a given system.

Problem sets are considered in the exercises to apply the developed methods.

Module grade calculation

The grade of the module is the grade of the oral exam.

Workload

Attendance time: Lectures: 30 hrs. Exercises: 15 hrs.
Self-study: 75 hrs.
Exam preparation: 60 hrs.

Literature

- T. Meurer: Data-based Modeling and Control, Lecture Notes.
- Various recent publications, which will be discussed in lecture.
3.34 Module: Design of a Jet Engine Combustion Chamber [M-CIWVT-105206]

Responsible: Dr.-Ing. Stefan Raphael Harth

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage from 10/1/2019)
- Specialized Course I / Combustion Technology (Usage from 10/1/2019)
- Specialized Course I / Energy Process Engineering (Usage from 10/1/2019)
- Specialized Course I / Energy and Combustion Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-110571 | Design of a Jet Engine Combustion Chamber | 6 CR | Harth |

Competence Certificate

Learning control is an examination of another kind according to § 4 Abs. 2 Nr. 3 SPO.

The module grade consists of the grade of the oral examination (35 points maximum) and the cooperation / presentation during the project (65 points maximum).

The learning control is passed when at least 45 points are achieved.

Prerequisites

None

Competence Goal

- The students are able to apply the relevant design parameters in order to design a jet engine combustor.
- The students are able to evaluate design modifications due to the performance of a jet engine combustor.
- The students are able to review literature studies and use them for their design aims.
- The students learn to work target oriented following a time schedule.
- The students learn to work in a team and to exchange information between the teams by definition of interfaces.
- The students learn to present clearly and in an acceptable time the work progress and the most important results.

Content

At the beginning the description and operating mode of a jet engine with emphasis on the combustor is explained in 4 lessons. Afterwards the design of the combustor based on geometrical boundary conditions (engine casing) and the performance conditions will start. The tasks to be solved for the design are the combustor aerodynamic (pressure loss, air split), thermal management (temperature distribution, wall cooling, material), calculation of emissions and the construction of the combustor. In order to solve the tasks the students have to be organized in groups which are responsible for the tasks mentioned. The work progress will be controlled by a time schedule and regular presentations. The complete design will be discussed in a final presentation.

Workload

- Attendance time (Lecture): 30 h
- Homework: 45 h
- Project: 80 h
- Exam Preparation: 45 h

Literature

- Lefebvre, Gas Turbine Combustion
- Rolls-Royce plc, the jet engine
- Müller, Luftstrahltrriebwerke Grundlage, Charakteristiken, Arbeitsverhalten
Module: Design of Micro Reactors [M-CIWVT-104286]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Chemical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108826</td>
<td>Design of Micro Reactors</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4, subsection 2, number 2, SPO).

Prerequisites
None

Competence Goal
The students are able to apply the methods of process intensification by microstructuring of the reaction zone and are capable of analyzing the advantages and disadvantages while transferring given processes into microreactors. With knowledge of special production processes for micro reactors, students are able to design microstructured systems in terms of heat exchange and to analyze the possibilities of transferring processes from conventional technology into the microreactor with regard to heat transfer performance. They understand also how the mechanisms of mass transport and mixing interact in microstructured flow mixers, and are able to apply this knowledge to the combination of mixing and reaction. They can also analyze possible limitations in the process adaptation and are thus able to design microstructured reactors for homogeneous reactions appropriately. The students understand the significance of the residence time distribution for the conversion and selectivity and are capable of analyzing the interaction of mass transport by diffusion and hydrodynamic residence time in microstructured equipment in given applications.

Content

Workload
- Lectures: 45 h
- Homework: 42 h
- Exam preparation: 60 h (about 1.5 weeks)

Literature
- Skript (Foliensammlung), Fachbücher:
 - Micro Process Engineering - A Comprehens (Hardcover), Volker Hessel (Editor), Jaap C. Schouten (Editor), Albert Renken (Editor), Yong Wang (Editor), Junichi Yoshida (Editor), 3 Bände, 1500 Seiten, Wiley VCH, ISBN-10: 3527315500
3.36 Module: Development of an Innovative Food Product [M-CIWVT-104388]

Responsible: Dr.-Ing. Ulrike van der Schaaf
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108960</td>
<td>Development of an Innovative Food Product</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>T-CIWVT-111010</td>
<td>Development of an Innovative Food Product - presentation</td>
<td>3 CR</td>
<td>van der Schaaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Learning Control consists of:

- Seminar/ Presentation
- written elaboration/ exposé

Prerequisites
None

Competence Goal
Students can use their knowledge on food products and their processing to develop an innovative food product of their own. They also can develop a suitable process for its production with regards to energy efficiency and sustainability. Students are able to use basic principles of scale up in the food industry and to use strategies to ensure food quality and safety on a large scale. They can evaluate these concepts regarding their own food product. They understand basic concepts of marketing and packaging technology and can apply those concepts to their innovative product and analyse them. Students can apply basic principles of project management and evaluate them regarding the development of their food product.

Content
Development of a food product consumer ready (aspects included are amongst others food quality and safety, scale up, energy efficiency, sustainability, marketing and packaging); project management

Module grade calculation
50 % presentation (individual grade), 50 % written elaboration (group grade)

Annotation
!! In the winter term 2022/23 the module can unfortunately not be offered !!!
There is an opportunity to participate in the competition "EcoTrophelia".
The maximum number of participants is limited. Admission is based on a selection interview.

Workload

- Lab work: 100 h
- Homework: 20 h
- Written elaboration: 30 h
- Seminar and presentation: 30 h
Module: Digital Design in Process Engineering [M-CIWVT-105782]

Responsible: TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage from 10/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111582</td>
<td>Digital Design in Process Engineering - Laboratory</td>
<td>3 CR</td>
<td>Klahn</td>
</tr>
<tr>
<td>T-CIWVT-111583</td>
<td>Digital Design in Process Engineering - Oral Examination</td>
<td>3 CR</td>
<td>Klahn</td>
</tr>
</tbody>
</table>

Competence Certificate

The learning control consists of:

1. Laboratory, ungraded according to SPO section 4 subsection 3.
2. Oral examination according to SPO section 4 subsection 2 No. 2.; duration about 30 minutes.

The laboratory is a prerequisite for the oral exam.

Prerequisites

None.

Competence Goal

- Understanding and applying the basics of 3D geometry modeling
- Identification of typical errors and artifacts in 3D models
- Selection of suitable methods for optimization, design and validation

Content

Digital design for Process Engineering introduces tools and methods for efficiently designing parts in process engineering.

- Computer Aided Design CAD (Autodesk Inventor)
- Topology optimization
- Parametric design and design automation (Grasshopper Rhino)
- Workflows of optimization, design and numerical validation

Module grade calculation

The module grade is the grade of the oral exam.

Workload

- Lectures and Lab: 60 h
- Homework (CAD-design): 80 h
- Exam preparation: 40 h

Recommendation

The module is recommended as preparation for the module Additive Manufacturing for Process Engineering [M-CIWVT-105407].
Module: Digitization in Particle Technology [M-CIWVT-104973]

Responsible: Dr.-Ing. Marco Gleiß

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Gas Particle Systems
- Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110111</td>
<td>Digitization in Particle Technology</td>
<td>4 CR</td>
<td></td>
<td>Gleiß</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control is an oral examination with a duration of about 30 minutes.

Prerequisites
None

Competence Goal
Capability to develop integrated strategies for the digitalization of processes in particle technology. This includes the development of methods but also the application of numerical methods.

Content
Teaching methods for the systematic development of engineering-scientific digitization strategies for particle technology. This includes the mathematical fundamentals of process simulation and model predictive control as well as basics of online and in-situ process analysis. Furthermore, the metrological acquisition of large amounts of data requires complex evaluation methods for further processing and reduction of the generated data. The basics of multivariate data analysis as well as machine learning are taught. The developments in digitalization in particle technology are supported by various practical examples. In addition to the lecture a practical exercise in the form of a project work takes place.

Module grade calculation
The Module grade is the grade of the oral examination.

Workload
- Lecture: 15 h, Exercise: 15 h
- Homework: 60 h
- Exam preparation: 30 h
3.39 Module: Dimensional Analysis of Fluid Mechanic Problems [M-CIWVT-104327]

Responsible: Dr.-Ing. Bernhard Hochstein

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Applied Rheology
- Specialized Course I / Gas Particle Systems
- Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The duration of the examination differs in the case of a specialized subject comprehensive examination and is approximately 15 minutes.

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 70 h
- Exam Preparation: 20 h
Module: Drying Technology [M-CIWVT-104370]

Responsible: Prof. Dr.-Ing. Wilhelm Schabel
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
 Specialized Course I / Applied Rheology
 Specialized Course I / Thermal Process Engineering
 Specialized Course I / Food Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-CIWVT-108936 Drying Technology 6 CR Schabel

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Students are able to identify and design a drying process. They will have an overview on the state of the art in drying technology science.
They are able to interpret, evaluate and select a proper drying process.
The qualification goal is to learn proper methods and drying technology basics in order to transfer this fundamental knowledge to new processes and apparatus.

Content
Introduction to drying technology and industrial applications; Modeling of heat mass transfer during drying and modeling of the entire drying process; Determination of material properties, sorption, diffusion; Determination of typical drying curves and regimes
Fundamentals in polymer film drying and drying of porous materials; Basic principles of spray drying, fluidized bed drying, microwave drying, infrared drying and freeze drying.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
• Attendance time (Lecture): 45 h
• Homework: 90 h
• Exam Preparation: 45 h
3.41 Module: Electrocatalysis [M-ETIT-105883]

Responsible: Prof. Dr. Ulrike Krewer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Technical Supplement Course (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-111831 | Electro catalysis | 5 CR | Krewer |

Competence Certificate
The examination takes place in form of a written examination lasting 120 minutes.

Prerequisites
none

Competence Goal
Students have a well-grounded knowledge of electrocatalytic energy technologies for the conversion and storage of electrical energy in chemicals (Power-to-X). They know the functional principle of state-of-the-art electrocatalysts in fuel cells and electrolysis and understand the underlying electrochemical and physical processes. Participation in the course enables the students to assess and understand the relationship between electrode structure and their selectivity, performance and stability. Furthermore, the students learn the theoretical basics of experimental methods that are relevant for the investigation of model electrodes and technical cells.

Content

Lecture:
- **Basics, concepts and definitions within the Power-to-X context:** Catalysis and electrocatalysis; activity and selectivity; fundamentals of electrochemical processes, elementary steps involving adsorbed intermediates.
- **The role of intermediates:** Electron transfer without intermediates, multi-electron transfer with intermediates; differences in adsorption energies of intermediates and active surfaces
- **Theoretical treatment of electron transfer reactions:** Tunneling processes at electrodes; electron transfer reactions (Marcus theory); role of electrode material on rate of electrode reaction.
- **Measurement methods for the investigation of electrocatalytic reactions:** Determination of the effective surface; Determination of the activity of electrochemically active species; Determination of the selectivity; Operando measurement methods
- **Technically important electrocatalytic reactions and processes:** The oxygen reduction reaction (ORR) and evolution reaction (OER); the chlorine evolution reaction.

Module grade calculation
The module grade is the grade of the written examination.

Workload
attendance in lectures: 30 * 45 min. = 22.5 h
attendance in exercises: 15 * 45 min. = 11.25 h
preparation and follow up of the lectures and practice: 76.25 hours (approx. 1.75 hours per lecture or exercise)
preparation of examination and attendance in examination: 40 h
A total of 150 h = 5 CR

Recommendation
The participation of the module “Electrochemical Energy Technologies” is helpful.
3.42 Module: Energy and Environment [M-CIWVT-104453]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage until 9/30/2023)
Specialized Course I / Environmental Process Engineering (Usage until 9/30/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election notes

You can elect one of the following components:

"Energie und Umwelt" containing the lectures:

- Verbrennung und Umwelt (german)
- Technical Systems for Thermal Waste Treatment (english)

"Energy and Environment" containing the lectures:

- Applied Combustion Technology (english)
- Technical Systems for Thermal Waste Treatment (english)

<table>
<thead>
<tr>
<th>Election Energy and Environment (Election: 1 item as well as 8 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109089</td>
</tr>
<tr>
<td>T-CIWVT-110917</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning Control is an oral examination with a duration of about 40 minutes.

Prerequisites

None

Competence Goal

Part "Technical Systems for Thermal Waste Treatment"

The students are enabled to characterize different waste fractions and select suitable technologies for waste to energy conversion based on detailed process understanding and by application of evaluation tool combining economical and ecological aspects. The students gain a profound inside into process operation.

Part "Combustion and Environment"/ "Applied Combustion Technology"

- The students are able to describe and explain why it is import to protect environment.
- The students are able to name the major combustion pollutants and describe the effect on the environment.
- The students understand the physicochemical mechanisms of the formation of different pollutants in the combustion process.
- The students are able to name and describe primary measures to reduce emissions.
- The students understand the limitations of primary measures and are able to name and describe secondary measures to reduce emissions.
- The students understand and can assess differences of emissions from engine and gas turbine combustion.
Content
Lecture "Technical Systems for Thermal Waste Treatment"

- Waste: definition, specification, potential;
- Basic thermo-chemical processes for waste treatment: pyrolysis, gasification, combustion
- Technical systems for thermal waste treatment:
 - combustion: Grate furnace, rotary kiln, fluidized bed,
 - gasification: fixed bed, fluidized bed, entrained flow
 - pyrolysis: rotary kiln
- Refractory technology
- Legal aspects of waste management
- Tools for critical evaluation of waste treatment technologies
- Excursion to industrial sites

Lecture either "Combustion and Environment"

- Importance of environmental protection.
- Combustion pollutants and their effects.
- Pollutant formation mechanisms
- Combustion-related measures (primary measures) to reduce emissions.
- Exhaust gas cleaning: secondary measures to reduce emissions.
- Emissions from engine combustion and from combustion in gas turbines.

or "Applied Combustion Technology"
oder "Applied Combustion Technology"

Basic principles of combustion; Fuels; Combustion characteristics; Structure and properties of stationary laminar and turbulent premixed and diffusion flames; Flame stability; Laws of similarity and burner scale-up; Combustion of liquid fuels; Heterogeneous combustion of solid fuels; Examples of industrial burners.

Annotation
The module is being phased out. Exams for students who have already attended the course will be offered until the end of September 2023.

Workload

- Lectures: 60 h
- Homework: 110 h
- Exam preparation: 70 h
3.43 Module: Energy from Biomass [M-CIWVT-105207]

Responsible: Dr.-Ing. Siegfried Bajohr
Prof. Dr. Nicolaus Dahmen

Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialized Course I / Energy and Combustion Technology

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 5
Version 3

Mandatory
T-CIWVT-110576 Energy from Biomass 6 CR Bajohr, Dahmen

Competence Certificate
The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites None

Competence Goal
The course mediates fundamentals and process engineering aspects of biomass conversion and conditioning processes. The students learn to understand and to evaluate processes for biomass utilization by balancing mass and energy streams. Taking into account regional and global feedstock potentials the students are enabled to choose the most appropriate conversion technologies and applications.

Content
All relevant technologies involved in biomass conversion processes for bioenergy production are introduced, also evaluating their state of development and application potential. If necessary, basics of chemistry, thermodynamic equilibrium and/or of reaction kinetic calculations are introduced. In particular, the lecture consists of the following topics.

- Potential of biomass for sustainable bioenergy production, energy demand and supply today and in the future, CO2 emission and its reduction potential
- Production, composition, properties, and characterization of biomass
- Principle production pathways to energy carriers like substitute natural gas (SNG), biodiesel, bioethanol, synthesis gas or other fuels.
- Utilization and conversion of biogenic oils and fats.
- Biochemical conversion to liquid products like alcohols; fermentation to biogas and its upgrading.
- Thermochemical conversion of biomass via combustion, pyrolysis and gasification; synthesis processes for synthetic fuels production (Methane-, Fischer-Tropsch-, Methanol-to-gasoline-, DME-synthesis).
- Biofuels in comparison

By an excursion to the 3-5 MW pilot plant for synthetic fuel production at KIT insight into a technically representative pilot plant is gained.

In the exercises, special and practical aspects of the lecture are investigated in more depth. The students evaluate mass balances along whole process chains as well as energetic or carbon utilization efficiencies, compare alternative technologies. The results are presented and discussed in the learning group.

Workload
- Attendance time: Lecture 30 h, Seminar 15 h
- Homework, Preparation of Presentation: 75 h
- Exam Preparation: 60 h

Literature
3.44 Module: Energy Technology [M-CIWVT-104293]

Responsible: Prof. Dr.-Ing. Horst Büchner

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
 - Specialized Course I / Combustion Technology
 - Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108833</td>
<td>Energy Technology</td>
<td>4 CR</td>
<td>Büchner</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 30 h
- Exam Preparation: 60 h
3.45 Module: Environmental Biotechnology [M-CIWVT-104320]

Responsible: Andreas Tiehm
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Technical Biology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106835</td>
<td>Environmental Biotechnology</td>
<td>4 CR</td>
<td>Tiehm</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 45 h
- Exam Preparation: 45 h
Competence Certificate
Learning control is an oral examination with a duration of about 45 minutes.

Content
State feedback control relies on the availability of the full state vector, which is in general not available from measurements. Moreover determining the states (or parameters) of a dynamical systems is of interest on its own as this allows to obtain insights into the system dynamics or to estimate quantities that are not or hardly measurable. The lecture addresses basic concepts of estimation and identification methods and the design of optimal state observers for linear and nonlinear dynamical systems both in a continuous and a discrete time setting. This includes:

- Introduction to fundamental concepts for system identification and state estimation
- State-space approaches for system identification
- Analysis of observability and detectability
- Design of linear and nonlinear observers as well as optimal state estimators (Kalman-Bucy and Kalman Filters)
- Numerical methods

Module grade calculation
The grade of the module is the grade of the oral exam.

Workload
Attendance time: Lectures: 30 hrs. Exercises: 15 hrs.
Self-study: 60 hrs.
Exam preparation: 75 hrs.

Literature
3.47 Module: Extrusion Technology in Food Processing [M-CIWVT-105996]

Responsible: Dr.-Ing. Azad Emin
Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage from 10/1/2022)
- Specialized Course I / Food Process Engineering (Usage from 10/1/2022)
- Specialized Course I / Entrepreneurship in Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-CIWVT-112174 Extrusion Technology in Food Processing 4 CR

Competence Certificate
Learning control is an oral exam lasting about 20 minutes.

Prerequisites
None.

Competence Goal
Students will learn the fundamental principles of extrusion technology and its capabilities as well as the reasons behind its wide use by food industry. They will learn how various conventional food products are manufactured using this technology. Students will be able to approach a development of food more systematically by applying the principles of product design. They will also be able to combine and apply what they have learned in other courses/subjects during their studies in a multidisciplinary approach necessary for extruded food design. Students will understand how extrusion technology can be used in targeted ways to open up new opportunities for sustainable food transition.

Content
This course covers the principles of extrusion, the design of extrusion processes, and the formulation of extruded products. Moreover, the course gives an introduction to more fundamental topics such as biopolymer structure, reactivity, rheology and process control. In addition to the extrusion of conventional products, the design of sustainable and innovative food products such as plant-based meat and sea-food alternatives as well as upcycled food side-streams, will be discussed. While focusing on the fundamentals as well as on the state-of-the-art extrusion technology, the course is very practically oriented, and includes a practical demonstration of the principles learned.

Module grade calculation
The module grade ist the grade of the oral exam.

Workload
- Attendance time: 30 h
- Self-study: 30 h
- Exam preparation: 60 h

Literature
Will be announced.

Responsible: Prof. Dr.-Ing. Horst Büchner

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course Specialized Course I / Combustion Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108834</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 30 h
- Exam Preparation: 60 h

Responsible: Dr.-Ing. Bernhard Hochstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Applied Rheology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108874</td>
<td>Fluid Mechanics of Non-Newtonian Fluids</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 60 h
- Homework: 140 h
- Exam Preparation: 40 h
3.50 Module: Fluidized Bed Technology [M-CIWVT-104292]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Gas Particle Systems
- Specialized Course I / Fuel Technology
- Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108832 | Fluidized Bed Technology | 4 CR | Rauch |

Competence Certificate
The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO).
The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Understanding of fluidized beds, design and calculation of fluidized beds incl. gas distributors, advantages and disadvantages of fluidized beds and industrial applications

Content
Fundamentals of fluidized beds, explanation of bubbling circulating and dual fluidized beds, calculation of minimum fluidization velocity and transport velocity, classification of particles, design of gas distributors, theory of bubbles in fluidized beds, heat transfer, cold flow models and CFD simulation for design of fluidized beds, industrial examples of fluidized beds

Workload
- Lectures: 30 h
- Homework: 50 h
- exam preparation: 40 h

Literature
- Werther, Fluidised-Bed Reactors, in Ullmanns Encyclopedia of industrial chemistry, http://dx.doi.org/10.1002/14356007.b04_239.pub2
3.51 Module: Food Chemistry Basics [M-CHEMBIO-104620]

Responsible: Prof. Dr. Mirko Bunzel

Organisation: KIT Department of Chemistry and Biosciences

Part of: Technical Supplement Course
- Specialized Course I / Food Process Engineering
- Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-109442</td>
<td>Food Chemistry Basics</td>
<td>4</td>
<td>CR</td>
<td>Bunzel</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Workload
- Lectures: 30 h
- Homework: 45 h
- exam preparation: 45 h
3.52 Module: Food Science and Functionality [M-CIWVT-104263]

- **Responsible:** Prof. Dr. Bernhard Watzl
- **Organisation:** KIT Department of Chemical and Process Engineering

 Part of: Technical Supplement Course
 Specialized Course I / Food Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108801 | Food Science and Functionality | 4 CR | Watzl |

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Students should be enabled to evaluate the health-promoting properties of foods and diets based on their nutrient content.

Content

Relevance of nutrition for human health and well-being. Focus will be on macro- and micronutrients (carbohydrates, proteins, lipids, vitamins, minerals, trace elements, dietary fiber, and phytochemicals) and on their structural and metabolic functions. Major food groups (plant-/animal-based) as sources of essential nutrients will be introduced. In addition, functional aspects of foods/food constituents (e. g. cholesterol-lowering, immunostimulatory; reduction of disease risk) will be presented.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 45 h
- Exam Preparation: 45 h
Module: Formulation of (Bio)pharmaceutical Therapeutics [M-CIWVT-104266]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Biopharmaceutical Process Engineering
- Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108805 | Formulation of (Bio)pharmaceutical Therapeutics | 4 CR | Hubbuch |

Competence Certificate
The examination is an oral examination with a duration of about 15 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
The students will be able to discuss different development routes for the formulation of pharmaceuticals. The implications of different physiologies for the different formulations will be analyzed. Pro's and con's of different formulations and applications are evaluated.

Content
Fundamentals; Development of formulations for pharmaceuticals; Oral, Parenteral, Dermal, Nasal, Pulmonal; Formulation for Biopharmaceuticals

Module grade calculation
The grade of the oral examination is the module grade.

Workload
Lectures: 30 h
Homework: 60 h
Exam preparation: 30 h
Module: Fuel Technology [M-CIWVT-104289]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Environmental Process Engineering
Specialized Course I / Fuel Technology
Specialized Course I / Combustion Technology
Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108829</td>
<td>Fuel Technology</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

The students are enabled to characterize fuel resources and derived fuels / chemical energy carriers and to critically evaluate the processes for conversion of fuel resources to chemical energy carriers with respect to process technology, economy and ecology.

Content

- Overview of fuel resources: coal, oil, gas, biomass – process of formation, resources, consumption
- Mining technology
- Characterization and analysis of fuel resources and fuels
- Basics and processes for conversion of fuel resources into chemical energy carriers / fuels
- Processes of fuel conversion: power / heat, mobility, synthesis
- Tools for critical evaluation of process chains: LCA, ecoefficiency analysis

Workload

- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h

Literature

- "Grundlagen der Gastechnik"; ISBN 978-3446211094
- "Handbook of Fuels"; ISBN 978-3-527-30740-1
3.55 Module: Gas Particle Measurement Technology [M-CIWVT-104337]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Gas Particle Systems
Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108892 | Gas Particle Measurement Technology | 6 CR | Dittler |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Students can independently solve questions concerning gas particle measurement technology by knowledge of the required analysis steps and choice of a particle measurement technology suitable for the task at hand.

Content
Aspects of particle measurement technology; sampling; sample preparation; dispersion; imaging measurement methods; counting methods; separation methods, spectroscopy, gas analysis.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 60 h
- Homework: 90 h
- Exam Preparation: 30 h
Module: Gas Particle Separation Processes [M-CIWVT-104340]

Responsibility: Dr.-Ing. Jörg Meyer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
- Specialized Course I / Gas Particle Systems
- Specialized Course I / Mechanical Process Engineering
- Specialized Course I / Environmental Process Engineering

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108895</td>
<td>Gas Particle Separation Processes</td>
<td>6</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (single examination) or 20 minutes (comprehensive examination in VF Gas-Partikel-Systeme) (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Students develop an understanding for the basic physical processes that can be used for the (size dependent) separation of particles from a carrier gas flow, and become acquainted with related types of separation apparatus. They are able to identify the crucial operational and process conditions needed for a preselection of suitable separation devices for a specific separation task. They can describe quantitatively the influence of the main operational and process parameters on separation efficiency and energy consumption of an individual apparatus. The students learn to detect practical problems in the operation of separation devices, and they can identify procedures to overcome these issues.

They are therefore able to independently select the most suitable device and the corresponding operational mode for a specific separation task.

Content

- **Fundamentals:**
 - Basic quantitative description of separation processes
 - Elementary theory for classifiers and separators
 - Criteria for selection and evaluation of a separation apparatus
 - Legal framework

- **Specific separators for gas particle systems:**
 - Functionality, design, fields of application, limitations, practical examples
 - Approximate quantitative calculation of separation efficiency and energy consumption for exemplary classification or separation tasks
 - Types of devices that are described in the lecture:
 - Classifiers in gravity and centrifugal force fields
 - Centrifugal separators (gas cyclone)
 - Filtering separators
 - Wet separators (Scrubbers)
 - Electrical separators (Electrostatic precipitators)

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h
Module: Heat Exchangers [M-CIWVT-104371]

Responsible: Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Thermal Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Topic</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108937</td>
<td>Heat Exchangers</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Students know essential calculation methods for the dimensioning and verification of heat exchangers and are able to apply them to engineering problems. Students can independently use design methodologies for heat exchangers and perform the necessary calculations of heat transfer coefficients.

Content
types of heat exchangers, mean logarithmic temperature, efficiency-NTU-methodology, cell methodology, design of heat exchangers, heat transfer in typical heat exchanger geometries, compact heat exchangers, microchannel heat exchangers

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 50 h
- Exam Preparation: 40 h
3.58 Module: Heat Transfer II [M-CIWVT-103051]

Responsible: Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialized Course I / Thermal Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106067 | Heat Transfer II | 4 CR | Wetzel |

Competence Certificate
The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO). Module grade is the grade of the oral examination.

Prerequisites
None

Competence Goal
Students can deduce the basic differential equations of thermofluidodynamics and know possible simplifications. They know different analytical and numerical solution methods for the transient temperature field equation in quiescent media and are able to use them actively. Students are able to apply these solution methods independently to other heat conduction problems such as the heat transfer in fins and needles.

Content
Advanced topics in heat transfer:

Thermo-fluid dynamic transport equations, transient heat conduction; thermal boundary conditions; analytical methods (combination and separation of variables, Laplace transform); numerical methods (finite difference and volume methods); heat transfer in fins and needles

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 50 h
- Exam Preparation: 40 h

Literature
VDI-Wärmeatlas, Springer-VDI, 10. Auflage, 2011

Responsible: Prof. Dr.-Ing. Dieter Stapf

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Thermal Process Engineering
- Specialized Course I / Fuel Technology
- Specialized Course I / Combustion Technology
- Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106109</td>
<td>High Temperature Process Engineering</td>
<td>6</td>
<td>CR</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h
3.60 Module: Hydrogen and Fuel Cell Technologies [M-CIWVT-104296]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
 - Specialized Course I / Fuel Technology
 - Specialized Course I / Combustion Technology
 - Specialized Course I / Energy Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108836 | Hydrogen and Fuel Cell Technologies | 4 CR | Trimis |

Competence Certificate

Learning control is an oral examination with a duration of about 20 minutes, SPO section 4, subsection 2.

Prerequisites

None

Competence Goal

- The students are able to identify similarities and differences between different fuel cell systems.
- The students are able to assess different fuel cell systems based on the thermodynamic fundamentals.
- Students can describe chemical and process fundamentals of fuel cell systems and, based on this, name conditions for their use.
- The students are able to name and assess hydrogen production processes.
- The students are able to identify and assess specific problem areas of hydrogen and fuel cell technology.

Content

- Introduction and thermo-dynamic basics
- PEM fuel cells
- Molten carbonate fuel cells (MCFC)
- Solid oxide fuel cells (SOFC)
- Fuel cells for liquid and solid fuels
- Hydrogen as an energy carrier
- Hydrogen production
- Electrolysis
- Steam reforming
- Partial oxidation
- Liquid fuel reforming process
- Conversion/purification of carbon monoxide
- Desulphurization
- Fuel cell systems: peripheral components and integration.

Module grade calculation

The module grade is the grade of oral examination.

Workload

- Attendance time: 30 h
- Homework: 60 h
- Exam Preparation: 30 h
Literature

Module: Industrial Aspects in Bioprocess Technology [M-CIWVT-105412]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Specialized Course I / Biopharmaceutical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110935</td>
<td>Industrial Aspects in Bioprocess Technology</td>
<td>4</td>
<td>CR Hubbuch</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 15 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Students can discuss and analyze challenges and aspects in the biopharmaceutical industry.

Content

- Industrial Aspects on process development.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Lectures: 30 h
- Homework: 60
- Exam preparation: 30
3.62 Module: Industrial Crystallization [M-CIWVT-104364]

Responsible: Prof. Dr.-Ing. Matthias Kind

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
- Specialized Course I / Thermal Process Engineering
- Specialized Course I / Product Design

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108925 | Industrial Crystallization | 6 CR | Kind |

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Acquisition of deep understanding of processes using the example of industrial crystallization. Transfer of this understanding into a numerical model.

Content

Crystallization processes and apparatus; Solubility, nucleation and growth kinetics; Modeling and Simulation of the particle size distribution in continuous and batch operated crystallizers; Numerical methods for solving the coupled mass and population balance; Apparatus design, determination of the principal dimensions of forced circulation crystallizers (python, excel or other programming language).

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 40 h
- Homework: 70 h
- Exam Preparation: 70 h

Literature

- Gnielinski, V.; Mersmann, A.; Thurner, F. Verdampfung, Kristallisation, Trocknung; Vieweg, 1993
- Randolph, A. D.; Larson, M. A. Theory of particulate processes; Academic Press, 1971
Module: Industrial Genetics [M-CIWVT-104274]

Responsible: Dr. Anke Neumann
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Technical Biology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108812</td>
<td>Industrial Genetics</td>
<td>6 CR</td>
<td>Neumann</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
Students will be able to explain and describe the basic methods of genetic engineering mentioned above, such as methods of DNA recombination, sequencing and PCR; manipulation of gene expression in prokaryotes; production of heterologous proteins in prokaryotic and eukaryotic hosts; targeted mutagenesis and protein design; and metabolic engineering. The methods can be applied to similar problems and proposed solutions can be developed.

In the preparation of the seminar presentation, the students show that texts describing such methods can be analyzed and the industrial applicability of these methods can be critically discussed.

Content
Lecture: Fundamentals of genetic engineering with respect to its industrial applicability; methods of DNA recombination, sequencing and PCR; manipulation of gene expression in prokaryotes; production of heterologous proteins in prokaryotic and eukaryotic hosts; targeted mutagenesis and protein design; genetically modified microorganisms in industry; production of pharmaceutically active proteins such as e.g. Insulin or interferon, antibiotic production, molecular diagnostics, production of antibodies, vaccines and therapeutics; metabolic engineering - optimization of substance production by genetic engineering methods.

Seminar: 10 min Lecture on a current example from industrial genetic engineering. Topics will be provided.
3.64 Module: Industrial Wastewater Treatment [M-CIWVT-105903]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 4/1/2022)
Specialized Course I / Environmental Process Engineering (Usage from 4/1/2022)
Specialized Course I / Water Technology (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111861</td>
<td>Industrial Wastewater Treatment</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The learning control is an oral examination lasting approx. 20 minutes.

Prerequisites
None

Competence Goal
The students will be able to differentiate the composition of different types of industrial wastewater. Moreover, the students will have knowledge of treatment technologies, which can be applied to industrial wastewater. The students will be able to judge the biodegradability of industrial wastewater and can use that to design the needed treatment trains. The students do know treatment steps, which can be used enhance reuse the treated wastewater.

Content
This module provides the huge range of industrial wastewater composition for different industries (food, pulp and paper, chemical and pharmaceutical industry). The biodegradability will be analyzed and discussed with respect to potential treatment systems. A main focus will be biological treatment systems, especially biofilm reactors. Finally, the potential of water reuse in industrial processes will be discussed and solution will be provided.

Module grade calculation
The module grade is the grade of the oral exam.

Workload

- Attendance time: 30 h
- self-study: 60 h
- exam preparation: 30 h

Literature

Module: Innovation Management for Products & Processes in the Chemical Industry [M-CIWVT-104397]

Responsible: Dr. Claudius Neumann

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Bioresource Engineering

Credits: 4

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Competence Certificate

The examination is a written examination (multiple choice) with a duration of about 30 minutes (section 4 subsection 2 number 1 SPO).

The grade of the written examination is the module grade.

Prerequisites

None

Competence Goal

The students get to know the structures of the chemical industry.

They receive an insight into the interpretation of business figures and their connection with innovations.

They know how different factors influence innovation strategies.

They get to know the expiry of an innovation process.

The students have the opportunity to utilize the presented methods and tackle problems which are close to industrial application.

Besides the students receive an insight into the work of an innovation management (excursion).
Content

Background

The chemical industry had to adapt to the economic conditions of globalization during the last decades. It has been aligned to global markets thus changing the formerly scientific-technology oriented R&D. Today the work in industrial product & process development requires skills besides a thorough knowledge about chemistry and technology: a good general economic understanding combined with the competence to manage a complex system based on business figures. This competence allows scientifically and technology educated scientists and engineers to align chemical product and process development within the Innovation Strategy to the strategic business plan. It is implemented within the Innovation Process and monitored and managed by characteristic performance indicators. Thus, the economic benefit of innovation can be quantified using quantitative measures.

Scope of the lecture

The lecture intends to provide the fundamentals for understanding Innovation Management and to utilize them by tackling examples close to industrial application. The course addresses the following key questions:

What are the structures in the chemical industry?
What are business figures? How are they interpreted and applied in terms of innovation?
What are customers? How do they influence innovation?
How do marketing and product management determine innovation?
What is a business strategy? How is it connected to the innovation strategy?
What is the Innovation Process? How is it managed?
What is Innovation Portfolio Management? Why is it needed for successful innovation?
What are state of the art Innovation Management practices in the chemical industry?

Visit

The lecture includes a one day visit to the Evonik Site Hanau for experiencing current Innovation Management practices from discussions with managers in the chemical industry.

Workload

- Attendance time (Lecture): 30 h (Block lectures 4 days)
- Homework: 60 h
- Exam Preparation: 30 h

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 10/1/2022)
Specialized Course I / Applied Rheology (Usage from 10/1/2022)
Specialized Course I / Entrepreneurship in Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-CIWVT-112170 Innovative Concepts for Formulation and Processing of Printable Materials 4 CR Willenbacher

Competence Certificate
The learning control is an oral examination lasting approx. 20 minutes.

Prerequisites
None.

Competence Goal
Students will be able to explain and apply basic concepts of stability and flow behavior of disperse systems. They will learn about industrially important printing and coating processes and be able to design complex fluid systems for these processes. Emphasis will be on printable ceramic and electrically or thermally conductive materials. Students will understand the concept of capillary suspensions and its potential applications for product design and be able to apply it to practical examples.

Content
- Fundamentals of the stability of disperse systems - suspensions and emulsions
- Fundamentals of rheology of disperse systems
- Rheology in printing and coating technology
- Screen printing for electronics and solar cells
- Atomization and automotive coating
- Extrusion-based additive manufacturing (AM) - ceramics, silicone, bio-gels
- Paste formulation concepts based on capillary suspensions
- Conductive adhesives and pastes for printed electronics

Module grade calculation
The module grade is the grade of the oral exam.

Workload
- Attendance time: 30 h
- Self-study: 50 h
- Exam preparation: 40 h

Literature
Colloid Science, Terence Cosgrove, Wiley, 2010, Scientific publications on the individual chapters will be announced in the lecture.
Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
The students are familiar with the important methods of modern instrumental analytics and their range of application. They can explain and critically compare the underlying physical principles of the methods. Students are able to develop solution concepts for analytical problems and to choose adequate methods to answer a specific question.

Content
Introduction to selected methods of modern instrumental analysis, as for example optical methods and magnetic resonance methods. Imaging techniques such as MRI, µCT and optical microscopy (CLSM and OCT) and fundamentals of data and image analysis are presented. The focus is on a clear presentation of the physico-chemical fundamentals and the underlying principles as well as the fields of application.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 30 h
- Exam Preparation: 60 h

Literature
References are given in the respective context in the lecture.
3.68 Module: Internship [M-CIWVT-104527]

Responsible: Dr.-Ing. Siegfried Bajohr
Dr.-Ing. Barbara Freudig

Organisation: KIT Department of Chemical and Process Engineering

Part of: Internship

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109276</td>
</tr>
</tbody>
</table>

Prerequisites
None

Workload
12 weeks (420 h - 480 h)
Module: Introduction to Sensory Analysis [M-CIWVT-105933]

Responsible: TT-Prof. Dr. Katharina Scherf
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 4/1/2022)
Specialized Course I / Food Process Engineering (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109128</td>
<td>Introduction to Sensory Analysis with Practice</td>
<td>2</td>
<td>CR</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
3.70 Module: Liquid Transportation Fuels [M-CIWVT-105200]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Technical Supplement Course
- Specialized Course I / Environmental Process Engineering
- Specialized Course I / Energy and Combustion Technology
- Specialized Course I / Entrepreneurship in Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CR</td>
<td>Liquid Transportation Fuels</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning Control is an oral examination with a duration of about 20 minutes (SPO section 4 subsection 2).

Prerequisites

None

Competence Goal

The students are enabled to balance modern processes for the production of liquid fuels and to put them into context of a modern refinery. Actual alternative processes for the production of liquid fuels, their advantages and disadvantages have to be understood.

Content

Introduction to Chemical Fuels (resources, global and regional consumption, CO2 emissions, characterization of raw materials and products, overview of conversion processes; petroleum refining: characterization of crude oils and refinery products, physical separation processes, chemical conversion processes (cracking, hydrotreating, reforming, H2 production etc); liquid fuels from renewable sources (biomass, renewable electricity); gaseous fuels; gasification of solid fuels; economic aspects and perspectives.

Module grade calculation

Grade of the Module ist the grade of oral examination.

Workload

- Lectures and Exercises: 45 h
- Homework: 75 h
- Exam preparation: 60 h

Literature

3.71 Module: Mass Transfer II [M-CIWVT-104369]

Responsible: Prof. Dr.-Ing. Wilhelm Schabel

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

Specialized Course I / Thermal Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108935</td>
<td>Mass Transfer II</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

The grade of the oral examination is the module grade.

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 90 h
- Exam Preparation: 45 h
Module: Materials and Processes for Electrochemical Storage [M-CIWVT-104353]

Responsibility: Prof. Dr. Jens Tübke
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Mechanical Process Engineering

Credits
• 4

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
German

Level
4

Version
2

Mandatory
T-CIWVT-108146 Materials and Processes for Electrochemical Storage 4 CR Tübke

Competence Certificate
The examination is an oral examination with a duration about 30 minutes.

Prerequisites
None

Competence Goal
The students know how electrochemical storage devices and converters (batteries and fuel cells) work and the basic electrochemical principles required for this. They are familiar with active and passive materials used, know how these can be manufactured and, if necessary, modified. They will be familiar with process engineering methods for the manufacture of battery cells and fuel cell stacks and know how overall systems are constructed.

Content
Electrochemical basics

Basic introduction to electrochemistry, electrochemical potentials, concentration dependence, electrochemical methods.

Basics of electrochemical storage systems and fuel cells.

Structure and operation of primary and secondary batteries:
- Alkali-manganese, zinc-carbon, lead-acid, zinc-air, nickel-cadmium, nickel-metal hydride, redox-flow batteries, high-temperature batteries, lithium (sodium)-ion batteries, lithium-sulfur batteries, solid-state batteries.
- Design and operation of fuel cells:
 - PEMFC, AMFC, DMFC, SOFC, MCFC.

Materials and processes for electrochemical storage systems

- Intercalation and conversion electrodes, liquid, polymeric and ceramic separators (electrolytes), Electrolyte additives and electrode coatings,
- current collector materials (metals, modified plastics), housing materials
- catalyst and membrane materials for fuel cells, stack design and materials used in fuel cells

Production methods and processes for manufacturing battery cells and fuel cell stacks

- Design principles and production processes for water-based battery systems (lead-acid, nickel-metal hydride)
- Design principles and production processes for lithium-based battery systems and solid-state batteries,
- Electrode production (paste production, coating process, drying process), dry coating process,
- Production processes for separation foils for different battery systems
- Quality assurance processes in cell production, cell forming and testing processes for cells
- Manufacturing processes for stack components for fuel cells

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 80 h
- Exam Preparation: 10 h
3.73 Module: Measurement Techniques in Chemical Processing [M-CIWVT-104490]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Chemical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>CR</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109086</td>
<td>Measurement Techniques in Chemical Processing</td>
<td>4 CR</td>
<td>Müller</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Students are capable to discuss various measurement methods and are able to compare and analyse different measurement principles.

Due to the mentioned aims, students are able to criticise and rate various measurement methods.

Content
Theory and practice of online measurement methods e.g.: pressure, temperature, pH value and material properties for example: density.

Module grade calculation
The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 22.5 h
- Homework: 26 h
- Exam Preparation: 80 h
3.74 Module: Measurement Techniques in Chemical Processing (including practical course) [M-CIWVT-104450]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Chemical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109086</td>
<td>Measurement Techniques in Chemical Processing</td>
<td>4 CR</td>
<td>Müller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-109181</td>
<td>Practical Course Measurement Techniques in Chemical Processing</td>
<td>2 CR</td>
<td>Müller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The examination consists of:

1. Oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).
2. Ungraded Laboratory work (section 4 subsection 3 SPO).

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students are capable to discuss various measurement methods and are able to compare and analyse different measurement principles.

Due to the mentioned aims, students are able to criticise and rate various measurement methods.

Content

Theory and practice of online measurement methods e.g.: pressure, temperature, pH value and material properties for example: density.

Workload

- Attendance time (Lecture): 22.5 h
- Internship: 11.5 h, 8 attempts
- Homework: 26 h
- Exam Preparation: 120 h
3.75 Module: Measurement Techniques in the Thermo-Fluid Dynamics [M-CIWVT-104297]

Responsibility: Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Thermal Process Engineering
- Specialized Course I / Technical Thermodynamics (Usage from 10/1/2023)
- Specialized Course I / Combustion Technology
- Specialized Course I / Energy Process Engineering

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108837</td>
<td>Measurement Techniques in the Thermo-Fluid Dynamics</td>
<td>6</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Learning Control is an oral examination with a duration of about 20 minutes (section 4 subsection 2 SPO).

Prerequisites

None

Competence Goal

- The students are able to plan an experiment, select the appropriate quantities to be measured and identify the appropriate dimensionless numbers for the universal representation of the results.
- The students have a thorough understanding of several advanced measuring techniques used for basic research in thermofluids. They are able to select the most appropriate technique for an experimental study.
- The students can assess the accuracy and limitations of measuring techniques quantitatively.
- The students understand the different time scales of involved phenomena and the stochastic nature of experiments, measuring techniques and turbulent flows. They are able to accurately process acquired measurement data in the time and in the spectral domain.

Content

- Design of experiment and dimensional analysis
- Flow visualization (light sheet techniques, shadowgraphy, Schlieren and interferometry)
- Laser Doppler Anemometry
- Phase Doppler Anemometry
- Particle Image Velocimetry
- Laser Induced Fluorescence
- Absorption spectroscopy
- Overview of further techniques
- Data processing for turbulent flows in the time and spectral domain

Module grade calculation

Grade of the module is the grade of the oral examination.

Workload

- Lectures and Exercises: 45 h
- Homework: 25 h
- Exam Preparation: 110 h
Literature

3.76 Module: Membrane Reactors [M-CIWVT-105663]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage from 4/1/2021)
- Specialized Course I / Chemical Process Engineering (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-111314</td>
<td>Membrane Reactors</td>
<td>4 CR</td>
<td>Pfeifer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Learning control is an oral examination with a duration of about 20 minutes (SPO section 4, subsection 2 No. 2).

Prerequisites
None

Module grade calculation

The grade of module is the grade of oral examination.

Annotation

The module is not offered in summer semester 23 and summer semester 24. Examinations for persons who have already attended the lecture are possible by arrangement.

Workload

- Lectures and exercises: 30 h
- Homework: 50 h
- Exam preparation: 40 h
3.77 Module: Membrane Technologies in Water Treatment [M-CIWVT-105380]

Responsible: Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Advanced Fundamentals (BIW) (Usage from 4/1/2021)
- Technical Supplement Course (Usage from 4/1/2020)
- Specialized Course I / Food Process Engineering (Usage from 4/1/2020)
- Specialized Course I / Water Technology (Usage from 4/1/2020)
- Specialized Course I / Bioresource Engineering (Usage from 4/1/2020)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 5
Version: 2

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-110864 Excursions: Membrane Technologies</td>
<td>1 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-110865 Membrane Technologies in Water Treatment</td>
<td>5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam, 90 min
Ungraded learning control as a prerequisite for the exam

Prerequisites
None

Competence Goal
Students have a fundamental knowledge on membrane technology in water and waste water treatment. They learn how the different membrane systems (reverse osmosis, nanofiltration, ultrafiltration, microfiltration, and dialysis) have to be applied to produce a certain water quality. They are able to design such systems.

Content
- The solution-diffusion model
- Concentration polarization and the consequences for membrane module design.
- Membrane production and properties.
- Membrane configuration and design
- Membrane systems for desalination and brackish water treatment
- Membrane bio reactors for waste water treatment
- Biofouling, scaling and prevention of both
- Excursions with introduction: applied membrane processes in waste water disposal and drinking water supply.

Module grade calculation
Grade of the module is the grade of oral examination.

Workload
Attendance time: Lectures: 30 h; Exercises/ excursions: 15 h
Preparation/follow-up: 60 h
Examination + exam preparation: 75 h

Recommendation
Module „Water Technology (PA221)“

Literature
- Vorlesungsunterlagen in ILIAS
Module: Microbiology for Engineers [M-CIWVT-104319]

Responsible: Prof. Dr. Thomas Schwartz
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Food Process Engineering
Specialized Course I / Water Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106834 | Microbiology for Engineers | 4 CR | Schwartz |

Prerequisites
None

Workload
- Attendance time (Lecture): 30 h
- Homework: 50 h
- Exam Preparation: 40 h
Module: Microfluidics [M-CIWVT-104350]

- **Responsible:** Gero Leneweit
- **Organisation:** KIT Department of Chemical and Process Engineering
- **Part of:**
 - Technical Supplement Course
 - Specialized Course I / Applied Rheology
 - Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108909</td>
<td>Microfluidics</td>
<td>4 CR</td>
<td></td>
<td>Leneweit</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Acquisition of capacities for the development of microfluidic systems and their investigation

Content

Definition of the term „microfluidics“, physics of miniaturization, scales in micro and nanofluicics, introduction to fabrication methods, fluid dynamics of microfluidic systems, basic equations of fluid mechanics, creeping flows, electrohydrodynamics of microsystems, electroosmosis, electrophoresis and DNA sequencing, diffusion, mixing and separation in microsystems, interfacial phenomena and multiphase flows in microsystems, digital microfluidics and microfluidic systems, Microfluidic production of mRNA lipid nanoparticles, process engineering research on advanced drug delivery systems

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h

Literature

Skriptum zur Vorlesung
3.80 Module: Microfluidics and Case Studies [M-CIWVT-105205]

Responsible: Gero Leneweit
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Technical Supplement Course
- Specialized Course I / Applied Rheology
- Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108909</td>
<td>Microfluidics</td>
<td>4 CR</td>
<td>Leneweit</td>
</tr>
<tr>
<td>T-CIWVT-110549</td>
<td>Microfluidics - Case Studies</td>
<td>2 CR</td>
<td>Leneweit</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Acquisition of capacities for the development of microfluidic systems and their investigation

Content
Definition of the term „microfluidics“, physics of miniaturization, scales in micro and nanofluidics, introduction to fabrication methods, fluid dynamics of microfluidic systems, basic equations of fluid mechanics, creeping flows, electrohydrodynamics of microsystems, electroosmosis, electrophoresis and DNA sequencing, diffusion, mixing and separation in microsystems, interfacial phenomena and multiphase flows in microsystems, digital microfluidics and microfluidic systems
Lab experiments: Preparation of nanoemulsions from aerosols in a micromixer; preparation and characterization of nanocapsules as drug delivery systems by nanofluidics.

Module grade calculation
The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 35 h
- Case Studies: 60 h

Literature
Skriptum zur Vorlesung
Module: Microrheology and High Frequency Rheology [M-CIWVT-104395]

Responsible: Dr.-Ing. Claude Oelschlaeger

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-CIWVT-108977 Microrheology and High Frequency Rheology 2 CR Oelschlaeger

Prerequisites

None

Workload

- Attendance time (Lecture): 15 h
- Homework: 35 h
- Exam Preparation: 10 h
3.82 Module: Mixing, Stirring, Agglomeration [M-CIWVT-105399]

Responsible: Dr.-Ing. Frank Rhein
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Technical Supplement Course (Usage from 4/1/2020)
- Specialized Course I / Applied Rheology (Usage from 4/1/2020)
- Specialized Course I / Mechanical Process Engineering (Usage from 4/1/2020)
- Specialized Course I / Product Design (Usage from 4/1/2020)
- Specialized Course I / Food Process Engineering (Usage from 4/1/2020)
- Specialized Course I / Bioresource Engineering (Usage from 4/1/2020)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 5
Version: 1

Mandatory
T-CIWVT-110895 Mixing, Stirring, Agglomeration 6 CR Rhein

Competence Certificate
Learning control is an oral individual examination with a duration of 30min according SPO section 4, subsection 2.

Prerequisites
None

Competence Goal
The students are able to explain the fundamental laws and the derived physical principles of mixing, stirring and the particle agglomeration and not only to relate them to the principally suited processes but also to selected apparatuses. They have the ability to apply the relationship between product, operation and design parameters to different processes. They can analyse the related process engineering problems with scientific methods and give alternative problem solution proposals. On the basis of their skills they can evaluate whether and if applicable a promising process can be designed.

Content
- Fundamentals and applications
- statistic methods to characterize the mixing quality
- characterisation of the flow properties of bulk solids and liquids
- introduction into dimension analysis to achieve characteristic numbers important for mixing problems
- scale-up procedures for specific mixing processes
- solids mixing processes like free-fall, pusher and intensive mixers, fluidised bed, air jet, and turnover mixers; pile mixing techniques
- fluid-mixing processes like homogenisation, suspending, emulsifying, gassing and heat transfer
- static mixers and kneaders
- adhesion forces between particles
- agglomerate properties: characterisation of agglomerates regarding size, size distribution, porosity, density, stability, flow behaviour and instantiation behavior
- agglomeration processes like roll-agglomeration, mixing agglomeration, fluidized bed and spray agglomeration, agglomeration in liquids by means of coagulation, flocculation or changed wettability, press agglomeration by means of tabletting, roller compaction or extrusion and post hardening of agglomerates by means of sintering
- Introduction to modeling and simulation of mixing and agglomeration processes

Module grade calculation
The module grade ist the grade of oral examination.

Workload
Lectures: 3 SWS/ 45 h
Homework: 75 h
Exam preparation: 60 h
Total: 180 h
3.83 Module: Modeling Wastewater Treatment Processes [M-BGU-106113]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Technical Supplement Course (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-112371 | Modeling Wastewater Treatment Processes | 6 CR | Azari Najaf Abad |

Competence Certificate

- 'Teilleistung' T-BGU-112371 with examination of other type according to § 4 Par. 2 No. 3

Prerequisites

none

Competence Goal

The students will be able to learn the basics of wastewater treatment modeling to develop a matrix for a biological model. Another objective is being able to work with several relevant computer software as tools for modeling wastewater treatment processes and running sensitivity analysis, calibration, and validation. At the end of this course, the students will be able to apply the theory concerning modeling practice in case studies with real datasets using one of the relevant software they learned. During the presentation, they will discuss and explain the outcome of the model.

Content

The course deals with the basis of wastewater modeling (kinetics, stoichiometry, mass balances, hydraulics, mixing, and matrix notation), an introduction of existing activated sludge models (ASM1, ASM2, ASM3, ASM2d), and a selection of computer programs (AQUASIM, SIMBA, GPS-X, and SUMO) in which the models can be built in and the protocol for the development of calibrated activated sludge models will be practiced. Different adjustments to basic ASM models for characterization of biofilm and granular sludge model, as well as anaerobic digestion models (ADM), will be also discussed. Besides the presentations, exercises form a part of the course. Finally, case studies with real datasets on modeling wastewater treatment plants will be practiced.

Module grade calculation

grade of the module is grade of the exam

Annotation

Module will be offered newly as from summer term 2023.

The number of participants in the course is limited to 20 persons. The registration is made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geocology and further study programs.

Workload

contact hours (1 HpW = 1 h x 15 weeks):

- lecture/exercise: 60 h

independent study:

- preparation and follow-up lecture/exercises: 60 h
- preparation of report and presentation (examination): 60 h

total: 180 h

Recommendation

Vorkenntnisse in Siedlungswasserwirtschaft, Modul 'Urban Water Infrastructure and Management'
Literature
3.84 Module: Module Master's Thesis [M-CIWVT-104526]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Master's Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109275</td>
<td>Master's Thesis</td>
</tr>
<tr>
<td>30 CR</td>
<td>Rauch</td>
</tr>
</tbody>
</table>

Prerequisites

Process Technology and at least three further modules of the advanced fundamentals has to be passed. The internship has to be passed. The examination board decides on exceptions.

(Compare SPO section 14 subsection 1)

Modeled Conditions

The following conditions have to be fulfilled:

1. You have to fulfill 3 of 11 conditions:
 1. The module M-CIWVT-103064 - Selected Formulation Technologies must have been passed.
 2. The module M-CIWVT-104384 - Biotecnological Production must have been passed.
 3. The module M-CIWVT-103065 - Biopharmaceutical Purification Processes must have been passed.
 4. The module M-CIWVT-103072 - Computational Fluid Dynamics must have been passed.
 5. The module M-CHEMBIO-104486 - Physical Chemistry (incl. Lab) must have been passed.
 6. The module M-CIWVT-103058 - Thermodynamics III must have been passed.
 7. The module M-CIWVT-104383 - Kinetics and Catalysis must have been passed.
 8. The module M-CIWVT-104378 - Particle Technology must have been passed.
 9. The module M-CIWVT-104377 - Thermal Transport Processes must have been passed.
10. The module M-CIWVT-105380 - Membrane Technologies in Water Treatment must have been passed.
11. The module M-CIWVT-106297 - Bioprocess Development must have been passed.

2. The module M-CIWVT-104374 - Process Technology must have been passed.
3. The module M-CIWVT-104527 - Internship must have been passed.

Workload

Homework: 900 h
Module: Multiphase Reaction Engineering [M-CIWVT-104277]

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
- Specialized Course I / Chemical Process Engineering

Credits: 10
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 5
Version: 1

Mandatory
- T-CIWVT-108815 | Multiphase Reaction Engineering | 10 CR | Kraushaar-Czarnetzki

Competence Certificate
The examination is an oral examination with a duration of 40 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Students know the film model and are able to apply it for the calculation of mass transport effects in reacting multiphase systems. They know technical two- and three-phase reactors with their fields of application and their limits. For multiphase reactors with well-defined properties, they are able to design reactor dimensions and to calculate suitable process conditions.

Students are familiar with the functions of heterogeneous catalysts and are able to apply kinetic models to interpret catalytic effects. They know technical manufacturing techniques and can discuss their impact on catalyst properties. Furthermore, students know important physical-chemical and functional characterization methods, and they are able to use characterization data for a qualified assessment of the applicability and performance of heterogeneous catalysts.

Content
Theory of mass transfer and reaction in multiphase reacting systems (film model); technical reactors for two-phase systems (gas-liquid, liquid-liquid, gas-solid); reactors for three-phase systems.

Functions and kinetic effects of catalysts; structure, manufacturing and forming/shaping of heterogeneous catalysts; physico-chemical properties (composition, morphological and mechanical properties, specific total and partial surface areas, porosity and pore size distribution, surface chemistry) and their characterization; functional characterization (activity, selectivity).

Workload
- Attendance time (Lecture): 70 h
- Revision course: 30h
- Homework: 120 h
- Exam Preparation: 80 h

Literature
- Kraushaar-Czarnetzki: Skript "Chemische Verfahrenstechnik II"
- Kraushaar-Czarnetzki: Foliensammlung "Heterogene Katalyse I"

Alle Lernmaterialien und Hinweise auf Spezialliteratur sind auf der Lernplattform ILIAS (https://ilias.studium.kit.edu) abgelegt.
Module: Nanoparticles – Structure and Function [M-CIWVT-104339]

Responsible: Dr.-Ing. Jörg Meyer
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- Technical Supplement Course
 - Specialized Course I / Gas Particle Systems
 - Specialized Course I / Mechanical Process Engineering
 - Specialized Course I / Product Design

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-CIWVT-108894 Nanoparticles – Structure and Function 6 CR Meyer

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes in case of a single module examination and 20 minutes in case of an overall examination of the specialized course (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Students develop an understanding of the correlation between structure of nanoscaled systems and their physical properties. Additionally, they understand how process parameters in the synthesis of nanoscaled particle systems determine the resulting particle structure.

Based on the knowledge of the structure-function-relationships and of the synthesis routes, the students can develop strategies for the systematic generation and optimization of nanoparticulate systems for specific applications.

Content
- Technical and historical classification of the lecture content
- Methods for visualization of nanoscaled objects and structures
- Description and physical basis of specific properties of nanoscaled particles (and other structures / shapes)
 - Size dependency of surface energy
 - Modification of the phase transition temperature (compared to the bulk phase)
 - Mechanical properties
 - Optical properties
 - Electrical properties
- Methods for synthesizing nanoscaled particle systems in the gas phase with well-defined properties
- Relevant process parameters for the adjustment of
 - Particle size (primary particle and agglomerate size)
 - Agglomeration state
 - Agglomerate strength
 - Structure / phase of the particle material
 - Chemical structure of particle surface
 - Multi-level structuring (core-shell, nanoparticles on support structures)

Module grade calculation
The module grade is the grade of oral examination.

Workload
- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h
Module: NMR for Engineers [M-CIWVT-104401]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
 - Specialized Course I / Mechanical Process Engineering
 - Specialized Course I / Water Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108984</td>
<td>NMR for Engineers</td>
<td>4 CR</td>
<td>Guthausen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-109144</td>
<td>Laboratory Work for NMR for Engineers</td>
<td>2 CR</td>
<td>Guthausen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Competence Goal

Knowledge about NMR and their applications, basic understanding of the phenomena

Content

An overview of applications of nuclear magnetic resonance (NMR) will be given together with the basic description of this analytical tool. In the focus of the lectures are typical applications of NMR in chemical and bio engineering. The understanding of this versatile analytical method will be developed on the basis of dedicated examples.

Workload

- Attendance time (Lecture): 30 h
- Revision course: 30 h
- Internship: Attendance Time 30 h, Preparation Time 30 h
- Exam Preparation: 60 h

Literature

Lehrbücher Kimmich und Callaghan, weitere Literatur wird jeweils in der Vorlesung angegeben.
3.88 Module: NMR Methods for Product and Process Analysis [M-CIWVT-105890]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage from 4/1/2022)
- Specialized Course I / Mechanical Process Engineering (Usage from 4/1/2022)
- Specialized Course I / Water Technology (Usage from 4/1/2022)
- Specialized Course I / Biopharmaceutical Process Engineering (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>T-CIWVT-111843</th>
<th>NMR Methods for Product and Process Analysis</th>
<th>Guthausen</th>
</tr>
</thead>
</table>

Prerequisites
None

Competence Goal
Knowledge about NMR and their applications, basic understanding of the phenomena.

Content
An overview of applications of nuclear magnetic resonance (NMR) will be given together with the basic description of this analytical tool. In the focus of the lectures are typical applications of NMR in chemical and bio engineering. The understanding of this versatile analytical method will be developed on the basis of dedicated examples.

Module grade calculation
The module grade is the grade of the oral examination.

Workload
- Attendance time (Lecture): 30 h
- Revision course: 30 h
- Exam Preparation: 60 h

Literature
Lehrbücher Kimmich und Callaghan, weitere Literatur wird jeweils in der Vorlesung angegeben.
3.89 Module: Nonlinear Process Control [M-CIWVT-106316]

Responsible: Prof. Dr.-Ing. Thomas Meurer
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 10/1/2023)
Specialized Course I / Automation and Process Systems Engineering (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-112824 | Nonlinear Process Control | 6 CR | Meurer |

Competence Certificate

Learning control is an oral examination with a duration of about 45 minutes.

Prerequisites

None

Content

Nonlinearities are ubiquitous in nature. Differing from linear control theory and linear control systems, which typically rely on the local linearization of a nonlinear system around some equilibrium, this module addresses nonlinear concepts for the analysis and the control of nonlinear systems. The course covers the following topics:

- Introduction to the dynamic analysis of nonlinear systems
- Differential geometric concepts
- Exact feedback linearization
- Differential flatness and flatness-based feedforward and tracking control
- Lyapunov theory and Lyapunov-based design methods

Problem sets are considered in the exercises to apply the developed methods using analytical tools as well as computer algebra systems to realize the design approaches.

Module grade calculation

The grade of the module is the grade of the oral exam.

Annotation

If required, the course will be offered in English.

Workload

Attendance time: Lectures: 30 hrs. Exercises: 15 hrs.
Self-study: 75 hrs.
Exam preparation: 60 hrs.

Literature

3.90 Module: Numerical Methods in Fluid Mechanics [M-MATH-102932]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105902</td>
<td>Numerical Methods in Fluid Mechanics</td>
<td>4 CR</td>
<td>Dörfler, Thäter</td>
</tr>
</tbody>
</table>
3.91 Module: Nutritional Consequences of Food Processing [M-CIWVT-104255]

Responsible: PD Dr. Karlis Briviba

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Food Process Engineering
- Specialized Course I / Entrepreneurship in Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108792</td>
<td>Nutritional Consequences of Food Processing</td>
<td>4 CR</td>
<td>Briviba</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 45 h
- Exam Preparation: 45 h
Module: Optimal and Model Predictive Control [M-CIWVT-106317]

Responsible: Prof. Dr.-Ing. Thomas Meurer

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage from 4/1/2023)
- Specialized Course I / Automation and Process Systems Engineering

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: English

Level: 5

Version: 1

| Mandatory | T-CIWVT-112825 | Optimal and Model Predictive Control | 6 CR | Meurer |

Competence Certificate
Learning control is an oral examination with a duration of about 45 minutes.

Prerequisites
none

Competence Goal
Informationen folgen

Content
Many problems in industry and economy rely on the determination of an optimal solution satisfying desired performance criteria and constraints. In mathematical terms this leads to the formulation of an optimization problem. Here it is in general distinguished between static and dynamic optimization with the latter involving a dynamical process. This lecture gives an introduction to the mathematical analysis and numerical solution of dynamic optimization problems with a particular focus on optimal control and model predictive control. The lecture addresses the following topics:

- Fundamentals of dynamic optimization problems
- Dynamic optimization without and with constraints
- Linear and nonlinear model predictive control
- Numerical methods

Selected examples are considered and solved in the exercises and dedicated computer exercises.

Module grade calculation
The grade of the module is the grade of the oral exam.

Workload
Attendance time: Lectures: 30 hrs. Exercises: 15 hrs.

Self-study: 60 hrs.

Exam preparation: 75 hrs.

Literature
- E. Camacho, C. Alba: Model Predictive Control, Springer, 2004
3.93 Module: Organ Support Systems [M-MACH-102702]

Responsible: apl. Prof. Dr. Christian Pylatiuk

Organisation: KIT Department of Mechanical Engineering

Part of: Technical Supplement Course
Specialized Course I / Biopharmaceutical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105228</td>
</tr>
</tbody>
</table>

Competence Certificate
A performance assessment is held in form of a written examination of 45 minutes.

Prerequisites
none

Competence Goal
Students have comprehensive knowledge of the functioning of support systems and their components (e.g. sensors, actuators) for different human organs (e.g. heart, kidney, liver, eye, ear, locomotor system). They know the physical basics, the technical solutions and the essential aspects of these medical technology systems and their current limitations. Furthermore, they know bioreactors and other methods of using the body's own cells to support organs (tissue engineering). Furthermore, they have comprehensive knowledge of organ transplantation and its limitations.

Content
Hemodialysis, liver dialysis, heart-lung machine, artificial hearts, biomaterials, definition and classification of organ support and organ replacement, hearing prostheses, visual prostheses, exoskeletons, neuroprostheses, endoprostheses, tissue engineering.

Module grade calculation
The module grade is the grade of the written exam.

Workload
1. Attendance time Lecture: 15 * 2h = 30h
2. Pre- and postprocessing time Lecture: 15 * 3h= 45h
3. Exam preparation and attendance exam: 45h

Total: 120h = 4 LP

Recommendation
The content of module MMACH-105235 complements this lecture.

Literature
- E. Wintermantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.
Module: Particle Technology [M-CIWVT-104378]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: Advanced Fundamentals (CIW)

Technical Supplement Course

Credits 6

Grading scale Grade to a tenth

Recurrence Each summer term

Duration 1 term

Language German

Level 5

Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106028</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites
None

Competence Goal
Students develop an advanced understanding of properties & behavior of particles and particulate systems in important engineering applications; they are able to use this understanding for calculations and design of selected processes.

Content
Description and behavior of particles and particulate systems in engineering applications; selected unit operations in particle technology.

Workload
- Attendance time (Lecture): 45 h
- Homework: 90 h
- Exam Preparation: 45 h

Learning type
22975 Partikeltechnik Lecture
22976 Übung zu Partikeltechnik Exercises
3.95 Module: Physical Chemistry (incl. Lab) [M-CHEMBIO-104486]

Responsible: Dr. Tomas Kubar
Dr. Benno Meier

Organisation: KIT Department of Chemistry and Biosciences

Part of: Advanced Fundamentals (CIW)
Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Code Name</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-109178</td>
<td>Physical Chemistry (Written Exam)</td>
<td>4 CR</td>
<td>Nattland</td>
</tr>
<tr>
<td>T-CHEMBIO-109179</td>
<td>Physical Chemistry (Lab)</td>
<td>2 CR</td>
<td>Kubar, Meier</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination consists of two Parts:

1. written examination with a duration of 60 minutes (section 4 subsection 2 number 1 SPO)
2. practical course, ungraded study achievement (§ 4 Abs. 3 SPO)

Prerequisites

None

Competence Goal

V+Ü: Students understand the main basics of quantum mechanics which are necessary for for the application of spectroscopic methods. They can understand and apply selected spectroscopic methods for the evaluation, analysis and solution of problems in engineering sciences.

They understand the thermodynamic formalism for the description of interfacial phenomena. They are able to analyze wetting and dewetting problems, nucleation phenomena as well as ad- and desorption within this formalism.

They can understand and analyze electrochemical cells within thermodynamics of heterogeneous systems with charged particles. They understand transport phenomena of charged particles in solutions. They can apply the Debye-Hückel-Theory to thermodynamic and transport phenomena. Using these knowledges they are able acquire and understand more complex electrochemical systems like batteries, fuel cells and corrosion processes.

P: Within the practical course they work on selected projects. Beginning with preparing working steps, over the experimental procedure, to the evaluation of the received data and the written presentation they deepen their knowledge in the field of selected experimental examples. They are able to interpret the results with respect to scientific significance and accuracy.

Content

V+Ü: description of fundamentals and application of physico-chemical subjects relevant for chemical engineering sciences:

- Basics of quantum mechanics and its application to spectroscopy, FTIR-absorption spectroscopy, UV-VIS spectroscopy, Raman spectroscopy, NMR spectroscopy;
- Thermodynamics of interfaces, Gibbs’ adsorption isotherm, adsorption at solid surfaces, Langmuir- and BET adsorption, nucleation theory;
- Electrochemistry, thermodynamics of heterogeneous systems with charged particles, electrochemical cells, Debye-Hückel theory, ionic migration in an electric field, technical application of electrochemistry;
- P: performance of selected experiments in the field of physical chemistry, improvement of theoretical knowledge focusing on selected topics.

Workload

Attendance time (V+Ü): 3 SWS; 45 h
Homework (V+Ü): 45 h
Exam Preparation: 30 h
Practical Course (4 times): 16 h
Practical Course (pre- and postprocessing): 44 h
Literature

1. W. Atkins, J. de Paula, Physikalische Chemie (aktuelle Ausgabe), Wiley-VCH, Weinheim;
2. Wedler, Lehrbuch der Physikalischen Chemie (aktuelle Ausgabe), Wiley-VCH, Weinheim;

Begleitend zu Vorlesung und Übung wird ein kompaktes Skriptum zur Verfügung gestellt.
Module: Physical Foundations of Cryogenics [M-CIWVT-103068]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
 Specialized Course I / Technical Thermodynamics

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-CIWVT-106103 Physical Foundations of Cryogenics 6 CR Grohmann

Competence Certificate
The examination is an oral examination with a duration of 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Understanding of the mechanisms of entropy generation, and the interaction of the first and the second law in thermodynamic cycles; understanding of cryogenic material properties; application, analysis and assessment of real gas models for classical helium I; understanding of quantum fluid properties of helium II based on Bose-Einstein condensation, understanding of cooling principles at lowest temperatures.

Content
Relation between energy and temperature, energy transformation on microscopic and on macroscopic scales, physical definitions of entropy and temperature, thermodynamic equilibria, reversibility of thermodynamic cycles, helium as classical and as quantum fluid, low-temperature material properties, cooling methods at temperatures below 1 K.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 45 h
- Homework: 45 h
- Exam Preparation: 90 h

Literature
3.97 Module: Power-to-X – Key Technology for the Energy Transition [M-CIWVT-105891]

Responsibility: Prof. Dr.-Ing. Roland Dittmeyer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-111841 | Power-to-X – Key Technology for the Energy Transition | 4 CR | Dittmeyer |
| T-CIWVT-111842 | Practical in Power-to-X: Key Technology for the Energy Transition | 2 CR | Dittmeyer |

Competence Goal

The students are familiar with the rationale and the basic concepts of Power-to-X conversion. They know the major routes and individual components and what can be expected in terms of performance metrics both on component and process level. They have developed a basic understanding of water and steam electrolysis as well as of plasma splitting of carbon dioxide. Moreover, they had a first encounter with real container plants for electrolysis and fuel synthesis in the Energy Lab 2.0 as well as modular setups for plasma splitting, fuel synthesis and fuel upgrading.

Content

The module will provide an introduction to Power-to-X technologies which are expected to play a major role in the future energy system. The rationale for converting renewable electrical energy into fuels and chemicals will be explained and substantiated with data from relevant studies. Concepts for central and distributed Power-to-X facilities will be described with a focus on modular technologies for distributed production. Different options for water and steam electrolysis as well as selective electrochemical reduction of carbon dioxide will be discussed with a view to technology readiness level, energy efficiency, and cost. The alternative concept of plasma-based activation of inert molecules will be introduced and the status of this technology will be assessed and compared to electrolysis. Basic process layouts for production of synthetic methanes, liquid hydrocarbons, methanol and ammonia from renewable electrical energy, carbon dioxide and water will be described and assessed in terms of material and energy flows and options for process integration. Moreover, concepts for offshore Power-to-X production will be explained and current research in this area will be highlighted. Finally, industrial project initiatives in the field of Power-to-X will be presented and discussed. The practical will cover four days and will be done in larger groups of up to 15 persons. Participants will be introduced to the containerized Power-to-Liquid Plant and its infrastructure in the Energy Lab 2.0 at KIT Campus North. They will work at this site with a containerized water electrolyzer and steam electrolyzer for hydrogen production. Moreover, the group will be made familiar with an experimental setup for plasma splitting of carbon dioxide in the plasma lab jointly operated by IMVT and IHM and with the synthesis and upgrading of Fischer-Tropsch-Fuels in the synfuel lab at IMVT.

Module grade calculation

The module grade is the grade of the oral exam.

Annotation

Practical course: Dates by arrangement, Location: IMVT, KIT Campus Nord, Energy Lab 2.0, Building 605.

Workload

- Attendance time:
 - lecture: 30 h
 - lab: 16 h (4 dates)
- Self-study: 90 h
- Exam preparation: 45 h

Learning type

Learning control consists of:

1. Lab, ungraded T-CIWVT-111842
2. Oral examination, duration of about 30 minutes T-CIWVT-111841
Literature
3.98 Module: Practical Course Combustion Technology [M-CIWVT-104321]

Responsible: Dr.-Ing. Stefan Raphael Harth

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

- Specialized Course I / Combustion Technology
- Specialized Course I / Energy and Combustion Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grading</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108873</td>
<td>Practical Course Combustion Technology</td>
<td>4</td>
<td>CR</td>
<td>5</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO) about experiments.

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

The students are able to analyze results of combustion experiments and to assess the measurements methods.

Content

The laminar flame speed is experimentally determined, stability limits of combustion systems are investigated and the process of combustion is analyzed. Different measurement techniques (e.g. exhaust gas probes or optical measurement techniques) are applied.

Annotation

Dates of experiments by arrangement. Please contact the responsible person (stefan.harth@kit.edu) for registration by Mai the 15th by the latest.

If necessary, the course will be held in English.

Workload

- Experiments: 30 h (3 - 4 experiments depending on the complexity of the used test stands)
- Homework, test records: 50 h
- Exam preparation: 40 h
Module: Practical Course in Water Technology [M-CIWVT-103440]

Responsible: Dr. Gudrun Abbt-Braun
Dr. Andrea Hille-Reichel
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Water Technology (Usage from 10/1/2019)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

T-CIWVT-106840
Practical Course in Water Technology

T-CIWVT-110866
Excursions: Water Supply

Competence Certificate
The learning control consists of:

- Laboratory: 6 Experiments including entrance test, protocol; presentation about a selected experiment (about 15 minutes); final test (SPO section 4, subsection 2 No. 3)
- Excursions, protocols about excursions (ungraded)

Prerequisites
Module 'Water Technology (PA221)'

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-CIWVT-103407 - Water Technology** must have been started.

Competence Goal
Students can explain the most important processes in water treatment. They are able to do calculations, and to compare and interpret data. They learn how to use different methods, and to interpret different processes.

Content
6 different experiments out of: equilibrium study of the calcium carbonate system, flocculation, adsorption, oxidation, atomic absorption spectroscopy, ion chromatography, liquid chromatography, sum parameter, and an oral presentation of the student. In addition, excursions to two different treatment plants (waste water, drinking water).

Module grade calculation
Module grade is the grade of the laboratory and is formed as follows:

A total of 150 points can be achieved:

- maximum 60 points for the experiments (10 each)
- maximum 15 points for the presentation
- maximum 75 points for the final certificate

At least 80 points must be achieved in order to pass.

Workload
Attendance time: Introduction and presentation (4 h), 6 Experiments (4 h each), 2 excursions: 36 h
Preparation/follow-up, protocols, presentation: 50 h
Examination + exam preparation: 34 h
Literature

- Vorlesungsskript im ILIAS
- Praktikumsskript
Module: Principles of Ceramic and Powder Metallurgy Processing [M-CIWVT-104886]

Responsible: apl. Prof. Dr. Günter Schell
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Applied Rheology
Specialized Course I / Product Design

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-MACH-102111 Principles of Ceramic and Powder Metallurgy Processing 4 CR Schell

Competence Certificate
Learning control is an oral examination with a duration of about 25 minutes, SPO section 4 subsection 2.

Prerequisites
None

Competence Goal
The students know the basics of characterization of powders, pastes and suspensions. They have a fundamental understanding of the process technology for shaping of particulate systems. They are able to use these fundamentals to design selected wet- and dry forming processes.

Content
The course covers fundamentals of the process technology for shaping of ceramic or metal particle systems. Important shaping methods are reviewed. The focus is on characterization and properties of particulate systems, and, in particular, on process technology for shaping of powders, pastes, and suspensions.

Module grade calculation
Module grade is the grade of oral examination.

Workload
- Attendance Time: 30 h
- Homework: 45 h
- Exam preparation: 45 h

Recommendation
Knowledge of general material science is required.

Literature
- Folien zur Vorlesung: verfügbar unter http://ilias.studium.kit.edu
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation,2005
3.101 Module: Principles of Constrained Static Optimization [M-CIWVT-106313]

Responsible: Dr.-Ing. Pascal Jerono
Prof. Dr.-Ing. Thomas Meurer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course (Usage from 10/1/2023)
Specialized Course I / Automation and Process Systems Engineering (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-112811</td>
<td>Principles of Constrained Static Optimization</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control is an oral exam with a duration of about 45 minutes.

Prerequisites
None

Content
Optimization problems arise in a broad variety in different scientific and engineering domains ranging from the fit of parameter based on a performance criterion to finding extreme values of an objective function and further extending to machine learning applications. While dynamic optimization (addressed on the module M-CIWWT-106317) involves dynamical systems in static optimization the minimization (maximization) of functions subject to equality and inequality constraints is considered. This module gives an introduction to the mathematical analysis and numerical solution of unconstrained and constrained static optimization problems. The lecture addresses the following topics:

- Fundamentals of static optimization problems
- Unconstrained static optimization
- Constrained static optimization
- Numerical methods

Selected examples are considered and solved in the exercises and dedicated computer exercises.

Module grade calculation
The grade of the module ist the grade of the oral exam.

Workload
Attendance time: Lectures: 15 hrs. exercises: 15 hrs.
Self-study: 50 hrs.
Exam preparation: 40 hrs.
3.102 Module: Principles of Medicine for Engineers [M-MACH-102720]

Responsible: apl. Prof. Dr. Christian Pylatiuk
Organisation: KIT Department of Mechanical Engineering

Part of:
Technical Supplement Course
Specialized Course I / Biopharmaceutical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-105235 | Principles of Medicine for Engineers | 4 CR | Pylatiuk |

Competence Certificate
A performance assessment is held in form of a written examination of 45 minutes.

Prerequisites
none

Competence Goal
Students have a comprehensive understanding of the functioning and anatomical construction of organs, which are assigned to different medical disciplines. Furthermore, they know the physical basics, the technical solutions and the essential aspects of the application of medical technology procedures in diagnostics and therapy. They are familiar with common clinical pictures in the different medical disciplines and their relevance in health care. Through their acquired knowledge, students can communicate with physicians about medical-technical procedures and assess mutual expectations more realistically.

Content
Definition of disease and health and history of medicine, evidence-based medicine" and personalized medicine, nervous system, conduction, musculoskeletal system, cardiovascular system, anesthesia, respiratory system, sensory organs, gynecology, digestive organs, surgery, nephrology, orthopedics, immune system, genetics.

Module grade calculation
The module grade is the grade of the written exam.

Workload

1. Attendance time Lecture: 15 * 2h = 30h
2. Pre- and postprocessing time Lecture: 15 * 3h= 45h
3. Exam preparation and attendance exam: 45h

Total: 120h = 4 LP

Recommendation
The content of module MMACH-105228 complements this lecture.

Literature

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
Module: Process Analysis: Modeling, Data Mining, Machine Learning [M-ETIT-105594]

Responsible: Prof. Dr.-Ing. Michael Heizmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Technical Supplement Course (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-111214 | Process Analysis: Modeling, Data Mining, Machine Learning | 4 CR | Borchert, Heizmann |

Prerequisites

none

Module grade calculation

Die Modulnote ist die Note der mündlichen Prüfung.
Module: Process Analysis: Modeling, Data Mining, Machine Learning [M-CIWVT-106321]

Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 10/1/2023)
Specialized Course I / Automation and Process Systems Engineering (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-112829 | Process Analysis: Modeling, Data Mining, Machine Learning | 4 CR |
Module: Process and Plant Safety [M-CIWVT-104352]

Responsible: Hon.-Prof. Dr. Jürgen Schmidt

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
 - Specialized Course I / Environmental Process Engineering
 - Specialized Course I / Thermal Process Engineering
 - Specialized Course I / Fuel Technology
 - Specialized Course I / Energy Process Engineering

Credits: 4

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

| T-CIWVT-108912 | Process and Plant Safety | 4 CR | Schmidt |

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).
The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
The students are able to systematically assess the risks of technical systems, assess the effects of possible accidents and define suitable safety measures. The lecture is divided into thematic blocks. Lecture block 01 is an introduction to the topic:

Lecture blocks
1. Introduction
2. risk management
3. hazardous substances
4. Exothermic Chemical Reactions
5. safety devices
6. effluent systems
7. Dispersion of hazardous substances
8. PLT protective devices
9. explosion protection
10. electrostatics

Content
Introduction to safeguarding processes and plants to protect people and the environment from potential hazards of technical plants in the chemical, petrochemical, pharmaceutical and oil and gas sectors. Risk management can be used to prevent incidents and limit the impact of events. This includes topics such as technical safety of plants, risk management, prevention of hazards from substances and dangerous chemical reactions, design of protective devices for emergency relief such as safety valves, bursting discs and downstream containment devices. Modern process control systems, emission and dispersion of hazardous substances in the atmosphere, and explosion and fire protection.

Workload
- Attendance time (Lecture): 30 h
- Homework: 30 h
- Exam Preparation: 60 h

Responsible: Manfred Nagel

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 CR</td>
<td>T-CIWVT-108910</td>
<td>Process Instruments and Machinery and their Process Integration</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Skills to develop holistic processes for product design. Knowledge about task of engineers in process industry.

Content
Teaching of methods and creating awareness about boundary conditions related to scientific and systematic engineering approaches in process development. In Bachelorstudies and during basic studies in process technology focus was laid on the description/analysis of different physical phenomena. Their linkage in the course of selection, dimensioning, interconnection and optimization of apparatuses/machines and their integration during process development will be outlined and illustrated by a variety of real-life examples.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h

Responsible: apl. Prof. Dr. Matthias Franzreb

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
 - Specialized Course I / Biopharmaceutical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106101 | Process Modeling in Downstream Processing | 4 CR | Franzreb |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Students are able to sum up and explain equilibrium and kinetic equations relevant for chromatography modeling. They are able to explain the methods used for determination of equilibrium and kinetic parameters and can discuss examples. They are familiar with the principle of complex downstream processes, e.g. simulated moving beds, and can explain the differences to conventional chromatography. Using commercial software they are able to simulate chromatography processes and to analyze the results. On this basis they can optimize process parameters and fit them in order to meet given targets such as purity or yield. They can evaluate different processes and choose the variant for a given task.

Content
- Fundamentals and practical examples of chromatography modeling,
- Design rules for Simulated Moving Beds, Design of Experiments (DOE)

Workload
- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h
Module: Process Technology [M-CIWVT-104374]

Responsible: Prof. Dr.-Ing. Thomas Kolb

Organisation: KIT Department of Chemical and Process Engineering

Part of: Advanced Fundamentals (mandatory)
Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106148</td>
<td>Practical Course Process Technology and Plant Design</td>
<td>0 CR</td>
<td>Kolb</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-106149</td>
<td>Initial Exam Process Technology and Plant Design</td>
<td>0 CR</td>
<td>Kolb</td>
<td></td>
</tr>
<tr>
<td>T-CIWVT-106150</td>
<td>Process Technology and Plant Design Written Exam</td>
<td>8 CR</td>
<td>Kolb</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The module exam consists of three partial performances:

- A written examination of 180 minutes according to § 4 (2) Nr. 1 SPO
- An internship in process and plant engineering, ungraded study achievement according to § 4 (3) SPO
- An admission exam to the practical course process and plant engineering, ungraded study achievement according to §4 (3) SPO

Module grade is the grade of the written exam.

Prerequisites
The initial exam is precondition for the practical course.

Competence Goal
The students are enabled to analyze technical processes and plants and describe the process on the basis of P&I-diagrams. They are capable to apply their engineering and process engineering basics on industrial processes and plants. They are prepared to design and evaluate process steps and process chains based on simplistic assumptions and characteristic numbers.

Content

- Engineering basics: P&I-diagram, flowsheet simulation, process optimization, safety, economical evaluation
- Application of engineering basics in practical course
- Process engineering in technical application, industrial production processes: e.g. steamcracker, methanol, sulfuric acid, ammonia, cement, pulp

Workload

- Attendance time: 43 h
- Homework: 87 h
- Exam preparation: 80 h
- Internship: Attendance time: 9 h + preparation and follow-up time: 21 h

Literature

Module: Processes and Process Chains for Renewable Resources [M-CIWVT-104422]

Responsible: Prof. Dr. Nicolaus Dahmen
Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Technical Biology
Specialized Course I / Bioresource Engineering

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German
Level: 4
Version: 1

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
The students become able to:

• understand and assess the technical background of the key elements of process chains for the utilization of renewable resources,
• build up the ability for the development of process chains from biomass production via the conversion processes up to product design,
• apply the lessons learned to develop closed process chains for sustainable production of, as example, platform chemicals or material from renewable resources.

Content
The course comprises the following contents:

• Introduction to building a common knowledge base, among others the presentation of today's most important utilization pathway for biomass, biomass potentials, future usage scenarios,
• Essential technical fundamentals for biomass processing. The focus is on the use of lignocellulosic biomass. Procedures for pretreatment, biomass decomposition and separation as well as for conversion of the respective fractions are learned,
• Systematics and analysis of process chains with renewable raw materials based on already established processes such as paper or sugar mills. Extension of the concepts to possible future biorefineries,
• In the exercise, parallel to the lecture, the learned will be applied and implemented by development of an exemplary biorefinery. The results will be presented in a seminar.

Module grade calculation
The grade of the oral examination is the module grade.
3.110 Module: Processing of Nanostructured Particles [M-CIWVT-103073]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106107</td>
<td>Processing of Nanostructured Particles</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Ability to design a process technology for the manufacturing and production of nanoscale particles

Content
Development of technical process in particle engineering; particle characterisation, interface engineering, particle synthesis; typical processes: grinding, mixing, granulation, selective separation, classifying; fundamentals of apparatus and devices; simulation techniques, simulation tools

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 60 h
- Homework: 60 h
- Exam Preparation: 60 h

Literature
Skriptum zur Vorlesung
3.111 Module: Product Design II [M-CIWVT-104396]

Responsible: Prof. Dr.-Ing. Matthias Kind
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
 Specialized Course I / Product Design

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-CIWVT-108979</th>
<th>Product Design II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 CR Kind</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of 30 minutes.
The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Students have gathered insight into their role and professional tasks during industrial product design.

Content
Continuous product innovation is decisive for the competitiveness of companies. The module introduces to the principle of "conceptual product design". The principle will be explained by lecturing, by exercising and by viewing and discussing a truly instructive movie on the topic. The understanding of the principle is deepened on the subjects of "crystallization" and "colloidal systems". The principle of "conceptual product design" comprises on the one hand the notion of a "process function", which is the functional relation between process parameters and physico-chemical product properties, and on the other hand the notion of a "property function", which is the functional relation between these properties and the product quality.

Workload
- Attendance time (Lecture): 30 h
- Homework: 60 h
- Exam Preparation: 30 h

Literature
- Product Design and Engineering – Formulation of Gels and Pastes (Ed. U. Bröckel, W. Meier, G. Wagner); Wiley VCH; Weinheim 2013
- Weitere Vorlesungsbegleitende Unterlagen werden durch jeweilige Dozenten bereitgestellt
3.112 Module: Product Development – Methods of Product Engineering [M-MACH-102718]

Responsible: Prof. Dr.-Ing. Albert Albers
Organisation: KIT Department of Mechanical Engineering

Part of: Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-109192 | Methods and Processes of PGE - Product Generation Engineering | 6 CR Albers, Burkardt, Matthiesen |

Competence Certificate
Written examination (processing time: 120 min + 10 min reading time)

Prerequisites
None

Competence Goal
The students are able to ...

- classify product development in companies and differentiate between different types of product development.
- name the relevant influencing factors of a market for product development.
- name, compare and use the central methods and process models of product development within moderate complex technical systems.
- explain problem solving techniques and associated development methods.
- explain product profiles and to differentiate and choose suitable creative techniques of solution/idea generation finding on this basis.
- use design guidelines to create simple technical systems and to explain these guidelines.
- name and compare quality assurance methods; to choose and use suitable methods for particular applications.
- explain the different methods of design of experiment.
- explain the costs in development process.

Content
Basics of Product Development: Basic Terms, Classification of the Product
Development into the industrial environment, generation of costs / responsibility for costs
Concept Development: List of demands / Abstraction of the Problem Definition / Creativity Techniques / Evaluation and selection of solutions
Drafting: Prevailing basic rules of Design / Design Principles as a problem oriented accessory
Rationalization within the Product Development: Basics of Development
Management / Simultaneous Engineering and Integrated Product Development / Development of Product Lines and Modular Construction Systems
Quality Assurance in early Development Phases: Methods of Quality Assurance in an overview/QFD/FMEA

Workload
1. Time of presence lecture: 15 * 3h = 45 h
2. Prepare/follow-up lecture: 15 * 4,5 h = 67,5 h
3. Time of presence exercise: 4 * 1,5h = 6 h
4. Prepare/follow-up exercise: 4 * 3 h = 12 h
5. Exam preparation and time of presence: 49,5 h
Total: 180 h = 6 LP

Learning type
Lecture
Tutorial
Literature
Lecture documents
Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997
Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag, 1993
M 3.113 Module: Project Centered Software-Lab [M-MATH-102938]

Responsible: PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: Technical Supplement Course
Specialized Course I / Mechanical Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105907</td>
<td>Project Centered Software-Lab</td>
<td>4 CR</td>
<td>Thäter</td>
</tr>
</tbody>
</table>

Prerequisites
one
Module: Reaction Kinetics [M-CIWVT-104283]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
- Specialized Course I / Chemical Process Engineering
- Specialized Course I / Technical Thermodynamics (Usage from 10/1/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108821 | Reaction Kinetics | 6 CR | Müller |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Students are capable to discuss the cause and the differing elementary steps of homogen reactions, and they are qualified to calculate rate coefficients from experimental studies/data. Because of various examples, students can identify and analyse reactions by different elementary steps and they are capable to evaluate homogen reactions critically.

Content
Basics: transition state theory, thermodynamics and the relationship to kinetics, active sites and chain reactions.
Application: photochemistry, reactions in solution, polyreactions, autocatalysis and explosions.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 34 h
- Homework: 16 h
- Exam Preparation: 130 h
Module: Refinery Technology - Liquid Fuels [M-CIWVT-104291]

Responsible: Prof. Dr. Reinhard Rauch

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
- Specialized Course I / Fuel Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108831</td>
<td>Refinery Technology - Liquid Fuels</td>
<td>6 CR</td>
<td>Rauch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

The students are enabled to balance modern processes for the production of liquid fuels and to put them into context of a modern refinery. This knowledge can be transferred to the evaluation and the development of other processes.

Content

Introduction to liquid chemical fuels: sources, resources/reserves, consumption, characteristic properties of raw materials and products, overview of conversion processes.

Petroleum and petroleum refining: characterization of petroleum crude oils and refinery products, physical separation processes, chemical conversion/upgrading processes (chemical equilibrium, reaction technology etc.), refinery structures.

Non-conventional liquid fuels e.g. from synthesis processes or biomass feedstocks (vegetable oil and derived fuels, alcohols, synthetic liquid fuels).

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 75 h
- Exam Preparation: 60 h

Literature

Module: Refrigeration B - Foundations of Industrial Gas Processing [M-CIWVT-104354]

Responsibility: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Thermal Process Engineering
Specialized Course I / Technical Thermodynamics

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory
T-CIWVT-108914 Refrigeration B - Foundations of Industrial Gas Processing 6 CR Grohmann

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Understanding the principles of different processes for gas liquefaction and gas separation; Analysing processes in order to reveal the sources of energy demand; Applying the principles of thermodynamics of mixtures and analysing the states of fluids in rectification columns; Assessing the potential of technical concepts from a thermodynamic point of view

Content
Gas liquefaction processes, process analyses, refrigerators and mixed-refrigerant cycles, gas separation by low-temperature rectification, air separation and extraction of noble gasses, processing and separation of natural gas, ethylene production, processing of H2-enriched gas mixtures, storage and transport of liquefied gasses

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 45 h
- Homework: 45 h
- Exam Preparation: 90 h
Module: Rheology and Processing of Disperse Systems [M-CIWVT-104336]

Responsible: Dr.-Ing. Claude Oelschlaeger
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Applied Rheology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108891</td>
<td>Rheology and Processing of Disperse Systems</td>
<td>8 CR Oelschlaeger, Willenbacher</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 60 h
- Homework: 140 h
- Exam Preparation: 40 h
3.118 Module: Rheology and Processing of Polymers [M-CIWVT-104335]

Responsibility: Dr.-Ing. Bernhard Hochstein
 Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
 Specialised Course I / Applied Rheology

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108890</td>
<td>Rheology and Processing of Polymers</td>
<td>8 CR</td>
<td>Hochstein,</td>
<td>Willenbacher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).
The grade of the oral examination is the module grade.

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 60 h
- Homework: 140 h
- Exam Preparation: 40 h
3.119 Module: Rheology and Rheometry [M-CIWVT-104326]

Responsible: Dr.-Ing. Bernhard Hochstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
 Specialized Course I / Applied Rheology
 Specialized Course I / Product Design

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-CIWVT-108881 Rheology and Rheometry 4 CR Hochstein

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The duration of the examination differs in the case of a specialized subject comprehensive examination and is approximately 15 minutes.

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 70 h
- Exam Preparation: 20 h
3.120 Module: Rheology of Complex Fluids and Advanced Rheometry [M-CIWVT-104331]

Responsible: Dr.-Ing. Claude Oelschlaeger
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Applied Rheology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108886</td>
<td>Rheology of Complex Fluids and Advanced Rheometry</td>
<td>4 CR</td>
<td>Oelschlaeger, Willenbacher</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The duration of the examination differs in the case of a specialized subject comprehensive examination and is approximately 15 minutes. The grade of the oral examination is the module grade.

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 70 h
- Exam Preparation: 20 h
Module: Rheology of Disperse Systems [M-CIWVT-104391]

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108963</td>
<td>Rheology of Disperse Systems</td>
<td>2 CR</td>
<td>Willenbacher</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Workload

- Attendance time (Lecture): 15h
- Homework: 35 h
- Exam Preparation: 10 h
3.122 Module: Rheology of Polymers [M-CIWVT-104329]

- **Responsible:** Prof. Dr. Norbert Willenbacher
- **Organisation:** KIT Department of Chemical and Process Engineering
- **Part of:**
 - Technical Supplement Course
 - Specialized Course I / Applied Rheology
 - Specialized Course I / Product Design

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108884</td>
<td>Rheology of Polymers</td>
<td>4 CR Willenbacher</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

The duration of the examination differs in the case of a specialized subject comprehensive examination and is approximately 15 minutes.

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 30 h
- Homework: 70 h
- Exam Preparation: 20 h
3.123 Module: Selected Formulation Technologies [M-CIWVT-103064]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Advanced Fundamentals (CIW)
- Technical Supplement Course
- Specialized Course I / Mechanical Process Engineering (Usage from 10/1/2022)
- Specialized Course I / Product Design (Usage from 10/1/2022)
- Specialized Course I / Bioresource Engineering (Usage from 10/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Level</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106037</td>
<td>Selected Formulation Technologies</td>
<td>4</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is a written examination with a duration of 120 minutes.

Prerequisites

None

Competence Goal

Students understand specific needs of liquid and solid formulations for life science application. They are able to select appropriate additives and understand their relevance for product preparation and stabilisation. They understand and master basics of formulation preparation and cope with the design of suitable processes. They are aquainted with conventional and innovative technologies. They identify correlations between process parameters and product performance. They are able to transfer process knowledge between different products.

Students are able to identify relevant parameters for product performance. They are able to select suitable scientific based characterisation methods and can discuss analytic results critically.

Content

Additives and active substances (LV FT1: U. van der Schaaf/LVT):
- Substance categories: Properties and molecular structure; Purposes and functionality: Interfacial activity, modulation of viscosity, etc.; Measurement techniques and newest developments.

Emulsification and Dispersion Technologies : (LV FT2: H.P. Karbstein/LVT):
- Characteristics of liquid formulations; processing objectives; fundamentals of particle desaggregation and disruption as well as droplet break-up; particle and droplet stabilization in liquid continuous phase; apparatus design and operation principle; process design; process and property function for preparation of liquid formulations; characterisation of liquid formulation properties: fundamentals and measurement devices; innovative developments.

Drying of dispersions: (LV FT3: H.P. Karbstein/LVT)

- Objectives of drying, fundamentals of product stabilisation for extended shelf life; processes using the examples of spray drying, drum drying, freeze drying: operation principles, apparatus design, process design, process function; fundamentals of powder quality characterization, instant properties, fundamentals and measurement devices; agglomeration for improved instant properties.

Workload

- Attendance time (Lecture): 30 h
- Homework: 90 h
- Exam Preparation: 60 h

Literature

- Vorlesungsfolien, Skripte mit Übungsfragen, Übungsfragen im Multiple-Choice-Format (mit Lösungen), Vorlesungsvideos (ILIAS), FAQ zum Vorlesungstoff und bereit gestellten Materialien (MS Teams)
Module: Seminar [M-MATH-103276]

Responsible: PD Dr. Stefan Kühnlein

Organisation: KIT Department of Mathematics

Part of:
- Technical Supplement Course (Usage from 4/1/2021)
- Specialized Course I / Mechanical Process Engineering (Usage from 4/1/2021)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MATH-106541 | Seminar Mathematics | 3 CR |

Prerequisites

none
3.125 Module: Seminar of Food Processing in Practice [M-CIWVT-105932]

Responsible: Dr.-Ing. Ulrike van der Schaaf
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage from 4/1/2022)
Specialized Course I / Food Process Engineering (Usage from 4/1/2022)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-109129 | Seminar of Food Processing in Practice with Excursion | 2 CR | van der Schaaf |

Competence Certificate
Learning control is an oral exam with a duration of about 20 minutes.

Competence Goal
Students are able to use their academic knowledge on the processing and characterization of food products to evaluate industrially relevant food processes and techniques. In teams, they can discuss and solve complex tasks that concern the production and evaluation of food products and that stem from industrial applications. Students have the skills to present the results of their work in a scientific manner.

Content
Current challenges in the industrial production of selected food products will be discussed in small groups, and presented to the whole class. The seminar will be accompanied by an excursion to the relevant food processing plants.

Workload

- Attendance time: 30 h
- Self study: 15 h
- Exam preparation: 15 h
Module: Sol-Gel Processes [M-CIWVT-104489]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
- Specialized Course I / Mechanical Process Engineering
- Specialized Course I / Product Design
- Specialized Course I / Chemical Process Engineering
- Specialized Course I / Technical Thermodynamics

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 5
Version: 1

Mandatory
T-CIWVT-108822 Sol-Gel Processes 4 CR Müller

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
Students are capable to describe and analyse the complete process from the starting material (sol) to the finished product (gel), like ceramics. They are qualified to evaluate and estimate every single step of the entire process critically.

Content
Production of functional material via the sol-gel-process: hydrolyse and condensation, the gel-building process (gelation) and aging, deformation and rheology, drying-process, structure of aero- and xerogels, surface-chemistry and modification of the surface and finally sintering. Applications: powder, ceramics, glass, membranes and coatings.

Workload
- Attendance time (Lecture): 22.5 h
- Homework: 16 h
- Exam Preparation: 80 h
3.127 Module: Sol-Gel-Processes (Including Practical Course) [M-CIWVT-104284]

Responsible: Dr.-Ing. Steffen Peter Müller
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
- Specialized Course I / Mechanical Process Engineering
- Specialized Course I / Product Design
- Specialized Course I / Chemical Process Engineering
- Specialized Course I / Technical Thermodynamics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108822</td>
<td>Sol-Gel Processes</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-CIWVT-108823</td>
<td>Practical Course Sol-Gel Processes</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination consists of:

1. Oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).
2. Ungraded Laboratory work (section 4 subsection 3 SPO).

The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students are capable to describe and analyse the complete process from the starting material (sol) to the finished product (gel), like ceramics.

They are qualified to evaluate and estimate every single step of the entire process critically.

Content

Production of functional material via the sol-gel-process: hydrolyse and condensation, the gel-building process (gelation) and aging, deformation and rheology, drying-process, structure of aero- and xerogels, surface-chemistry and modification of the surface and finally sintering. Applications: powder, ceramics, glass, membranes and coatings.

Workload

- Attendance time (Lecture): 22.5 h
- Internship: 11.5 h, 4 attempts
- Homework: 16 h
- Exam Preparation: 130 h
Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Competence Goal
The students are able to apply the fundamental laws and the derived physical principles of the particle separation from liquids and not only to relate them to the principally suited separation apparatuses but also special variants. They have the ability to apply the relationship between product operation and design parameters to different separation techniques. They can analyse separation problems with scientific methods and give alternative problem solution proposals.

Content
physical fundamentals, apparatuses, applications, strategies; characterisation of particle systems and slurries; pretreatment methods to enhance the separability of slurries; fundamentals, apparatuses and process technology of static and centrifugal sedimentation, flotation, depth filtration, crossflow filtration, cake forming vacuum and gas overpressure filtration, filter centrifuges and press filters; filter media; selection criteria and scale-up methods for separation apparatuses and machines; apparatus combinations; case studies to solve separation problems.

Module grade calculation
The grade of the oral examination is the module grade.

Workload
- Attendance time (Lecture): 60 h
- Homework: 80 h
- Exam Preparation: 100 h

Literature
Anlauf: Skriptum "Mechanische Separationstechnik - Fest/Flüssig-Trennung"

Responsible: Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Applied Rheology
- Specialized Course I / Product Design
- Specialized Course I / Entrepreneurship in Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108885 | Stability of Disperse Systems | 4 CR | Willenbacher |

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO). The duration of the examination differs in the case of a specialized subject comprehensive examination and is approximately 15 minutes.

Prerequisites

None

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 30 h
- Homework: 70 h
- Exam Preparation: 20 h
3.130 Module: Statistical Thermodynamics [M-CIWVT-103059]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Sabine Enders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
</tbody>
</table>
| Part of | Technical Supplement Course
| | Specialized Course I / Thermal Process Engineering
| | Specialized Course I / Technical Thermodynamics |

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106098 | Statistical Thermodynamics | 6 CR | Enders |

Prerequisites

Thermodynamics III

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CIWVT-103058 - Thermodynamics III must have been passed.

Competence Goal

The students are able to understand the basics of statistical mechanics and they are able to recognize the advantage and disadvantage for application in chemical engineering.

Content

Boltzmann-method, Gibbs-method, real gases, quations of state, polymers
Module: Structure and Reaction of Aquatic Humic Substances [M-CIWVT-104302]

Responsible: Dr. Gudrun Abbt-Braun

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

Specialized Course I / Water Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108842 | Structure and Reaction of Aquatic Humic Substances | 2 CR | Abbt-Braun |

Competence Certificate

The examination is an oral examination with a duration of about 15 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites

None

Competence Goal

Students can describe the distribution and the behaviour and the interaction of humic substances in aquatic systems and during water treatment processes. They can explain their major structural functions.

They are familiar with the basic methods to characterize humic substances. They are able to select appropriate methods for the analysis and the determination of humic substances in aquatic systems and to evaluate the results.

Content

Origin, definitions, structure, isolation methods, characterization of humic substances, interaction with other water constituents, behaviour during water treatment processes.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 15 h
- Homework: 25 h
- Exam Preparation: 20 h

Literature

- Vorlesungsunterlagen im ILIAS
Module: Students Innovation Lab [M-CIWVT-106017]

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: Specialized Course I / Entrepreneurship in Process Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German/English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102864</td>
<td>Entrepreneurship</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-110166</td>
<td>SIL Entrepreneurship Project</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Innovation Project (Election: 6 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-112201</td>
<td>Innovation Project Porous Ceramics from the 3D Printer</td>
<td>6 CR</td>
<td>Willenbacher</td>
</tr>
<tr>
<td>T-CIWVT-112202</td>
<td>Innovative Food Design by Extrusion Technology</td>
<td>6 CR</td>
<td>Emin</td>
</tr>
<tr>
<td>T-CIWVT-108960</td>
<td>Development of an Innovative Food Product</td>
<td>3 CR</td>
<td>van der Schaaf</td>
</tr>
<tr>
<td>T-CIWVT-111010</td>
<td>Development of an Innovative Food Product - presentation</td>
<td>3 CR</td>
<td>van der Schaaf</td>
</tr>
<tr>
<td>T-CIWVT-112256</td>
<td>Fully Renewable Fuel with Minimal Emission Levels for Marine Engines</td>
<td>6 CR</td>
<td>Sauer</td>
</tr>
</tbody>
</table>

Prerequisites

None.

Competence Goal

The students will be introduced to the field of entrepreneurship. After successful attendance of the course, they should have an overview of the sub-areas of entrepreneurship and be able to understand basic concepts of entrepreneurship.

On the basis of known engineering knowledge, students are able to independently develop technical prototypes for the market launch of an innovation. They are capable to develop a project plan from idea to implementation. They transfer process engineering knowledge to user-convincing product innovations. Students can analyze and evaluate important economic aspects. They are able to create concepts for the procurement of raw materials and the scaling of product manufacturing to the relevant industrial scale. They know how to develop market and cost analyses as well as marketing and sales strategies. Students are able to present their product clearly and convincingly to potential customers in the form of a pitch deck.
Content

Entrepreneurship

The lecture Entrepreneurship introduces the basic concepts of entrepreneurship. The individual stages of dynamic business development are covered. Emphasis is placed on the introduction to methods for generating innovative business ideas, translating patents into business concepts, and general principles of business planning. Further contents are the conception and use of service-oriented information systems for founders, technology management and business model generation as well as lean startup methods for the implementation of business ideas by way of controlled experiments in the market.

Students Innovation Lab: One of several projects can be selected:

- **Innovation project Porous ceramics from the 3D printer**
 Porous ceramics can be used in a variety of ways, for example as:
 - Hot gas filters for industrial processes
 - Drinking water filters for the removal of contaminants such as heavy metals or viruses
 - Catalyst supports for the degradation of pollutants, environmental remediation or hydrogen production
 - Lightweight materials with high specific strength and temperature resistance
 - Biomimetic materials, e.g. as bone substitutes
 In this innovation project you will develop a prototype consisting of an innovative porous ceramic and document its technical feasibility. You will develop a concept for industrial-scale production and plan marketing. For this purpose, you will conduct a market analysis and develop a business model including price calculation, cost and financial planning as well as marketing and sales strategy.

- **Development of an Innovative Food Product**
 Development of a food product consumer ready (aspects included are amongst others food quality and safety, scale up, energy efficiency, sustainability, marketing and packaging); project management

- **Innovative Food Design by Extrusion Technology**
 Extrusion is currently one of the key technologies for the production of sustainable foods, e.g. plant-based meat, fish or cheese alternatives or upcycled cereals or snacks. In this project, our team will develop a new product in this area, from concept to market. To do this, we will first analyze the relevant products on the market in terms of their core characteristics, such as sustainability, sensory, cost, composition and innovative character. We will also discuss current trends, consumer needs and marketing strategies in this segment. Based on the results, we will design a new product considering the principles of product design and implement it using extrusion technology. The product and the overall concept (incl. marketing, cost analyses) will be presented in the form of a start-up pitch.

- **Fully Renewable Fuel with Minimal Emission Levels for Marine Engines**
 A blend scenario for a 100 % renewable fuel with minimal emission values for ship engines will be investigated. In this blend scenario, two renewable fuels will be investigated: Oxymethylene Ethers (OME) and Hydrogenated Vegetable Oils (HVO). OMEs, with the general formula CH3(-OCH2-)nO-CH3, are a novel class of chemical compounds that exhibit diesel-like properties and are characterized by soot-free combustion. HVO is a paraffinic fuel and, in contrast to fossil diesel, is practically free of aromatics and during combustion there is a significant reduction in pollutant emissions.
 The objectives of this project work are as follows:
 - Investigate the market potential of OME/HVO blends in different ratios for combustion in ship engines.
 - Production of an OME mixture, as well as the production of OME/HVO blends.
 - Put a simple laboratory apparatus into operation to compare the combustion characteristics of the produced OME/HVO blends with conventional diesel.

Module grade calculation
The module grade is the CP-weighted average of the two partial achievements.

Learning type
The two parts SIL Entrepreneurship Project and Innovation Project can only be carried out together in the same semester.
3.133 Module: Supercritical Fluid Technology [M-CIWVT-104362]

Responsible: apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage until 9/30/2023)
- Specialized Course I / Technical Thermodynamics (Usage until 9/30/2023)
- Specialized Course I / Technical Biology (Usage until 9/30/2023)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

| T-CIWVT-108923 | Supercritical Fluid Technology | 6 CR | Türk |

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Annotation
The module is being phased out. Exams for students who have already attended the course will be offered until the end of September 2023.

Workload
- Attendance time (Lecture): 45 h
- Homework: 90 h
- Exam Preparation: 45 h

Literature
3.134 Module: Surface Effects in Process Engineering [M-CIWVT-104452]

Responsible: Ioannis Nicolaou
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Mandatory Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-109088</td>
<td>Surface Effects in Process Engineering</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control is an oral examination with a duration of about 30 minutes.

Prerequisites
None

Competence Goal
A deep understanding of the physico-chemical effects at the surface of the dispersed phase in dispersions and the consideration of their interaction with the dispersity degree as precondition for understanding and optimizing processes involving dispersions.

Content
Definitions, Applications and stability of dispersions; Molecular – kinetic properties of dispersions: Thermal molecular motion and Brownian motion, Diffusion in solutions and dispersions, sedimentation stability; Adsorption at solid-gas interface: Nature of adsorption forces, Langmuir monomolecular adsorption theory, polymolecular theory of Polany and BET-theory, capillary condensation, chemical adsorption, kinetic of adsorption, influence of the properties of adsorptive on adsorption; Adsorption at solution-gas interface: Surface tension, surface active and inactive substances, Adsorption equation of Gibbs, Shishkovsky-equation and the derivation of Langmuir-equation, effects of the structure and size of tenside molecules, structure of the adsorbed layer; Adsorption at solid-solution interface: Molecular adsorption from the solution, ionic adsorption, wetting phenomena; Electrical properties of dispersions, Introduction to electrokinetic phenomena, structure of the electric double layer (Theories of Helmholtz – Perrin, Gouy-Chapman and Stern), Effects of electrolytes on zeta-potential, Electrophoresis and Electroosmosis, Measurement of zeta-potential; Stability and Coagulation of dispersions: Kinetic of coagulation, interparticle energy potential, solvation, structural-mechanical and entropy effects, coagulation through electrolytes, adsorption phenomena and coagulation; Applications in Crystallization and Solid – Liquid Separation.

Module grade calculation
The module grade is the grade of the oral examination.

Annotation
A deep understanding of the physico-chemical effects at the surface of the dispersed phase in dispersions and the consideration of their interaction with the dispersity degree as precondition for understanding and optimizing processes involving dispersions.

Workload
Lectures and Exercises: 30 h
Homework: 60 h
Exam preparation: 30 h
3.135 Module: Technical Systems for Thermal Waste Treatment [M-CIWVT-104290]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course (Usage until 9/30/2023)
 - Specialized Course I / Fuel Technology (Usage until 9/30/2023)
 - Specialized Course I / Combustion Technology (Usage until 9/30/2023)
 - Specialized Course I / Energy and Combustion Technology (Usage until 9/30/2023)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
The students are enabled to characterize different waste fractions and select suitable technologies for waste to energy conversion based on detailed process understanding and by application of evaluation tool combining economical and ecological aspects. The students gain a profound inside into process operation.

Content
- Waste: definition, specification, potential
- Basic thermo-chemical processes for waste treatment: pyrolysis, gasification, combustion
- Technical systems for thermal waste treatment:
 - combustion: Grate furnace, rotary kiln, fluidized bed
 - gasification: fixed bed, fluidized bed, entrained flow
 - pyrolysis: rotary kiln
 - Refractory technology
 - Legal aspects of waste management
 - Tools for critical evaluation of waste treatment technologies
 - Excursion to industrial sites

Module grade calculation
The grade of the oral examination is the module grade.

Annotation
The module is being phased out. Exams for students who have already attended the course will be offered until the end of September 2023.

Workload
- Attendance time (Lecture): 30 h
- Homework: 50 h
- Exam Preparation: 40 h
3.136 Module: Thermal Separation Processes II [M-CIWVT-104365]

Responsible: Prof. Dr.-Ing. Matthias Kind

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Thermal Process Engineering
- Specialized Course I / Technical Thermodynamics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108926</td>
<td>Thermal Separation Processes II</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Acquisition of deep understanding of chemical engineering processes using the example of continuous distillation of multicomponent mixtures. Ability to transfer this understanding into a numerical model and solving this model. Understanding of column fluid dynamics.

Content
Fundamentals of modelling and simulation of chemical engineering processes using the example of distillation of multicomponent mixtures: phase equilibrium, fugacity coefficient, models for activity coefficient, flash, MESH-equations for continuous distillation, solution method of Thiele and Gaddes, introduction to advanced numerical methods, fundamentals of fluid dynamic design considerations of tray and packed columns (python, excel or other programming language).

Workload
- Attendance time (Lecture): 45 h
- Homework: 70 h
- Exam Preparation: 70 h

Literature
- Schlünder, E.-U.; Thurner, F. Destillation, Absorption, Extraktion; Lehrbuch Chemie + Technik; Vieweg. 1995
Module: Thermal Transport Processes [M-CIWVT-104377]

3.137 Module: Thermal Transport Processes [M-CIWVT-104377]

Responsible:
Prof. Dr.-Ing. Matthias Kind
Prof. Dr.-Ing. Wilhelm Schabel
Prof. Dr.-Ing. Thomas Wetzel

Organisation:
KIT Department of Chemical and Process Engineering

Part of:
Advanced Fundamentals (CIW)
Technical Supplement Course

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 5
Version: 1

Mandatory
T-CIWVT-106034 Thermal Transport Processes 6 CR Kind, Schabel, Wetzel

Competence Certificate
The examination is a written examination with a duration of 180 minutes (section 4 subsection 2 number 1 SPO).
The grade of the written examination is the module grade.

Prerequisites
None

Competence Goal
Students can systematically apply scientific methods for physics-based modelling of Thermal Transport Processes and of selected unit operations. To this end they are able to create mathematical models and systems of equations for process simulation. Furthermore, they have some know-how to use numerical tools for solving these quite large systems of equations. Finally, students are skilled in the quantitative application of the taught knowledge to new and yet unknown processes and engineering problems.

Content

Workload
- Attendance time (Lecture): 45 h
- Homework: 90 h
- Exam Preparation: 45 h

Literature
- comprehensive manuscript (for download)
- pertinent list of literature for self-studying
3.138 Module: Thermodynamics III [M-CIWVT-103058]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Advanced Fundamentals (CIW)

Technical Supplement Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106033 | Thermodynamics III | 6 CR | Enders |

Competence Certificate
The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO). The grade of the written examination is the module grade.

Prerequisites
None

Competence Goal
Students are familiar with the basic principles for the description of complex, multicomponent mixtures and thermodynamic equilibria including equilibria with chemical reactions. They are able to select suitable models and to calculate the properties of multicomponent real systems.

Content
Phase- and reaction equilibria of real systems, equations of state for real mixtures, models for activity coefficients, polymer solutions, protein solutions, elektrolyte solutions.

Workload
- Attendance time (Lecture): 60 h
- Homework: 90 h
- Exam Preparation: 30 h

Literature
3.139 Module: Thermodynamics of Interfaces [M-CIWVT-103063]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course
Specialized Course I / Technical Thermodynamics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Level</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-106100</td>
<td>Thermodynamics of Interfaces</td>
<td>4 CR</td>
<td>4</td>
<td>Enders</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
The students to be familiar with the peculiarities on fluid-fluid and fluid-solid interfacial properties. They are able to calculate interfacial properties (interfacial tension, density - and concentration profiles, adsorption isotherms) using macroscopic and local-dependent methods.

Content
Gibbs-method, density functional theory, experimental methods for characterization of interfaces, adsorption
3.140 Module: Thermodynamics of Phase Equilibria [M-CIWVT-104360]

Responsible: apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course (Usage until 9/30/2023)
- Specialized Course I / Thermal Process Engineering (Usage until 9/30/2023)
- Specialized Course I / Technical Thermodynamics (Usage until 9/30/2023)
- Specialized Course I / Technical Biology (Usage until 9/30/2023)

Credits 6

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language German

Level 4

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108921</td>
<td>Thermodynamics of Phase Equilibria</td>
<td>6 CR</td>
<td>Türk</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None

Module grade calculation
The grade of the oral examination is the module grade.

Annotation
The module is being phased out. Exams for students who have already attended the course will be offered until the end of September 2023.

Workload

- Attendance time (Lecture): 45 h
- Homework: 90 h
- Exam Preparation: 45 h

Literature

3.141 Module: Unit Operations and Process Chains for Food of Animal Origin

M-CIWVT-104421

Responsibilities: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Product Design
- Specialized Course I / Food Process Engineering
- Specialized Course I / Bioresource Engineering

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-108996 | Unit Operations and Process Chains for Food of Animal Origin | 5 CR | Karbstein |

Competence Certificate

Learning control is an oral examination with a duration about of 30 minutes.

Prerequisites

None

Competence Goal

Students understand and are able to explain conventional methods for producing foods, even complex ones, from animals. They know process chains and unit operations of relevance, both conventional and innovative approaches. They are able to design the processes according to raw material specifics. They identify correlations between process parameters and quality-determining properties of food. They are also able to transfer process knowledge between individual product groups. They know essential aspects required to assess sustainability and energy aspects of the individual process steps and complete process chains.

Students are able to apply principles of product design. This involves identifying the relationships between process parameters and the structure of a food product (process function) as well as between the inner structure of foods and their properties (property function). Based on this, they are able to analyze and solve problems in the field of food process engineering.

Students are able to use their knowledge to evaluate a process unit with regard to food production, involving aspects such as sustainability, energy efficiency, food safety or expected product quality.

Content

Lecture: Milk and dairy products, meat and meat products, sausages, functional foods: Process chains and unit operations
Basics of process design, process energy and raw material related specifics, innovative processes; relevant parameters for keeping food safety and quality.

Module grade calculation

Grade of the module is the grade of oral examination.

Workload

Lectures: 30 h
Homework: 60 h
Exam preparation: 60 h
Literature

- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)
Module: Unit Operations and Process Chains for Food of Plant Origin [M-CIWVT-104420]

Responsible: Prof. Dr.-Ing. Heike Karbstein

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
- Specialized Course I / Product Design
- Specialized Course I / Food Process Engineering
- Specialized Course I / Bioresource Engineering

Credits: 7

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-108995</td>
<td>Unit Operations and Process Chains for Food of Plant Origin</td>
<td>7 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes. The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal
Students understand and are able to explain conventional methods for producing foods, even complex ones, from plants. They know process chains and unit operations of relevance, both conventional and innovative approaches. They are able to design the processes according to raw material specifics. They identify correlations between process parameters and quality-determining properties of food. They are also able to transfer process knowledge between individual product groups. They know essential aspects required to assess sustainability and energy aspects of the individual process steps and complete process chains.

Students are able to apply principles of product design. This involves identifying the relationships between process parameters and the structure of a food product (process function) as well as between the inner structure of foods and their properties (property function). Based on this, they are able to analyze and solve problems in the field of food process engineering.

Students are able to use their knowledge to evaluate a process unit with regard to food production, involving aspects such as sustainability, energy efficiency, food safety or expected product quality.

Content
Food oils and fats, margarines and spreadable fats, cereals, fruits and vegetables, sugar, chocolate, coffee, bear, wine, spirits: Process chains and unit operations: Basics of process design, process energy and raw material related specifics, innovative processes; relevant parameters for keeping food safety and quality.

Workload
- Attendance time (Lecture): 40 h
- Homework: 90 h
- Exam Preparation: 80 h

Literature
- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)
3.143 Module: Vacuum Technology [M-CIWVT-104478]

Responsible: Dr. Christian Day
Organisation: KIT Department of Chemical and Process Engineering
Part of: Technical Supplement Course
Specialized Course I / Technical Thermodynamics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-109154 | Vacuum Technology | 6 CR | Day |

Competence Certificate

The examination is an oral examination with a duration of 20 about minutes (section 4 subsection 2 number 2 SPO). The grade of the oral examination is the module grade.

Prerequisites
None

Competence Goal

Students will be able to explain basic physical relationships in vacuum science. Building on this, they can design a complex vacuum system correctly and in accordance with specifications.

Content

Basics; vacuum pumps; practical vacuum limits; outgassing and its minimization; cleanliness requirements; vacuum instrumentation; total pressure measurement; residual gas analysis; leak detection; rarefied gas flow; design of vacuum systems; technical specifications; quality in vacuum; examples for large vacuum systems; industrial applications in the process industry.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 60 h
- Homework: 80 h
- Exam Preparation: 40 h

Learning type
22033 – Übung zu Vakuumtechnik
22034 – Vakuumtechnik

Literature

3.144 Module: Wastewater Treatment Technologies [M-BGU-104917]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Technical Supplement Course (Usage from 4/1/2019)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-109948 | Wastewater Treatment Technologies | 6 CR

Competence Certificate
- 'Teilleistung' T-BGU-109948 with written examination according to § 4 Par. 2 No. 1
details about the learning control see at the 'Teilleistung'

Prerequisites
none

Competence Goal
Students acquire knowledge about typical techniques and facilities in wastewater treatment at local and international level. They are able to perform a technical evaluation and describe dimensioning approaches taking into consideration legal boundary conditions. Students analyze, evaluate and optimize operation of plant technologies. They focus on energy-efficient plant designs considering the most relevant factors affecting the total costs. Students can analyze the situation in emerging and developing countries making a comparison with that in industrialized countries. Based on that, they are able to develop water-related management strategies.

Content
Students gain deep knowledge about design and operation of typical process technologies in municipal wastewater treatment in Germany and abroad. They analyze, evaluate the applied technologies and take decisions when new and more holistic oriented methods can be implemented. Different mechanical, biological and chemical treatment technologies are considered, whereby the treatment of waste water from households and industry as well as the treatment of rainwater is discussed. The visit of at least one municipal wastewater treatment plant in Germany completes the course. The course includes lab work in groups to learn about basic measuring and analytical procedures in wastewater treatment plants.

Module grade calculation
grade of the module is grade of the exam

Annotation
The course takes place in winter term as from now.
The number of participants in the course is limited to 30 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geoecology and further study programs.

Workload
contact hours (1 HpW = 1 h x 15 weeks):
 - lecture/exercise: 60 h

independent study:
 - preparation and follow-up lecture/exercises: 60 h
 - examination preparation: 60 h

total: 180 h

Recommendation
module 'Urban Water Infrastructure and Management'
Literature
ATV-DVWK(1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, Berlin
Module: Water Quality Assessment [M-CIWVT-104301]

Responsible: Dr. Gudrun Abbt-Braun

Organisation: KIT Department of Chemical and Process Engineering

Part of: Technical Supplement Course

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Each winter term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

| T-CIWVT-108841 | Water Quality Assessment | 6 CR | Abbt-Braun |

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Competence Goal

Students can explain links between the geogenic and anthropogenic occurrence and the concentration of organic and inorganic compounds in the hydrological cycle. They get knowledge about the analysis of the water constituents and of microorganism in the water samples. They are able to do calculations, and to compare and interpret data. They will learn how to use different methods, and to interpret water quality assessment.

Content

Various types of water, legislation, analytical definitions, sampling methods, quick test methods, field investigations, organoleptic determinations, general investigations, optical characterization (turbidity, color, UV, Lambert-Beer’s law, photometry), titrations, acid-base-systems, buffering, main inorganic compounds (anions, cations, occurrence, ion chromatography, titration, complexometry, flame photometry, atomic spectroscopy), heavy metals and metalloids (occurrence and main methods for determination), organic compounds and organic micropollutants (occurrence, liquid chromatography, infrared spectroscopy, gas chromatography), water specific sum parameters (DOC, AOX, AOS, CSB, BSB), microbiology.

Module grade calculation

The grade of the oral examination is the module grade.

Workload

- Attendance time (Lecture): 45 h
- Homework: 65 h
- Exam Preparation: 70 h

Literature

- Vorlesungsunterlagen im ILIAS
Module: Water Technology [M-CIWVT-103407]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- Technical Supplement Course
 - Specialized Course I / Environmental Process Engineering
 - Specialized Course I / Food Process Engineering
 - Specialized Course I / Water Technology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-106802 | Water Technology | 6 CR | Horn |

Competence Certificate

Oral exam, 30 min

Prerequisites

None

Competence Goal

Students learn fundamental knowledge in water chemistry and how to apply it to processes in aquatic systems in general and in reactors for water treatment. Water treatment will be taught for drinking water and partly waste water. The students are able to apply physical, chemical and biochemical treatment for the respective removal of particulate and dissolved components in water. They are able to use the fundamental design parameters for the different types of unit operations.

Content

Water cycle, different types of raw water (ground and surface water). Water as solvent, carbonate balance, differentiation between microbiological and chemical population. Unit operations: sieving, sedimentation, filtration, flocculation, flotation, ion exchange, aeration, oxidation, disinfection, adsorption). For all unit operations design parameters will be provided. Simple 1D models will be discussed for description of kinetics and retention time in reactors for water treatment.

Workload

Attendance time: 45 h
Preparation/follow-up: 60 h
Examination + exam preparation: 75 h

Literature

Lecture notes will be provided in ILIAS
4 Courses

4.1 Course: Additive Manufacturing for Process Engineering - Examination [T-CIWVT-110902]

Responsible: TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105407 - Additive Manufacturing for Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22929 | Additive Manufacturing for Process Engineering | 2 SWS | Lecture / 🗣 | Klahn |

Legend: 🖥 Online, ☰ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral examination with a duration of about 30 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-110903 - Practical in Additive Manufacturing for Process Engineering must have been passed.
4.2 Course: Air Pollution Control - Laws, Technology and Application [T-CIWVT-112812]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106314 - Air Pollution Control - Laws, Technology and Application

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22992 | Clean Air - Laws, Technology and Application | 2 SWS | Lecture / 🗣 | Dittler |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⚠ Cancelled
4.3 Course: Applied Combustion Technology [T-CIWVT-110540]

Responsible: Dr.-Ing. Stefan Raphael Harth
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105201 - Applied Combustion Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22528</td>
<td>Applied Combustion Technology</td>
<td>Harth</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.4 Course: Applied Molecular Thermodynamics [T-CIWVT-108922]

Responsible: apl. Prof. Dr. Michael Türk
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104361 - Applied Molecular Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.5 Course: Batteries and Fuel Cells [T-ETIT-100983]

Responsible: Prof. Dr.-Ing. Ulrike Krewer

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100532 - Batteries and Fuel Cells

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2304207</td>
<td>Batteries and Fuel Cells</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2304213</td>
<td>Batteries and Fuel Cells (Exercise to 2304207)</td>
</tr>
</tbody>
</table>

Prerequisites

none
4.6 Course: Biobased Plastics [T-CIWVT-109369]

Responsible: Prof. Dr. Ralf Kindervater

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104570 - Biobased Plastics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22414</td>
<td>Biobased Plastic</td>
<td>2 SWS</td>
<td>Lecture / 💬 Kindervater, Syldatk, Schmiedl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

Verteifungsfach:

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Technisches Ergänzungsfach or a large number of aatudents:

The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites

None
4.7 Course: Bioelectrochemistry and Biosensors [T-CIWVT-108807]

Responsible: Dr. Michael Wörner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104268 - Bioelectrochemistry and Biosensors

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22708</td>
<td>Bioelectrochemistry and Biosensors</td>
<td>2 SWS</td>
<td>Wörner</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.8 Course: Biofilm Systems [T-CIWVT-106841]

Responsible: Dr. Andrea Hille-Reichel
Dr. Michael Wagner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103441 - Biofilm Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22617 | Biofilm Systems | 2 SWS | Lecture / 🗣 | Hille-Reichel, Wagner |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate

Oral exam, about 20 min.
4.9 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I [T-MACH-100966]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100489 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2141864</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I</td>
<td>2</td>
<td>Lecture</td>
<td>Guber, Ahrens</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🅿️ Cancelled

Competence Certificate

written exam (75 Min.)

Prerequisites

none
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [T-MACH-100967]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100490 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2142883 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | 2 SWS | Lecture / 🖥️ | Guber, Ahrens |

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
Written exam (75 Min.)

Prerequisites
none
4.11 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

Responsible: Prof. Dr. Andreas Guber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-100491 - BioMEMS - Microsystems Technologies for Life Sciences and Medicine III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2142879 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III | 2 SWS | Lecture / 🖥 | Guber, Ahrens |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

Written exam (75 Min.)

Prerequisites

none
Course: Biomimetic Interfaces and Bioconjugation [T-CIWVT-108810]

Responsible: Dr. Michael Wörner
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104272 - Biomimetic Interfaces and Bioconjugation

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

| ST 2023 | 22716 | Biomimetic Interfaces and Bioconjugation | 2 SWS | Lecture / 🗣 | Wörner |

Legend: Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
Course: Biopharmaceutical Purification Processes [T-CIWVT-106029]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103065 - Biopharmaceutical Purification Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22705</td>
<td>Biopharmaceutical Purification Processes</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Franzreb</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22706</td>
<td>Exercises on Biopharmaceutical Purification Processes (22705)</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Franzreb, Hubbuch</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is a written examination with a duration of 120 minutes (section 4 subsection 2 number 1 SPO).
4.14 Course: Bioprocess Development [T-CIWVT-108902]

Responsible: Michael-Helmut Kopf
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104347 - Bioprocess Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22933</td>
<td>Bioprocess Development</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4 COURSES

Course: Bioprocess Development [T-CIWVT-112766]

Responsible: Prof. Dr.-Ing. Alexander Grünberger
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-106297 - Bioprocess Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22770 | Bioprocess Development | 2 SWS | Lecture / 🗣 | Grünberger |
| ST 2023 | 22771 | Bioprocess Development - Exercises | 2 SWS | Practice / 🗣 | Grünberger |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
4.16 Course: Biotechnological Production [T-CIWVT-106030]

Responsible: Prof. Dr. Christoph Syldatk
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104384 - Biotechnological Production

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22409</td>
<td>Übung zu 22410 Biotechnologische Stoffproduktion</td>
<td>2 SWS</td>
<td>Practice / 📡</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22410</td>
<td>Biotechnical Production Methods</td>
<td>2 SWS</td>
<td>Lecture / 📡</td>
</tr>
</tbody>
</table>

Legend: 📡 Online, 🛒 Blended (On-Site/Online), 📐 On-Site, ✗ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course **T-CIWVT-108492 - Seminar Biotechnological Production** must have been passed.
4.17 Course: Biotechnology in Bioeconomy [T-CIWVT-108982]

Responsible: Prof. Dr. Christoph Syldatk

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- M-CIWVT-104399 - Biotechnology in Bioeconomy
- M-CIWVT-105295 - Biotechnological Use of Renewable Resources

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>Lectures</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22401</td>
<td>Biotechnologische Prozesse in der Bioökonomie - Vertiefungsfach</td>
<td>Lecture / Syldatk</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, 🗿 Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 25 Minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.18 Course: Biotechnology in Bioeconomy -Seminar [T-CIWVT-110770]

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104399 - Biotechnology in Bioeconomy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22401</td>
<td>Biotechnologische Prozesse in der Bioökonomie - Vertiefungsfach</td>
<td>2</td>
<td>Lecture</td>
<td>Syldatk</td>
</tr>
</tbody>
</table>

Legend: 🛥️ Online, 🤝 Blended (On-Site/Online), 🔅 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration (section 4 subsection 3 SPO).

Prerequisites

None
4.19 Course: Catalytic Micro Reactors [T-CIWVT-109087]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- M-CIWVT-104451 - Catalytic Micro Reactors
- M-CIWVT-104491 - Catalytic Micro Reactors (including practical course)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22137</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 22136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 22137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events
- **WT 22/23 22137**: Praktikum zu 22136 Katalytische Mikroreaktoren 1 SWS Practical course / On-Site Pfeifer, Dittmeyer, und Mitarbeiter
- **ST 2023 22136**: Katalytische Mikroreaktoren 2 SWS Lecture / On-Site Pfeifer
- **ST 2023 22137**: Praktikum zu 22136 Katalytische Mikroreaktoren 1 SWS Practical course / On-Site Pfeifer, und Mitarbeiter

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔘 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.20 Course: Catalytic Processes in Gas Technologies [T-CIWVT-108827]

Responsible: Dr.-Ing. Siegfried Bajohr
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104287 - Catalytic Processes in Gas Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22345</th>
<th>Katalytische Verfahren der Gastechnik</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Bajohr</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.21 Course: Chem-Plant [T-CIWVT-109127]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104461 - Chem-Plant

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
Thermodynamics III, Process Technology
4.22 Course: Combustion and Environment [T-CIWVT-108835]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104295 - Combustion and Environment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>22507</td>
<td>Verbrennung und Umwelt</td>
<td></td>
<td>Trimis</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
None
4.23 Course: Combustion Technology [T-CIWVT-106104]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103069 - Combustion Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Workload</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22501</td>
<td>Fundamentals of Combustion Technology</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Trimis</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22502</td>
<td>Exercises for 22501 Fundamentals of Combustion Technology</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Trimis, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🈷️ Blended (On-Site/Online), 🗑️ On-Site, ❌ Cancelled
4.24 Course: Commercial Biotechnology [T-CIWVT-108811]

Responsible: Prof. Dr. Ralf Kindervater

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104273 - Commercial Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Event ID</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22413</td>
<td>Commercial Biotechnology</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Kindervater, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚽️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

In case of large number of participants the examination is a written examination with a duration of 60 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites
None
4.25 Course: Complex Phase Equilibria [T-CIWVT-112883]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106358 - Complex Phase Equilibria

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Learning control is an oral examination, duration about 30 minutes.

Prerequisites
None
4.26 Course: Computational Fluid Dynamics [T-CIWVT-106035]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103072 - Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22958</td>
<td>Computational Fluid Dynamics</td>
<td>2</td>
<td>Lecture / 💬</td>
<td>Nirschl, und Mitarbeiter</td>
</tr>
<tr>
<td></td>
<td>22959</td>
<td>Übungen zu 22958 Numerische Strömungssimulation (in kleinen Gruppen)</td>
<td>1</td>
<td>Practice / 💬</td>
<td>Nirschl, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚽ Blended (On-Site/Online), 💬 On-Site, ✗ Cancelled
4.27 Course: Continuum Mechanics and Fluid Mechanics of Non Newtonian Fluids [T-CIWVT-108883]

Responsible: Dr.-Ing. Bernhard Hochstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104328 - Continuum Mechanics and Fluid Mechanics of Non Newtonian Fluids

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>22962</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td></td>
</tr>
</tbody>
</table>

2 SWS Lecture / Hochstein

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.28 Course: Control of Distributed Parameter Systems [T-CIWVT-112826]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr.-Ing. Thomas Meurer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-CIWVT-106318 - Control of Distributed Parameter Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>Control of Distributed Parameter Systems</th>
<th>3 SWS</th>
<th>Block / 🗣</th>
<th>Meurer</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
4.29 Course: Cryogenic Engineering [T-CIWVT-108915]

Responsible: Prof. Dr.-Ing. Steffen Grohmann

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104356 - Cryogenic Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22053</td>
<td>Cryogenic Engineering</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Grohmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22054</td>
<td>Cryogenic Engineering - Exercises</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Grohmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☰ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.30 Course: Data Analysis and Statistics [T-CIWVT-108900]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104345 - Data Analysis and Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22943 | Data Analysis and Statistics | 2 SWS | Lecture / Guthausen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔷 On-Site, ☑️ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.31 Course: Data-Based Modeling and Control [T-CIWVT-112827]

Responsible: Prof. Dr.-Ing. Thomas Meurer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-106319 - Data-Based Modeling and Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
4.32 Course: Design of a Jet Engine Combustion Chamber [T-CIWVT-110571]

Responsible: Dr.-Ing. Stefan Raphael Harth

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105206 - Design of a Jet Engine Combustion Chamber

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22527 | Design of a Jet Engine Combustion Chamber | 2 SWS | / 🗣 | Harth |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate

Success control is an examination of another kind according to § 4 Abs. 2 Nr. 3 SPO.

Project: Participation and presentation as well as a final oral examination amounting to max. 30 minutes.

Prerequisites

None
4.33 Course: Design of Micro Reactors [T-CIWVT-108826]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104286 - Design of Micro Reactors

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Ger. Course Title</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Auslegung von Mikroreaktoren</td>
<td>Each winter term</td>
<td>4 SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4, subsection 2, number 2 SPO).

Prerequisites

None
4.34 Course: Development of an Innovative Food Product [T-CIWVT-108960]

Responsible: Dr.-Ing. Ulrike van der Schaaf
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104388 - Development of an Innovative Food Product
 M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| Events | 22234 | Teamprojekt "Eco TROPHELIA": Entwicklung eines innovativen Lebensmittels | 3 SWS | Project (P / 🗣) | van der Schaaf, und Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Success control is an examination of another kind: a written elaboration

Prerequisites
None
4.35 Course: Development of an Innovative Food Product - presentation [T-CIWVT-111010]

Responsible: Dr.-Ing. Ulrike van der Schaaf

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- M-CIWVT-104388 - Development of an Innovative Food Product
- M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22234 | Teamprojekt "Eco TROPHELIA": Entwicklung eines innovativen Lebensmittels | 3 SWS | Project (P / 🗣) | van der Schaaf, und Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Success control is an examination of another kind: Seminar/ Presentation.

Prerequisites

None
4.36 Course: Digital Design in Process Engineering - Laboratory [T-CIWVT-111582]

Responsible: TT-Prof. Dr. Christoph Klahn
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105782 – Digital Design in Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>3</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>Event</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>22932</td>
<td>Practical Course Digital Design in Process Engineering</td>
<td>2 SWS</td>
<td>Klahn</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗂 On-Site, ⌠ Cancelled

Competence Certificate
Laboratory, ungraded.

Prerequisites
None.

Responsible: TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105782 - Digital Design in Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Digital Design in Process Engineering</th>
<th>2 SWS</th>
<th>Lecture / 👤</th>
<th>Klahn</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22931</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ⌚ Cancelled

Competence Certificate

Learning control is an oral examination with a duration of about 30 minutes according to SPO section 4, subsection 2 No. 2.

Prerequisites

Participation in the laboratory.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-111582 - Digital Design in Process Engineering - Laboratory must have been passed.
Course: Digitization in Particle Technology [T-CIWVT-110111]

Responsible: Dr.-Ing. Marco Gleiß

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104973 - Digitization in Particle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Digitization in Particle Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Gleiß, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☕ Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

Learning Control is an oral examination with a duration of about 30 minutes.

Prerequisites

None
4.39 Course: Dimensional Analysis of Fluid Mechanic Problems [T-CIWVT-108882]

Responsible: Dr.-Ing. Bernhard Hochstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104327 - Dimensional Analysis of Fluid Mechanic Problems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Lecture/线上线下</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22927</td>
<td>Dimensionsanalyse strömungsmechanischer Fragestellungen</td>
<td>Hochstein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.40 Course: Drying Technology [T-CIWVT-108936]

Responsible: Prof. Dr.-Ing. Wilhelm Schabel
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104370 - Drying Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
<th>Co-Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22811</td>
<td>Drying Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Schabel</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22821</td>
<td>Übung zu 22811 Trocknungstechnik</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Schabel, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.41 Course: Electrocatalysis [T-ETIT-111831]

Responsible: Prof. Dr.-Ing. Ulrike Krewer
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-105883 - Electrocatalysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2304300</td>
<td>3 SWS</td>
<td>Electrocatalysis</td>
<td>Lecture</td>
<td>Röse</td>
</tr>
<tr>
<td>ST 2023 2304301</td>
<td>1 SWS</td>
<td>Exersice to 2313229 Electrocatalysis</td>
<td>Practice</td>
<td>Röse</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled

Competence Certificate

The examination takes place in form of a written examination lasting 120 minutes.
4.42 Course: Energy and Environment [T-CIWVT-110917]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104453 - Energy and Environment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22528</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Combustion Technology</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Harth</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None
4.43 Course: Energy and Environment [T-CIWVT-109089]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104453 - Energy and Environment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22507</td>
<td>Verbrennung und Umwelt</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Trimis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚽ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
None
4.44 Course: Energy from Biomass [T-CIWVT-108828]

Responsible: Dr.-Ing. Siegfried Bajohr
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104288 - Biomass Based Energy Carriers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Energieträger aus Biomasse</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Bajohr</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Übung zu Energieträger aus Biomasse (22320)</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Bajohr, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☔ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.45 Course: Energy from Biomass [T-CIWVT-110576]

Responsible: Dr.-Ing. Siegfried Bajohr
Prof. Dr. Nicolaus Dahmen

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105207 - Energy from Biomass

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>SWS</th>
<th>Legend</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>22325</td>
<td>2</td>
<td>Online</td>
<td>Dahmen, Bajohr</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites
None
4.46 Course: Energy Technology [T-CIWVT-108833]

Responsible: Prof. Dr.-Ing. Horst Büchner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104293 - Energy Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Course</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22511</td>
<td>Energy Technology I</td>
<td>2</td>
<td>Lecture / Büchner</td>
<td>Oral examination</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
Course: Entrepreneurship [T-WIWI-102864]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2545001</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2545001</td>
<td>Entrepreneurship</td>
<td>2</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>Terzidis, Dang</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚤ On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Students are offered the opportunity to earn a grade bonus through separate assignments. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by a maximum of one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the lecture.

Prerequisites

None

Recommendation

None
4.48 Course: Environmental Biotechnology [T-CIWVT-106835]

Responsible: Andreas Tiehm

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104320 - Environmental Biotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22614 | Environmental Biotechnology | 2 SWS | Lecture / 🗣 | Tiehm |

Legend: 🖥 Online, 📡 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

None
4.49 Course: Estimator and Observer Design [T-CIWVT-112828]

Responsible: Dr.-Ing. Pascal Jerono

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106320 - Estimator and Observer Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
4.50 Course: Excursions: Membrane Technologies [T-CIWVT-110864]

Responsible: Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105380 - Membrane Technologies in Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22606</td>
<td>Membrane Technologies in Water Treatment - Excercises</td>
<td>1 SWS</td>
<td>1</td>
<td>each summer term</td>
<td>Horn, Saravia, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🔄 Blended (On-Site/Online), 🔄 On-Site, ☑️ Cancelled
4.51 Course: Excursions: Water Supply [T-CIWVT-110866]

Responsible:
Dr. Gudrun Abbt-Braun
Prof. Dr. Harald Horn

Organisation:
KIT Department of Chemical and Process Engineering

Part of:
M-CIWVT-103440 - Practical Course in Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
4.52 Course: Extrusion Technology in Food Processing [T-CIWVT-112174]

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105996 - Extrusion Technology in Food Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22246</td>
<td>Extrusion Technology in Food Processing</td>
<td>2 SWS</td>
<td>Lecture / Emin</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Learning control is an oral exam lasting about 20 minutes.

Prerequisites

None.

Responsible: Prof. Dr.-Ing. Horst Büchner

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104294 - Flow and Combustion Instabilities in Technical Burner Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22515</td>
<td>Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen</td>
<td>2 SWS</td>
<td>/ 🗣</td>
<td>Büchner</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.54 Course: Fluid Mechanics of Non-Newtonian Fluids [T-CIWVT-108874]

Responsible: Dr.-Ing. Bernhard Hochstein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104322 - Fluid Mechanics of Non Newtonian Fluids

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture / 🗣️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WT 22/23	22962	Dimensionsanalyse	Hochstein	
		strömungsmechanischer Fragestellungen		
ST 2023	22927	Lecture / 🗣️	Hochstein	

Dimensionsanalyse strömungsmechanischer Fragestellungen

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.55 Course: Fluidized Bed Technology [T-CIWVT-108832]

- **Responsible:** Prof. Dr. Reinhard Rauch
- **Organisation:** KIT Department of Chemical and Process Engineering
- **Part of:** M-CIWVT-104292 - Fluidized Bed Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22303</th>
<th>Fluidized bed technology</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Rauch</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.56 Course: Food Chemistry Basics [T-CHEMBIO-109442]

Responsible: Prof. Dr. Mirko Bunzel
Organisation: KIT Department of Chemistry and Biosciences
Part of: M-CHEMBIO-104620 - Food Chemistry Basics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 6601 | Grundlagen der Lebensmittelchemie I | 2 SWS | Lecture / 🗣️ | Bunzel |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Prerequisites
None
4.57 Course: Food Science and Functionality [T-CIWVT-108801]

Responsible: Prof. Dr. Bernhard Watzl

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104263 - Food Science and Functionality

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22207 | Lebensmittelkunde und -funktionalität | 2 SWS | Lecture / 🗣 | Watzl |

Legend: 🖥 Online, ☺ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.58 Course: Formulation of (Bio)pharmaceutical Therapeutics [T-CIWVT-108805]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104266 - Formulation of (Bio)pharmaceutical Therapeutics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22712</td>
<td>Formulation of (Bio)pharmaceutical Therapeutics 2 SWS Lecture / Hubbuch</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗼 On-Site, X Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 15 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.59 Course: Fuel Technology [T-CIWVT-108829]

Responsible: Prof. Dr.-Ing. Thomas Kolb

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104289 - Fuel Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22305</td>
<td>Grundlagen der Brennstofftechnik</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Kolb</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22306</td>
<td>Übungen zu 22305 Grundlagen der Brennstofftechnik</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Kolb, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📲 On-Site, 🗑 Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.60 Course: Fully Renewable Fuel with Minimal Emission Levels for Marine Engines [T-CIWVT-112256]

Responsible: Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Fully Renewable Fuel with Minimal Emission Levels for Marine Engines

Credits: 6

Grading scale: Grade to a third

Recurrence: Each winter term

Version: 1

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Learning control is an examination of a different kind: report of approx. 20 - 30 pages, (excluding appendix), presentation of the work in a group lecture.

Prerequisites

None.
Course: Gas Particle Measurement Technology [T-CIWVT-108892]

Responsible: Prof. Dr.-Ing. Achim Dittler

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104337 - Gas Particle Measurement Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22917</td>
<td>Gas-Partikel-Messtechnik</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Dittler</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22918</td>
<td>Übungen in kleinen Gruppen zu 22917</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Dittler, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎈 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.62 Course: Gas Particle Separation Processes [T-CIWVT-108895]

Responsible: Dr.-Ing. Jörg Meyer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104340 - Gas Particle Separation Processes

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22939</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Meyer</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 22940</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Meyer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚙️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (single examination) or 20 minutes (comprehensive examination in VF Gas-Partikel-Systeme) (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.63 Course: Heat Exchangers [T-CIWVT-108937]

Responsible: Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104371 - Heat Exchangers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22807 | Wärmeübertrager | 2 SWS | Lecture / 🗣 | Wetzel |

Legend: 🖥 Online, 🦵 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.64 Course: Heat Transfer II [T-CIWVT-106067]

Responsible: Prof. Dr.-Ing. Thomas Wetzel
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103051 - Heat Transfer II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Term</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22809</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Lecture / 🗾</td>
<td>Wetzel, Dietrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗾 On-Site, ✗ Cancelled
4.65 Course: High Temperature Process Engineering [T-CIWVT-106109]

Responsible: Prof. Dr.-Ing. Dieter Stapf
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103075 - High Temperature Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22505</th>
<th>Hochtemperaturverfahrenstechnik</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Stapf</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22506</td>
<td>Übung zu 22505 Hochtemperaturverfahrenstechnik</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Stapf, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104296 - Hydrogen and Fuel Cell Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22508 | Wasserstoff- und Brennstoffzellentechnologien | 2 SWS | Lecture / 🗣 | Trimis |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

None
4.67 Course: Industrial Aspects in Bioprocess Technology [T-CIWVT-110935]

Responsible: Prof. Dr.-Ing. Jürgen Hubbuch

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105412 - Industrial Aspects in Bioprocess Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22710 | Industrial Aspects in Bioprocess Technology | 2 SWS | Lecture / 🗣 | Hubbuch |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 15 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.68 Course: Industrial Crystallization [T-CIWVT-108925]

Responsible: Prof. Dr.-Ing. Matthias Kind

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104364 - Industrial Crystallization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22814 | Industrielle Kristallisation | 2 SWS | Lecture / 🗣 Kind |
| ST 2023 | 22815 | Übung zu 22814 Industrielle Kristallisation | 1 SWS | Practice / 🗣 Kind |

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.69 Course: Industrial Genetics [T-CIWVT-108812]

Responsible: Dr. Anke Neumann

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104274 - Industrial Genetics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22412 | Industrial Genetics | 2 SWS | Lecture / Online | Neumann |
| ST 2023 | 22447 | Seminar zu Methoden der Industriellen Genetik (22412) | 1 SWS | Seminar / Online | Neumann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, ✗ Cancelled

Prerequisites

None
4.70 Course: Industrial Wastewater Treatment [T-CIWVT-111861]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Harald Horn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Chemical and Process Engineering</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-CIWVT-105903 - Industrial Wastewater Treatment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22619</td>
<td>Industrial Wastewater Treatment</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Horn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗺 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The learning control is an oral examination lasting approx. 20 minutes.

Prerequisites
None
4.71 Course: Initial Exam Process Technology and Plant Design [T-CIWVT-106149]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104374 - Process Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term/Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22301</td>
<td>Prozess- und Anlagentechnik, Grundlagen der Ingenieurtechnik</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Kolb, Bajohr</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22311</td>
<td>Praktikum Prozess- und Anlagentechnik</td>
<td>1</td>
<td>Practical course / 🗣️</td>
<td>Kolb, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🔄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
4.72 Course: Innovation Management for Products & Processes in the Chemical Industry [T-CIWVT-108980]

Responsible: Dr. Claudius Neumann
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104397 - Innovation Management for Products & Processes in the Chemical Industry

Events

| WT 22/23 | 22328 | Innovationsmanagement für Produkte und Prozesse der chemischen Industrie | 2 SWS | Block / 📱 | Sauer, Neumann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📢 On-Site, ⬇ Cancelled

Competence Certificate
The examination is a written examination (multiple choice) with a duration of 30 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites
None
4.73 Course: Innovation Project Porous Ceramics from the 3D Printer [T-CIWVT-112201]

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22928 Innovation Project Porous Ceramics from the 3D Printer</td>
<td>2 SWS</td>
<td>Project (P / 🗣 Willenbacher</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Prerequisites
None.
4.74 Course: Innovative Concepts for Formulation and Processing of Printable Materials [T-CIWVT-112170]

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105993 - Innovative Concepts for Formulation and Processing of Printable Materials

Type: Oral examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each term
Version: 1

Events

| WT 22/23 | 22926 | Innovative Concepts for Formulation and Processing of Printable Materials | 2 SWS | Lecture / 🧩 | Willenbacher |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The learning control is an oral examination lasting approx. 20 minutes.

Prerequisites
None
4.75 Course: Innovative Food Design by Extrusion Technology [T-CIWVT-112202]

Responsible: Dr.-Ing. Azad Emin
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Exam Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Innovative Food Design by Extrusion Technology</td>
<td>2</td>
<td>Project (P / 🗣️)</td>
<td>Emin</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Innovative Food Design by Extrusion Technology - Part II</td>
<td>2</td>
<td>Project (P / 🗣️)</td>
<td>Emin</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
4.76 Course: Instrumental Analytics [T-CIWVT-106837]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104560 - Instrumental Analytics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22942 | Instrumental Analytics | 2 SWS | Lecture / Guthausen |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Oral exam, about 30 min

Prerequisites

None
4.77 Course: Internship [T-CIWVT-109276]

Responsible: Dr.-Ing. Siegfried Bajohr
Dr.-Ing. Barbara Freudig

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104527 - Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>14</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None
4.78 Course: Introduction to Sensory Analysis with Practice [T-CIWVT-109128]

Responsible: TT-Prof. Dr. Katharina Scherf
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105933 - Introduction to Sensory Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 6630 | Einführung in die Sensorik mit Übungen | 1 SWS | Lecture / 🗣 | Scherf |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None
4.79 Course: Laboratory Work for NMR for Engineers [T-CIWVT-109144]

Responsible: apl. Prof. Dr. Gisela Guthausen
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104401 - NMR for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>NMR for Engineers</td>
<td>2 SWS</td>
<td>Lecture / ☑</td>
<td></td>
<td>Guthausen</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Praktikum zu 22954 NMR im Ingenieurwesen</td>
<td>2 SWS</td>
<td>Practical course / ☑</td>
<td></td>
<td>Guthausen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ☑ Online, ☐ Blended (On-Site/Online), ☑ On-Site, ✗ Cancelled

Prerequisites
None
4.80 Course: Liquid Transportation Fuels [T-CIWVT-111095]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105200 - Liquid Transportation Fuels

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22314</td>
<td>Liquid Transportation Fuels</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Rauch</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22315</td>
<td>Übung zu 22314 Liquid Transportation Fuels</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Rauch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Learning Control is an oral examination with a duration of about 20 minutes.

Prerequisites

None
Course: Mass Transfer II [T-CIWVT-108935]

Responsible: Prof. Dr.-Ing. Wilhelm Schabel
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104369 - Mass Transfer II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWs</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer/Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22817</td>
<td>Stoffübertragung II</td>
<td>1</td>
<td>Lecture / 🗣</td>
<td>6</td>
<td>Each winter term</td>
<td>Schabel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22818</td>
<td>Übung zu 22817 Stoffübertragung II</td>
<td>2</td>
<td>Practice / 🗣</td>
<td></td>
<td>Each winter term</td>
<td>Schabel, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🍷 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 25 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.82 Course: Master's Thesis [T-CIWVT-109275]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104526 - Module Master's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites
Process Technology and at least three further modules of the advanced fundamentals has to be passed. The internship has to be passed. The examination board decides on exceptions.
(Compare SPO section 14 subsection 1)

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline** 6 months
- **Maximum extension period** 4 weeks
- **Correction period** 8 weeks
4.83 Course: Materials and Processes for Electrochemical Storage [T-CIWVT-108146]

Responsible: Prof. Dr. Jens Tübke

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104353 - Materials and Processes for Electrochemical Storage

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

None
4.84 Course: Measurement Techniques in Chemical Processing [T-CIWVT-109086]

Responsible: Dr.-Ing. Steffen Peter Müller
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104450 - Measurement Techniques in Chemical Processing (including practical course)
M-CIWVT-104490 - Measurement Techniques in Chemical Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22126 | Messmethoden in der Chemischen Verfahrenstechnik | 2 SWS | Lecture / 🗣 | Müller |
| ST 2023 | 22127 | Praktikum zu 22126 Messmethoden in der Chemischen Verfahrenstechnik | 1 SWS | Practical course / 🗣 | Müller |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.85 Course: Measurement Techniques in the Thermo-Fluid Dynamics [T-CIWVT-108837]

Responsible: Prof. Dr.-Ing. Dimosthenis Trimis
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104297 - Measurement Techniques in the Thermo-Fluid Dynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22509</td>
<td>Diagnostics in Thermal Fluid Dynamics</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Trimis</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22510</td>
<td>Exercises for 22509 Diagnostics in Thermal Fluid Dynamics</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Trimis</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🌏 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Prerequisites

None
4.86 Course: Membrane Reactors [T-CIWVT-111314]

Responsible: Prof. Dr.-Ing. Peter Pfeifer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105663 - Membrane Reactors

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Offered</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22144</td>
<td>Membrane Reactors</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>X</td>
<td>Pfeifer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💪 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning control is an oral examination with a duration of about 20 minutes (SPO section 4, subsection 2 No. 2).

Prerequisites

None
4.87 Course: Membrane Technologies in Water Treatment [T-CIWVT-110865]

Responsible: Prof. Dr. Harald Horn
Dr.-Ing. Florencia Saravia

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105380 - Membrane Technologies in Water Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture</th>
<th>Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22605</td>
<td>2 SWS</td>
<td>Membrane Technologies in Water Treatment</td>
<td>Horn, Saravia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>22606</td>
<td>1 SWS</td>
<td>Membrane Technologies in Water Treatment - Exercises</td>
<td>Horn, Saravia, und Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Learning control is a written examination with a duration of 90 minutes (SPO section 4 subsection 2).

Prerequisites
The attendance at the excursions is examination prerequisite.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-CIWVT-110864 - Excursions: Membrane Technologies must have been passed.
4.88 Course: Methods and Processes of PGE - Product Generation Engineering
[T-MACH-109192]

Responsible: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkarth
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102718 - Product Development – Methods of Product Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2146176</th>
<th>Methods and Processes of PGE - Product Generation Engineering</th>
<th>4 SWS</th>
<th>Lecture / 🔴</th>
<th>Albers, Düser</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

Written exam (processing time: 120 min + 10 min reading time)

Auxiliaries:
- Calculator
- German dictionary (books only)

Prerequisites

None

Annotation

This lecture is the basis for the main subject Integrated Product Development, which is offered as a specialisation.
4.89 Course: Microbiology for Engineers [T-CIWVT-106834]

Responsible: Prof. Dr. Thomas Schwartz

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104319 - Microbiology for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22633 | Microbiology for Engineers | 2 SWS | Lecture / 🗣 | Schwartz |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
4.90 Course: Microfluidics [T-CIWVT-108909]

Responsible: Gero Leneweit
Organisation: KIT Department of Chemical and Process Engineering
Part of:
- M-CIWVT-104350 - Microfluidics
- M-CIWVT-105205 - Microfluidics and Case Studies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22964</td>
<td>Microfluidics - Basics and Applications</td>
<td>Lecture / Leneweit</td>
</tr>
</tbody>
</table>

Prerequisites

None
4.91 Course: Microfluidics - Case Studies [T-CIWVT-110549]

Responsible: Gero Leneweit

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105205 - Microfluidics and Case Studies

Type
- Completed coursework

Credits
- 2

Grading scale
- pass/fail

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22971</td>
<td>Microfluidics - Basics and Applications with Lab Training</td>
<td>1</td>
<td>Practical course</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None
4.92 Course: Microrheology and High Frequency Rheology [T-CIWVT-108977]

Responsible: Dr.-Ing. Claude Oelschlaeger

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104395 - Microrheology and High Frequency Rheology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22968</td>
<td>1 SWS</td>
<td>Lecture / Oelschlaeger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None
Course: Mixing, Stirring, Agglomeration [T-CIWVT-110895]

Responsibility: Dr.-Ing. Frank Rhein

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105399 - Mixing, Stirring, Agglomeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22907 | Mixing, Stirring and Agglomeration | 3 SWS | Lecture / 🗣 | Rhein |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning control is an oral individual examination with a duration of 30min according SPO section 4, subsection 2.

Prerequisites

None
4.94 Course: Modeling Wastewater Treatment Processes [T-BGU-112371]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-106113 - Modeling Wastewater Treatment Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Event Title</th>
<th>Credit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>6223816</td>
<td>Modelling Wastewater Treatment Processes</td>
<td>4 SWS</td>
<td>Lecture / Practice (/)</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written report, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites
none

Recommendation
none

Annotation
Course will not be offered until summer term 2023.
The number of participants in the course is limited to 20 persons. The registration is made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geoeckology and further study programs.
4.95 Course: Multiphase Reaction Engineering [T-CIWVT-108815]

Responsible: Prof. Dr. Bettina Kraushaar-Czarnetzki
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104277 - Multiphase Reaction Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22122</td>
<td>Chemical Process Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Kraushaar-Czarnetzki</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 22123</td>
<td>Übung und Repetitorium zu 22122 und 22125</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Kraushaar-Czarnetzki</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 22125</td>
<td>Heterogene Katalyse I</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Kraushaar-Czarnetzki</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The examination is an oral examination with a duration of 40 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.96 Course: Nanoparticles – Structure and Function [T-CIWVT-108894]

Responsible: Dr.-Ing. Jörg Meyer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104339 - Nanoparticles – Structure and Function

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22936 | Nanopartikel Struktur und Funktion | 2 SWS | Lecture / 🗣 | Meyer |
| ST 2023 | 22937 | Übungen zu 22936 Nanopartikel Struktur und Funktion | 1 SWS | Practice / 🗣 | Meyer |

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of 30 minutes (single examination) or 20 minutes (comprehensive examination in VF Gas-Partikel-Systeme) (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.97 Course: NMR for Engineers [T-CIWVT-108984]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104401 - NMR for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type / On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22954</td>
<td>NMR for Engineers</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Guthausen</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22955</td>
<td>Praktikum zu 22954 NMR im Ingenieurwesen</td>
<td>2</td>
<td>Practical course / 🗣</td>
<td>Guthausen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning control is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

Labwork must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-CIWVT-109144 - Laboratory Work for NMR for Engineers must have been passed.
4 COURSES
Course: NMR Methods for Product and Process Analysis [T-CIWVT-111843]

4.98 Course: NMR Methods for Product and Process Analysis [T-CIWVT-111843]

Responsible: apl. Prof. Dr. Gisela Guthausen

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105890 - NMR Methods for Product and Process Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22954 | NMR for Engineers | 2 SWS | Lecture / 🗣 | Guthausen |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Learning control is an oral examination with a duration of about 30 minutes.

Prerequisites

None.
4.99 Course: Nonlinear Process Control [T-CIWVT-112824]

Responsible: Prof. Dr.-Ing. Thomas Meurer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106316 - Nonlinear Process Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None.
4.100 Course: Numerical Methods in Fluid Mechanics [T-MATH-105902]

Responsible: Prof. Dr. Willy Dörfler
PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102932 - Numerical Methods in Fluid Mechanics

Type: Oral examination

Credits: 4

Grading scale: Grade to a third

Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>0164200</td>
<td>Numerische Methoden in der Strömungsmechanik</td>
<td>2</td>
<td>Lecture</td>
<td>Thäter</td>
</tr>
<tr>
<td>ST 2023</td>
<td>0164210</td>
<td>Übungen zu 0164210 (Numerische Methoden in der Strömungsmechanik)</td>
<td>1</td>
<td>Practice</td>
<td>Thäter</td>
</tr>
</tbody>
</table>
4.101 Course: Nutritional Consequences of Food Processing [T-CIWVT-108792]

Responsible: PD Dr. Karlis Briviba
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104255 - Nutritional Consequences of Food Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22225</td>
<td>Nutritional Consequences of Food Processing</td>
<td>2 SWS</td>
<td>Lecture / Briviba</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.102 Course: Optimal and Model Predictive Control [T-CIWVT-112825]

Responsible: Prof. Dr.-Ing. Thomas Meurer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106317 - Optimal and Model Predictive Control

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Code</th>
<th>Event Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22984</td>
<td>Optimal and Model Predictive Control</td>
<td>2</td>
<td>Lecture</td>
<td>Meurer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22985</td>
<td>Optimal and Model Predictive Control - Exercises</td>
<td>1</td>
<td>Practice</td>
<td>Meurer</td>
</tr>
</tbody>
</table>

Legend: 🕵️ Online, ⬢ Blended (On-Site/Online), 🔗 On-Site, ❌ Cancelled
Course: Organ Support Systems [T-MACH-105228]

Responsible: apl. Prof. Dr. Christian Pylatiuk

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102702 - Organ Support Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2106008 | Organ support systems | 2 SWS | Lecture / Pylatiuk |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written examination (Duration: 45min)

Prerequisites

none
4.104 Course: Particle Technology Exam [T-CIWVT-106028]

Responsible: Prof. Dr.-Ing. Achim Dittler
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104378 - Particle Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contacts</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22975</td>
<td>Partikeltechnik</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22976</td>
<td>Übungen in kleinen Gruppen zu 22975 Partikeltechnik</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
4.105 Course: Physical Chemistry (Lab) [T-CHEMBIO-109179]

Responsible: Dr. Tomas Kubar
Dr. Benno Meier

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CHEMBIO-104486 - Physical Chemistry (incl. Lab)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>5209</td>
<td>Physical Chemistry for Chemical Engineers</td>
<td>2</td>
<td>Lecture</td>
<td>Meier, Kubar</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>5210</td>
<td>Übungen zur Vorlesung Physikalische Chemie für Chemieingenieure</td>
<td>1</td>
<td>Practice</td>
<td>Meier, Kubar, Assistenten</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>5239</td>
<td>Physikalisch-chemisches Praktikum für Chemieingenieure (Master)</td>
<td>2</td>
<td>Practical course</td>
<td>Bickel, Die Dozenten des Instituts</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination consists of two Parts:

1. written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO)
2. practical course, ungraded study achievement (§ 4 Abs. 3 SPO)

Prerequisites

None
4.106 Course: Physical Chemistry (Written Exam) [T-CHEMBIO-109178]

Responsible: PD Dr. Detlef Nattland

Organisation: KIT Department of Chemistry and Biosciences

Part of: M-CHEMBIO-104486 - Physical Chemistry (incl. Lab)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>5209</td>
<td>Physical Chemistry for Chemical Engineers</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>5210</td>
<td>Übungen zur Vorlesung Physikalische Chemie für Chemieingenieure</td>
<td>1 SWS</td>
<td>Practice</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>5239</td>
<td>Physikalisch-chemisches Praktikum für Chemieingenieure (Master)</td>
<td>2 SWS</td>
<td>Practical course</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is a written examination with a duration of 90 minutes (section 4 subsection 2 number 1 SPO).

Prerequisites

Lab work has to be passed.
4.107 Course: Physical Foundations of Cryogenics [T-CIWVT-106103]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103068 - Physical Foundations of Cryogenics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Type</th>
<th>On-Site/Online</th>
<th>Practice</th>
<th>On-Site</th>
<th>Cancellation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22030</td>
<td>2 SWS</td>
<td>Physical Foundations of Cryogenics</td>
<td>Lecture</td>
<td>Grohmann</td>
<td>Grohmann</td>
<td>Grohmann</td>
<td></td>
</tr>
<tr>
<td>ST 2023 22031</td>
<td>1 SWS</td>
<td>Physical Foundations of Cryogenics - Exercises</td>
<td>Practice</td>
<td>Grohmann</td>
<td>Grohmann</td>
<td>Grohmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Prerequisites
None
4.108 Course: Power-to-X – Key Technology for the Energy Transition [T-CIWVT-111841]

Responsible: Prof. Dr.-Ing. Roland Dittmeyer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105891 - Power-to-X – Key Technology for the Energy Transition

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

| Events | ST 2023 | 22155 | Power-to-X – Key Technology for the Energy Transition | 2 SWS | Lecture / 🗣 | Dittmeyer, Holtappels, Navarrete Munoz |

Legend: 🖥 Online, ☞ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Oral examination, duration about 30 minutes.

Prerequisites
None.
4.109 Course: Practical Course Combustion Technology [T-CIWVT-108873]

Responsible: Dr.-Ing. Stefan Raphael Harth
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104321 - Practical Course Combustion Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22531</td>
<td>3 SWS</td>
<td>Laboratory Work in Combustion Technology</td>
<td>Practical course / On-Site</td>
<td>Harth</td>
</tr>
<tr>
<td>ST 2023 22542</td>
<td>3 SWS</td>
<td>Verbrennungstechnisches Praktikum</td>
<td>Practical course / On-Site</td>
<td>Trimis, Harth</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.110 Course: Practical Course in Water Technology [T-CIWVT-106840]

Responsible: Dr. Gudrun Abbt-Braun
Dr. Andrea Hille-Reichel
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103440 - Practical Course in Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Practical Course: Water Quality and Water Assessment</td>
<td>Each winter term</td>
<td>Horn, Abbt-Braun</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👀 On-Site, ✗ Cancelled

Competence Certificate

The learning: 6 Experiments including entrance test, protocol; presentation about a selected experiment (about 15 minutes); final test (SPO section 4, subsection 2 No. 3).

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-CIWVT-103407 - Water Technology must have been started.
2. The course T-CIWVT-110866 - Excursions: Water Supply must have been passed.
4.111 Course: Practical Course Measurement Techniques in Chemical Processing [T-CIWVT-109181]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104450 - Measurement Techniques in Chemical Processing (including practical course)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Facilitator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22126</td>
<td>Messmethoden in der Chemischen Verfahrenstechnik</td>
<td>2</td>
<td>Lecture</td>
<td>Müller</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22127</td>
<td>Praktikum zu 22126 Messmethoden in der Chemischen Verfahrenstechnik</td>
<td>1</td>
<td>Practical course</td>
<td>Müller</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22129</td>
<td>Kolloquium zu Messmethoden in der Chemischen Verfahrenstechnik</td>
<td></td>
<td>Colloquium (K)</td>
<td>Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an ungraded laboratory work (section 4 subsection 3 SPO).

Prerequisites
None
4.112 Course: Practical Course Measurement Techniques in Chemical Processing [T-CIWVT-109182]

Responsible: Prof. Dr.-Ing. Peter Pfeifer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104491 - Catalytic Micro Reactors (including practical course)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22137</td>
<td>Praktikum zu 22136 Katalytische Mikroreaktoren</td>
<td>1</td>
<td>Practical course</td>
<td>Pfeifer, Dittmeyer, und Mitarbeiter</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22137</td>
<td>Praktikum zu 22136 Katalytische Mikroreaktoren</td>
<td>1</td>
<td>Practical course</td>
<td>Pfeifer, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
None
4.113 Course: Practical Course Process Technology and Plant Design [T-CIWVT-106148]

Responsible: Prof. Dr.-Ing. Thomas Kolb
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104374 - Process Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22311</td>
<td>Praktikum Prozess- und Anlagentechnik</td>
<td>1 SWS</td>
<td>Practical course / Kolb, und Mitarbeiter</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course **T-CIWVT-106149 - Initial Exam Process Technology and Plant Design** must have been passed.
Course: Practical Course Sol-Gel Processes [T-CIWVT-108823]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104284 - Sol-Gel-Processes (Including Practical Course)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22111 | 1 SWS | Practical course / Müller |

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Ungraded laboratory work (section 4, subsection 3 SPO).

Prerequisites
None
Course: Practical in Additive Manufacturing for Process Engineering [T-CIWVT-110903]

Responsible: TT-Prof. Dr. Christoph Klahn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-105407 - Additive Manufacturing for Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>1</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event</th>
<th>Type Description</th>
<th>SWS</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22930</td>
<td>Practical in Additive Manufacturing for Process Engineering</td>
<td>1</td>
<td>Practical course / On-Site</td>
<td>Klahn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ✗ Cancelled
Course: Practical in Power-to-X: Key Technology for the Energy Transition [T-CIWVT-111842]

Responsible: Prof. Dr.-Ing. Roland Dittmeyer
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105891 - Power-to-X – Key Technology for the Energy Transition

<table>
<thead>
<tr>
<th>Type</th>
<th>Credit</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Practical in Additive Manufacturing for Process Engineering</td>
<td>1 SWS</td>
<td>Klahn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Practical course / On-Site</td>
<td>1</td>
<td>Klahn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled

Competence Certificate

Ungraded lab: Participation in all four experiments.

Prerequisites

None.

Annotation

Dates by arrangement, Location: IMVT, KIT Campus Nord, Energy Lab 2.0, Building 605.
4.117 Course: Principles of Ceramic and Powder Metallurgy Processing [T-MACH-102111]

Responsible: apl. Prof. Dr. Günter Schell

Organisation: KIT Department of Mechanical Engineering

Part of: M-CIWVT-104886 - Principles of Ceramic and Powder Metallurgy Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>WS</th>
<th>2193010</th>
<th>Basic principles of powder metallurgical and ceramic processing</th>
<th>2 SWS</th>
<th>Lecture / 🧩</th>
<th>Schell</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of an oral exam (20-30 min) taking place at the agreed date. The re-examination is offered upon agreement.

Prerequisites
none
4.118 Course: Principles of Constrained Static Optimization [T-CIWVT-112811]

Responsible: Dr.-Ing. Pascal Jerono
Prof. Dr.-Ing. Thomas Meurer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-106313 - Principles of Constrained Static Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
4.119 Course: Principles of Medicine for Engineers [T-MACH-105235]

Responsible: apl. Prof. Dr. Christian Pylatiuk

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102720 - Principles of Medicine for Engineers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2105992 | Principles of Medicine for Engineers | 2 SWS | Lecture / Pylatiuk |

Legend: 🔄 Online, 🧩 Blended (On-Site/Online), 🗛 On-Site, ✗ Cancelled

Competence Certificate

Written examination (Duration: 45min)

Prerequisites

None
4.120 Course: Process Analysis: Modeling, Data Mining, Machine Learning [T-CIWVT-112829]

Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-106321 - Process Analysis: Modeling, Data Mining, Machine Learning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
4.121 Course: Process Analysis: Modeling, Data Mining, Machine Learning [T-ETIT-111214]

Responsible: Dr.-Ing. Christian Borchert
Prof. Dr.-Ing. Michael Heizmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-105594 - Process Analysis: Modeling, Data Mining, Machine Learning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2302145</th>
<th>Process Analysis: Modeling, Data Mining, Machine Learning</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Borchert</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🫖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Responsible: Hon.-Prof. Dr. Jürgen Schmidt

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104352 - Process and Plant Safety

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22308</th>
<th>Process and Plant Safety</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Schmidt</th>
</tr>
</thead>
</table>

Legend: 🖦 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.123 Course: Process Instruments and Machinery and their Process Integration [T-CIWVT-108910]

Responsible: Manfred Nagel

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104351 - Process Instruments and Machinery and their Process Integration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>22941</th>
<th>Process Instruments and Machinery and their Process Integration</th>
<th>2 SWS</th>
<th>Block / 🗣</th>
<th>Nagel</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.124 Course: Process Modeling in Downstream Processing [T-CIWVT-106101]

Responsible: apl. Prof. Dr. Matthias Franzreb

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103066 - Process Modeling in Downstream Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22717 | Process Modeling in Downstream Processing | 2 SWS | Lecture / 🗣 | Franzreb |

Legend: 🖥 Online, 🟥 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

None
4.125 Course: Process Technology and Plant Design Written Exam [T-CIWVT-106150]

 Responsible: Prof. Dr.-Ing. Thomas Kolb
 Organisation: KIT Department of Chemical and Process Engineering
 Part of: M-CIWVT-104374 - Process Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22301</td>
<td>Prozess- und Anlagentechnik I, Grundlagen der Ingenieurtechnik</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Kolb, Bajohr</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22311</td>
<td>Praktikum Prozess- und Anlagentechnik</td>
<td>1</td>
<td>Practical course / 🗣️</td>
<td>Kolb, und Mitarbeiter</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22302</td>
<td>Prozess - und Anlagentechnik II - Prozesse</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>Kolb, Bajohr</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣️ On-Site, ✖ Cancelled
4.126 Course: Processes and Process Chains for Renewable Resources [T-CIWVT-108997]

Responsible: Prof. Dr. Nicolaus Dahmen
Prof. Dr.-Ing. Jörg Sauer

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104422 - Processes and Process Chains for Renewable Resources

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Type of Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Duration</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Discussion</td>
<td>22323</td>
<td>2 SWS</td>
<td>Verfahren und Prozessketten für nachwachsende Rohstoffe</td>
<td>2</td>
<td>Dahmen, Sauer</td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>22324</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td>Dahmen</td>
<td></td>
</tr>
<tr>
<td>Lecture / Practice (On-Site)</td>
<td>22323</td>
<td>3 SWS</td>
<td>Verfahren und Prozessketten für nachwachsende Rohstoffe</td>
<td>3</td>
<td>Dahmen, Sauer</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.127 Course: Processing of Nanostructured Particles [T-CIWVT-106107]

Responsible: Prof. Dr.-Ing. Hermann Nirschl
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103073 - Processing of Nanostructured Particles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 22921 | Processing of Nanostructured Particles | 2 SWS | Lecture / 🗣 | Nirschl |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
None
Course: Product Design II [T-CIWVT-108979]

Responsible: Prof. Dr.-Ing. Matthias Kind
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104396 - Product Design II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week 22/23</th>
<th>Lecture Code</th>
<th>Lecture Code Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>22833</td>
<td>Produktgestaltung II</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 SWS</th>
<th>Lecture /</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate

The examination is an oral examination with a duration of 30 minutes.

Prerequisites

None
4.129 Course: Project Centered Software-Lab [T-MATH-105907]

Responsible: PD Dr. Gudrun Thäter

Organisation: KIT Department of Mathematics

Part of: M-MATH-102938 - Project Centered Software-Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>0161700</td>
<td>Projektorientiertes Softwarepraktikum</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Thäter, Krause</td>
</tr>
</tbody>
</table>

Prerequisites

none
4.130 Course: Reaction Kinetics [T-CIWVT-108821]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104283 - Reaction Kinetics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22106</td>
<td>Reaktionskinetik</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Müller</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 22107</td>
<td>Übungen Reaktionskinetik</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Müller</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚽ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.131 Course: Refinery Technology - Liquid Fuels [T-CIWVT-108831]

Responsible: Prof. Dr. Reinhard Rauch
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104291 - Refinery Technology - Liquid Fuels

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22310 | **Raffinerietechnik - Flüssige Energieträger** | 2 SWS | Lecture / 🗣 | Rauch
| ST 2023 | 22312 | **Übung zu 22310 Raffinerietechnik** | 1 SWS | Practice / 🗣 | Rauch, und Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.132 Course: Refrigeration B - Foundations of Industrial Gas Processing [T-CIWVT-108914]

Responsible: Prof. Dr.-Ing. Steffen Grohmann
Organization: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104354 - Refrigeration B - Foundations of Industrial Gas Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22014 Kältetechnik B</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grohmann</td>
<td></td>
</tr>
<tr>
<td>ST 2023 22015 Übungen zu 22014 Kältetechnik B</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Grohmann, und Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚡ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.133 Course: Rheology and Processing of Disperse Systems [T-CIWVT-108891]

Responsible: Dr.-Ing. Claude Oelschlaeger
 Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104336 - Rheology and Processing of Disperse Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

WT 22/23	22916	Stabilität disperser Systeme	2 SWS	Lecture / On-Site	Oelschlaeger, Willenbacher
ST 2023	22922	Rheologie disperser Systeme	1 SWS	Lecture / On-Site	Willenbacher
ST 2023	22968	Mikrorheologie und Hochfrequenzrheometrie	1 SWS	Lecture / On-Site	Oelschlaeger

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.134 Course: Rheology and Processing of Polymers [T-CIWVT-108890]

Responsible: Dr.-Ing. Bernhard Hochstein
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104335 - Rheology and Processing of Polymers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22924 | Rheologie von Polymeren | 2 SWS | Lecture / 🗣 | Willenbacher |
| ST 2023 | 22949 | Rheometrie und Rheologie | 2 SWS | Lecture / 🗣 | Hochstein |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.135 Course: Rheology and Rheometry [T-CIWVT-108881]

Responsible: Dr.-Ing. Bernhard Hochstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104326 - Rheology and Rheometry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22949 Rheometrie und Rheologie 2 SWS Lecture / Hochstein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗑 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.136 Course: Rheology of Complex Fluids and Advanced Rheometry [T-CIWVT-108886]

Responsible: Dr.-Ing. Claude Oelschlaeger
Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104331 - Rheology of Complex Fluids and Advanced Rheometry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Examinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22922</td>
<td>Rheologie disperser Systeme</td>
<td>1</td>
<td>Lecture / 📏</td>
<td>Willenbacher</td>
</tr>
<tr>
<td>ST 2023</td>
<td>22968</td>
<td>Mikrorheologie und Hochfrequenzrheometrie</td>
<td>1</td>
<td>Lecture / 📏</td>
<td>Oelschlaeger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), ☉ On-Site, ☒ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.137 Course: Rheology of Disperse Systems [T-CIWVT-108963]

Responsible: Prof. Dr. Norbert Willenbacher
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104391 - Rheology of Disperse Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Rheologie disperser Systeme</td>
<td>Willenbacher</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☕ Blended (On-Site/Online), 🗣️ On-Site, 🗑 Cancelled

Prerequisites
None
Course: Rheology of Polymers [T-CIWVT-108884]

Responsible: Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104329 - Rheology of Polymers

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Rheologie von Polymeren</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☝ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.139 Course: Selected Formulation Technologies [T-CIWVT-106037]

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103064 - Selected Formulation Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Type/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 22209</td>
<td>1</td>
<td>Lecture / van der Schaar</td>
</tr>
<tr>
<td>ST 2023 22226</td>
<td>1</td>
<td>Lecture / Karbstein, Leister</td>
</tr>
<tr>
<td>ST 2023 22229</td>
<td>2</td>
<td>Lecture / Karbstein, Leister</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
4.140 Course: Seminar Biotechnological Production [T-CIWVT-108492]

Responsible: Prof. Dr. Christoph Syldatk
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104384 - Biotechnological Production

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22409</th>
<th>Übung zu 22410 Biotechnologische Stoffproduktion</th>
<th>2 SWS</th>
<th>Practice / 🗣</th>
<th>Ochsenreither</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22410</td>
<td>Biotechnical Production Methods</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Holtmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
4.141 Course: Seminar Mathematics [T-MATH-106541]

Organisation: KIT Department of Mathematics

Part of: M-MATH-103276 - Seminar

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
4 Course: Seminar of Food Processing in Practice with Excursion [T-CIWVT-109129]

Responsible: Dr.-Ing. Ulrike van der Schaaf
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-105932 - Seminar of Food Processing in Practice

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Block / X</td>
<td>van der Schaaf, Ellwanger, und Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Block / ☑</td>
<td>van der Schaaf, Ellwanger, Rütten</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), ☑ On-Site, ✗ Cancelled

Competence Certificate
Learning control is an oral exam with a duration of about 20 minutes.

Prerequisites
None
Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-CIWVT-106017 - Students Innovation Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2545082</td>
<td>SIL</td>
<td>Seminar</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§4(2), 3 SPO). The final grade is a result from both, the grade of the term paper and its presentation, as well as active participation during the seminar. In addition, smaller, ungraded tasks are provided in the course to monitor progress.

Prerequisites
None

Recommendation
None
4.144 Course: Sol-Gel Processes [T-CIWVT-108822]

Responsible: Dr.-Ing. Steffen Peter Müller

Organisation: KIT Department of Chemical and Process Engineering

Part of:
- M-CIWVT-104284 - Sol-Gel-Processes (Including Practical Course)
- M-CIWVT-104489 - Sol-Gel Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22110</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.145 Course: Solid Liquid Separation [T-CIWVT-108897]

Responsible: Dr.-Ing. Marco Gleiß
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104342 - Solid Liquid Separation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22987</td>
<td>Mechanische Separationstechnik</td>
<td>3</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Gleiß</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22988</td>
<td>Übung zu 22987 Mechanische Separationstechnik</td>
<td>1</td>
<td>Practice</td>
<td>1</td>
<td>Grade to a third</td>
<td>Gleiß</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The examination is an oral examination with a duration of 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.146 Course: Stability of Disperse Systems [T-CIWVT-108885]

Responsible: Prof. Dr. Norbert Willenbacher

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104330 - Stability of Disperse Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Type Code</th>
<th>Recurrence</th>
<th>Lecture</th>
<th>Oelschlaeger, Willenbacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22916</td>
<td>2 SWS</td>
<td>Stabilität disperser Systeme</td>
<td>🗣️</td>
<td>Each winter term</td>
<td>Oelschlaeger, Willenbacher</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
Course: Statistical Thermodynamics [T-CIWVT-106098]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103059 - Statistical Thermodynamics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22010 | Statistische Thermodynamik | 2 SWS | Lecture / 🗣 | Enders |
| ST 2023 | 22011 | Übungen zu 22010 Statistische Thermodynamik | 1 SWS | Practice / 🗣 | Enders |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Prerequisites

None
4.148 Course: Structure and Reaction of Aquatic Humic Substances [T-CIWVT-108842]

Responsible: Dr. Gudrun Abbt-Braun
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104302 - Structure and Reaction of Aquatic Humic Substances

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22615 | Structur and Reactions of Aquatic Humic Substances | 1 SWS | Lecture / 🗣 | Abbt-Braun |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The examination is an oral examination with a duration of about 15 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
4.149 Course: Supercritical Fluid Technology [T-CIWVT-108923]

Responsible: apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104362 - Supercritical Fluid Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>负责任</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22021</td>
<td>Supercritical Fluid Technology and Applications</td>
<td>3 SWS</td>
<td>Lecture / Practice (/) Türk</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.150 Course: Surface Effects in Process Engineering [T-CIWVT-109088]

Responsible: Ioannis Nicolaou
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104452 - Surface Effects in Process Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None

Responsible: Prof. Dr.-Ing. Thomas Kolb

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104290 - Technical Systems for Thermal Waste Treatment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.152 Course: Thermal Separation Processes II [T-CIWVT-108926]

Responsible: Prof. Dr.-Ing. Matthias Kind
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104365 - Thermal Separation Processes II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22812</td>
<td>2+1 SWS</td>
<td>Thermische Trennverfahren II</td>
<td>Kind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 22813</td>
<td>1 SWS</td>
<td>Übungen zu 22812 Thermische Trennverfahren II</td>
<td>Kind</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💻 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The examination is an oral examination with a duration of 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites
None
Course: Thermal Transport Processes [T-CIWVT-106034]

Responsible: Prof. Dr.-Ing. Matthias Kind
Prof. Dr.-Ing. Wilhelm Schabel
Prof. Dr.-Ing. Thomas Wetzel

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104377 - Thermal Transport Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22824</th>
<th>Thermische Transportprozesse (MA)</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Kind, Wetzel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>22825</td>
<td>Übung zu 22824 Thermische Transportprozesse</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Wetzel, Kind, Schabel, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕐 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
4.154 Course: Thermodynamics III [T-CIWVT-106033]

Responsible: Prof. Dr. Sabine Enders
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103058 - Thermodynamics III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22008 Thermodynamics III</td>
<td>2 SWS</td>
<td>Lecture / 🔴</td>
<td>Enders</td>
</tr>
<tr>
<td>WT 22/23 22009 Thermodynamics III - Exercises</td>
<td>1 SWS</td>
<td>Practice / 🔴</td>
<td>Enders, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled
4.155 Course: Thermodynamics of Interfaces [T-CIWVT-106100]

Responsible: Prof. Dr. Sabine Enders

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-103063 - Thermodynamics of Interfaces

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>22012</th>
<th>Grenzflächenthermodynamik</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Enders</th>
</tr>
</thead>
</table>

Legend: Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 30 Minuten.
4.156 Course: Thermodynamics of Phase Equilibria [T-CIWVT-108921]

Responsible: apl. Prof. Dr. Michael Türk

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-104360 - Thermodynamics of Phase Equilibria

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 22016 Thermodynamics of Phase Equilibria</td>
<td>3 SWS Lecture / Practice Türk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104421 - Unit Operations and Process Chains for Food of Animal Origin

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 22210 | Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen (ehem. LVT) | 2 SWS | Lecture / 🗣️ | Karbstein |
| ST 2023 | 22216 | Fragestunde zu 22210 Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen | 1 SWS | Colloquium (K / 🗣️) | Karbstein |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
The learning control is an oral examination lasting approx. 30 minutes.

Prerequisites
None
4.158 Course: Unit Operations and Process Chains for Food of Plant Origin [T-CIWVT-108995]

Responsible: Prof. Dr.-Ing. Heike Karbstein
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104420 - Unit Operations and Process Chains for Food of Plant Origin

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| Events | 22210 | Verfahren und Prozessketten für Lebensmittel pflanzlicher Herkunft (ehem. LVT) | 3+1 SWS | Lecture / 📧 | Karbstein |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗪 On-Site, ❌ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes.

Prerequisites

None
Course: Vacuum Technology [T-CIWVT-109154]

Responsible: Dr. Christian Day
Organisation: KIT Department of Chemical and Process Engineering
KIT Department of Electrical Engineering and Information Technology
Part of: M-CIWVT-104478 - Vacuum Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
<th>Date, Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22034</td>
<td>Übung zu Vakuumtechnik (22034)</td>
<td>1</td>
<td>Practice</td>
<td>Day, Varoutis</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22033</td>
<td>Vakuumtechnik</td>
<td>2</td>
<td>Lecture</td>
<td>Day</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 20 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
Course: Wastewater Treatment Technologies [T-BGU-109948]

Responsible: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad
PD Dr.-Ing. Stephan Fuchs

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-104917 - Wastewater Treatment Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Type
- Written examination

Credits
- 6

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 4

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture / Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6223901</td>
<td>Azari Najaf Abad, Fuchs</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate
- written exam, 60 min.

Prerequisites
- none

Recommendation
- none

Annotation
- The course takes place in winter term as from now.
- The number of participants in the course is limited to 30 persons. The registration is to be made via ILIAS. The places are allocated considering the progress in the students' studies, with priority to students from Water Science and Engineering, then Civil Engineering, Chemical and Process Engineering, Geocology and further study programs.
4.161 Course: Water Quality Assessment [T-CIWVT-108841]

Responsible: Dr. Gudrun Abbt-Braun
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-104301 - Water Quality Assessment

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>22603</th>
<th>Scientific Principles for Water Quality Assessment</th>
<th>2 SWS</th>
<th>Lecture /</th>
<th>-</th>
<th>Abbt-Braun</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22604</td>
<td>Exercises and Demonstration for 22603 Scientific Principles for Water Quality Assessment</td>
<td>1 SWS</td>
<td>Practice /</td>
<td></td>
<td>Abbt-Braun, Horn, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The examination is an oral examination with a duration of about 30 minutes (section 4 subsection 2 number 2 SPO).

Prerequisites

None
4.162 Course: Water Technology [T-CIWVT-106802]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-103407 - Water Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>22621</td>
<td>Water Technology</td>
<td>2</td>
<td>Lecture</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Horn</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>22622</td>
<td>Exercises to Water Technology</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Horn, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🎤 Blended (On-Site/Online)
- 📚 On-Site
- X Cancelled
Ammtliche Bekanntmachung

2016
Ausgegeben Karlsruhe, den 10. Mai 2016
Nr. 31

Inhalt

Seite

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik 233
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik

vom 03. Mai 2016

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 03. Mai 2016 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
§ 2 Ziele des Studiums, akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 9 Verlust des Prüfungsausspruchs
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Masterarbeit
§ 14 a Berufspraktikum
§ 15 Zusatzleistungen
§ 15 a Überfachliche Qualifikationen
§ 16 Prüfungsausschuss
§ 17 Prüfende und Beisitzende
§ 18 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Masterprüfung
§ 19 Umfang und Art der Masterprüfung
§ 19 a Leistungsnachweise für die Masterprüfung
§ 20 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 21 Masterzeugnis, Masterurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 22 Bescheinigung von Prüfungsleistungen
§ 23 Aberkennung des Mastergrades
§ 24 Einsicht in die Prüfungsakten
§ 26 Inkrafttreten, Übergangsvorschriften
Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik am KIT.

§ 2 Ziel des Studiums, akademischer Grad
(1) Im konsekutiven Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft, verbreitert, erweitert oder ergänzt werden. Ziel des Studiums ist die Fähigkeit, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.

(2) Aufgrund der bestandenen Masterprüfung wird der akademische Grad „Master of Science (M.Sc.)“ für den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Die Regelstudienzeit beträgt vier Semester.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studien- und Prüfungsleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.

(5) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutsche Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

(2) Prüfungsleistungen sind:
1. schriftliche Prüfungen,
2. mündliche Prüfungen oder
3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungs begleitend erbracht werden. Die Masterprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Masterarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer

1. in den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
3. nachweist, dass er in dem Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik den Prüfungsanspruch nicht verloren hat und
4. die in § 19 a genannte Voraussetzung erfüllt.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/ die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

§ 6 Durchführung von Erfolgskontrollen

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lerninhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 4 zu beachten. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unverzüglich hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss im Fall einer ursprünglich mündlich durchzuführenden Prüfung mindestens sechs Wochen vor der Prüfungsleistung, im Fall einer ursprünglich schriftlich durchzuführenden Prüfung mindestens drei Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/einem Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierendem.

Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekanntzugeben.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüfings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuhalten und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/den Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse der Erfolgskontrolle sind in einem Protokoll festzuhalten.

Beim mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/r Prüfenden das Protokoll zeichnet.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.‘‘ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren

Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische Betreuung zu gewährleisten, insbesondere ist die Erfolgskontrolle in Anwesenheit einer fachlich sachkundigen Person durchzuführen. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen

(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

- sehr gut (very good): hervorragende Leistung,
- gut (good): eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
- befriedigend (satisfactory): eine Leistung, die durchschnittlichen Anforderungen entspricht,
- ausreichend (sufficient): eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
- nicht ausreichend (failed): eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

- 1,0; 1,3: sehr gut
- 1,7; 2,0; 2,3: Gut
- 2,7; 3,0; 3,3: befriedigend
- 3,7; 4,0: ausreichend
- 5,0: nicht ausreichend

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.
Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

Die Gesamtnote der Masterprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Note</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut</td>
<td>bis 1,5</td>
</tr>
<tr>
<td>gut</td>
<td>von 1,6 bis 2,5</td>
</tr>
<tr>
<td>befriedigend</td>
<td>von 2,6 bis 3,5</td>
</tr>
<tr>
<td>ausreichend</td>
<td>von 3,6 bis 4,0</td>
</tr>
</tbody>
</table>

§ 8 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(7) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(8) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(9) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.
§ 9 Verlust des Prüfungsanspruchs

§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 19 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Masterarbeit

Chemical and Process Engineering Master 2016 (Master of Science (M.Sc.))
Module Handbook as of 23/03/2023

Thema, Aufgabenstellung und Umfang der Masterarbeit sind von dem Betreuer bzw. der Betreuerin zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

Bei der Abgabe der Masterarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“ Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5,0) bewertet.

§ 14 a Berufspraktikum

(2) Die Studierenden setzen sich in eigener Verantwortung mit geeigneten privaten oder öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Das Nähere regelt das Modulhandbuch.

§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 15 a Überfachliche Qualifikationen

§ 16 Prüfungsausschuss

(3) Der Prüfungsausschuss achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung und fällt die Entscheidungen in Prüfungsangelegenheiten. Er entscheidet über

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zur nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennendeprüfungsberichtigte Person hinzuzuziehen.

§ 17 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät eine Prüfungsbefugnis erteilt hat und die gemäß Absatz 1 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem ingenieurwissenschaftlichen oder mathematisch-naturwissenschaftlichen Masterstudiengang oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 18 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzu-
nehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislust dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems erworben Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Masterprüfung

§ 19 Umfang und Art der Masterprüfung

(1) Die Masterprüfung besteht aus den Modulprüfungen nach Absatz 2 und 3 sowie der Modul Masterarbeit (§ 14) und dem Berufspraktikum (§ 14 a).

(2) Es sind Modulprüfungen in folgenden Pflichtfächer abzulegen:
 1. Erweiterte Grundlagen: Modul(e) im Umfang von 32 LP,
 2. Technisches Ergänzungsfach: Modul(e) im Umfang von 10 LP
 3. Überfachliche Qualifikationen im Umfang von mindestens 2 LP gemäß § 15 a.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen. § 4 Absatz 2 Satz 2 ist zu beachten.

§ 19 a Leistungsnachweise für die Masterprüfung

Voraussetzung für die Anmeldung zur letzten Modulprüfung der Masterprüfung ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 14 a. In Ausnahmefällen, die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 20 Bestehen der Masterprüfung, Bildung der Gesamtnote

(1) Die Masterprüfung ist bestanden, wenn alle in § 19 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten und dem Modul Masterarbeit.

(3) Haben Studierende die Masterarbeit mit der Note 1,0 und die Masterprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 21 Masterzeugnis, Masterurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 22 Bescheinigung von Prüfungsleistungen
Haben Studierende die Masterprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 23 Aberkennung des Mastergrades
(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/die Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/die Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Masterurkunde einzuziehen, wenn die Masterprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(5) Die Aberkennung des akademischen Grades richtet sich nach § 36 Abs. 7 LHG.

§ 24 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Masterprüfung werden den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Mündlichkeitsprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 25 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2016 in Kraft.

Karlsruhe, den 03. Mai 2016

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Amtliche Bekanntmachung

2020 Ausgegeben Karlsruhe, den 26. Februar 2020 Nr. 07

I n h a l t

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik 15
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Chemieingenieurwesen und Verfahrenstechnik

vom 24.02.2020

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 Satz 1 KITG i.V.m. § 32 Absatz 3 Satz 1 LHG am 24.02.2020 erteilt.

Artikel 1 – Änderung der Studien- und Prüfungsordnung

1. § 12 Absatz 1 wird wie folgt geändert:
 a) Satz 1 wird wie folgt gefasst:
 „Es gelten die Vorschriften des Gesetzes zum Schutz von Müttern bei der Arbeit, in der Ausbildung und im Studium (Mutterschutzgesetz – MuSchG) in seiner jeweils geltenden Fassung.“
 b) Satz 2 wird aufgehoben.
 c) Die bisherigen Sätze 3 und 4 werden die Sätze 2 und 3.

2. In § 16 Absatz 7 Satz 4 werden nach dem Wort „Entscheidung“ die Wörter „schriftlich oder zur Niederschrift“ gestrichen.

4. § 25 wird wie folgt geändert:
 a) Es wird folgender Absatz 5 eingefügt:
b) Es wird folgender Absatz 6 eingefügt:

Artikel 2 – Inkrafttreten

Diese Änderungssatzung tritt am Tage nach ihrer Veröffentlichung in den Amtlichen Bekanntmachungen des KIT in Kraft.

Karlsruhe, den 24.02.2020

gez. Professor Dr.-Ing. Holger Hanselka
(Präsident)