

Modulhandbuch Bioingenieurwesen Bachelor 2023 (Bachelor of Science (B.Sc.))

SPO 2023 Wintersemester 2025/26 Stand 03.09.2025

KIT-FAKULTÄT FÜR CHEMIEINGENIEURWESEN UND VERFAHRENSTECHNIK

Inhaltsverzeichnis

1.	Allgemeine Information	
	1.1. Studiengangdetails	6
	1.2. Qualifikationsziele	
	1.3. Ansprechpersonen	
	1.4. Studien- und Prüfungsordnung	6
	1.5. Organisatorisches	7
2.	Studienplan	
	Aufbau des Studiengangs	
J.	3.1. Orientierungsprüfung	
	3.2. Bachelorarbeit	
	3.3. Mathematisch-naturwissenschaftliche Grundlagen	
	3.4. Ingenieurwissenschaftliche Grundlagen	
	3.5. Verfahrenstechnische Grundlagen	
	3.6. Wahlbereich Verfahrenstechnik	
	3.7. Profilfach	
	3.8. Überfachliche Qualifikationen	
	3.9. Zusatzleistungen	
	3.10. Mastervorzug	
,	•	
4.	Module	
	4.1. Allgemeine Chemie und Chemie in wässrigen Lösungen - M-CIWVT-106431	
	4.2. Angewandter Apperetables M. CIWAT 103207	
	4.3. Angewandter Apparatebau - M-CIWVT-103297	
	4.4. Automatisierungs- und Regelungstechnik - M-CIVVVI-106477	
	· · · · · · · · · · · · · · · · · · ·	
	4.6. Biologie im Ingenieurwesen - M-CIWVT-106414	
	4.7. Biopharmazeutische Verfahrenstechnik - M-CIWVT-106437	
	4.9. Biotechnologie - M-CIWVT-101143	
	4.10. Bioverfahrensentwicklung - M-CIWVT-107406	
	4.10. Bioverfahrensentwicklung - M-CIWVT-107406	
	4.11. Bioverlahrensentwicklung - M-CIWVT-107403 4.12. Bioverfahrenstechnik - M-CIWVT-106434	
	4.13. Chemische Reaktionstechnik - M-CIWVT-106434	
	4.14. Chemische Verfahrenstechnik - M-CIWVT-106825	
	4.15. Datenanalyse - M-CIWVT-106432	
	4.16. Einführung in das Bioingenieurwesen - M-CIWVT-106433	
	4.17. Electrochemical Energy Technologies - M-ETIT-105690	
	4.17. Electrochemical Energy Technologies - M-E111-105690	
	4.19. Energie- und Omweittechnik - M-CIWVT-101145	
	4.20. Erfolgskontrollen - M-CIWVT-101991	
	4.20. Erloigskontrolleri - M-CIWVT-101991	
	4.22. Formulierung und Charakterisierung von Energiematerialien - M-CIWVT-106700	
	4.23. Fortgeschrittene Methoden der linearen Regelungstechnik - M-CIWVT-106880	
	4.24. Grundlagen der Kältetechnik - M-CIWVT-104457	
	4.25. Grundlagen der Wärme- und Stoffübertragung - M-CIWVT-101132	
	4.26. Höhere Mathematik I - M-MATH-100280	
	4.27. Höhere Mathematik II - M-MATH-100281	
	4.28. Höhere Mathematik III - M-MATH-100281	
	4.29. Intensivierung von Bioprozessen - M-CIWVT-106444	
	4.30. Intensivierung von Bioprozessen - M-CIWVT-106416	
	4.31. Konstruktiver Apparatebau - M-CIWVT-101941	
	4.32. Kreislaufwirtschaft - M-CIWVT-105995	
	4.33. Lebensmittelbioverfahrenstechnik - M-CIWVT-106476	
	4.34. Lebensmittelbioverfahrenstechnik - M-CIWVT-106436	
	4.35. Lebensmitteltechnologie - M-CIWVT-101148	
	4.35. Leberismittellecrinologie - M-CIWVT-101146	
	4.37. Mathematische Modellbildung für Bioverfahrenstechnik - M-MATH-106443	
	4.38. Mechanische Separationstechnik - M-CIWVT-101147	
	4.39. Mechanische Separationstechnik - M-CIWVT-101147	
	4.40. Medical Imaging Technology - M-ETIT-106778	
	T.TO. Medical imaging reciniology - IVI-LITI-100//0	

	4.41. Mikroverfahrenstechnik - M-CIWVT-101154	7/
	4.41. Mikroverianrenstechnik - M-CIWVT-101154	
	4.43. Naturwissenschaftliches Grundpraktikum - M-CIWVT-106427	
	4.44. Organisch-chemische Prozesskunde - M-CIWVT-101137	
	4.45. Organische Chemie für Ingenieure - M-CHEMBIO-101115	
	4.46. Orientierungsprüfung - M-CIWVT-106447	
	4.47. Physiologie und Anatomie für die Medizintechnik - M-ETIT-105874	
	4.48. Praktikum Elektrochemische Energietechnologien - M-ETIT-105703	
	4.49. Programmierung und numerische Simulation - M-CIWVT-106438	
	4.50. Prozessentwicklung und Scale-up - M-CIWVT-101153	
	4.51. Regelungstechnik und Systemdynamik - M-CIWVT-106308	
	4.52. Technische Mechanik: Dynamik - M-CIWVT-101128	
	4.53. Technische Mechanik: Statik - M-CIWVT-103846	
	4.55. Technische Thermodynamik II - M-CIWVT-101129	
	4.56. Technologie dünner Schichten - M-CIWVT-107130	
	4.57. Thermische Verfahrenstechnik - M-CIWVT-101134	
	4.58. Weitere Leistungen - M-CIWVT-102017	
5.	Teilleistungen	
	5.1. Allgemeine Chemie und Chemie in wässrigen Lösungen - T-CIWVT-101892	
	5.2. Angewandte Thermische Verfahrenstechnik - Projektarbeit - T-CIWVT-109120	
	5.3. Angewandte Thermische Verfahrenstechnik - Übungsaufgaben und Praktikum - T-CIWVT-110803	
	5.4. Angewandter Apparatebau Klausur - T-CIWVT-106562	
	 5.5. Anmeldung zur Zertifikatsausstellung - Begleitstudium Wissenschaft, Technologie und Gesellschaft - T- FORUM-113587 	
	5.6. Automatisierungs- und Regelungstechnik - Projektarbeit - T-CIWVT-113089	105
	5.7. Automatisierungs- und Regelungstechnik - Prüfung - T-CIWVT-113088	106
	5.8. Bachelorarbeit - T-CIWVT-113255	107
	5.9. Berufspraktikum - T-CIWVT-106036	
	5.10. Biochemie - T-CIWVT-112997	
	5.11. Biopharmazeutische Aufarbeitungsverfahren - T-CIWVT-106029	110
	5.12. Biopharmazeutische Verfahrenstechnik - T-CIWVT-113023	
	5.13. Biotechnologie - Projektarbeit - T-CIWVT-103669	112
	5.14. Biotechnologie - Prüfung - T-CIWVT-103668	
	5.15. Bioverfahrensentwicklung - T-CIWVT-114538	
	5.16. Bioverfahrenstechnik - T-CIWVT-113019	115
	5.17. Chemische Reaktionstechnik - Projektarbeit - T-CIWVT-113696	116
	5.18. Chemische Reaktionstechnik - Prüfung - T-CIWVT-113695	117
	5.19. Chemische Verfahrenstechnik - T-CIWVT-101884	118
	5.20. Datenanalyse - T-CIWVT-113039	
	5.21. Einführung in das Bioingenieurwesen - T-CIWVT-113018	120
	5.22. Electrochemical Energy Technologies - T-ETIT-111352	
	5.23. Energie- und Umwelttechnik - T-CIWVT-108254	
	5.24. Energie- und Umwelttechnik Projektarbeit - T-CIWVT-103527	
	5.25. Energieverfahrenstechnik - T-CIWVT-101889	
	5.26. Excercises: Membrane Technologies - T-CIWVT-113235	
	5.27. Fluiddynamik, Klausur - T-CIWVT-101882	
	5.28. Fluiddynamik, Vorleistung - T-CIWVT-101904	
	5.29. Formulierung und Charakterisierung von Energiematerialien - Projektarbeit - T-CIWVT-113479	
	5.30. Formulierung und Charakterisierung von Energiematerialien - Prüfung - T-CIWVT-113478	
	5.31. Genetik - T-CIWVT-111063	
	5.32. Grundlagen der Kältetechnik Projektarbeit - T-CIWVT-109118	
	5.33. Grundlagen der Kältetechnik Prüfung - T-CIWVT-109117	
	5.34. Grundlagen der Wärme- und Stoffübertragung - T-CIWVT-101883	
	 5.35. Grundlagenseminar Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung - T- FORUM-113579 	134
	5.36. Höhere Mathematik I - T-MATH-100275	
	5.37. Höhere Mathematik II - T-MATH-100276	136
	5.38. Höhere Mathematik III - T-MATH-100277	
	5.39. Intensivierung von Bioprozessen - Klausur - T-CIWVT-112998	
	5.40. Intensivierung von Bioprozessen - Praktikum - T-CIWVT-112999	139

5 <i>1</i> 1	Kinetik und Katalyse - T-CIWVT-106032	140
	Konstruktiver Apparatebau, Klausur - T-CIWVT-103642	
	• • • • • • • • • • • • • • • • • • • •	
	Konstruktiver Apparatebau, Vorleistung - T-CIWVT-103641	
	Kreislaufwirtschaft - mündliche Prüfung - T-CIWVT-112172	
	Kreislaufwirtschaft - Projektarbeit - T-CIWVT-112173	
	Lebensmittelbioverfahrenstechnik - T-CIWVT-113021	
	Lebensmittelbioverfahrenstechnik Praktikum - T-CIWVT-113022	
	Lebensmitteltechnologie - T-CIWVT-103528	
	Lebensmitteltechnologie Projektarbeit - T-CIWVT-103529	
	Luftreinhaltung - T-CIWVT-113046	
	Luftreinhaltung - Projektarbeit - T-CIWVT-113047	
5.52.	Mathematische Modellbildung für Bioverfahrenstechnik - T-MATH-113040	151
5.53.	Mechanische Separationstechnik Projektarbeit - T-CIWVT-103452	152
5.54.	Mechanische Separationstechnik Prüfung - T-CIWVT-103448	153
5.55.	Mechanische Verfahrenstechnik - T-CIWVT-101886	154
5.56.	Medical Imaging Technology - T-ETIT-113625	155
5.57.	Membrane Technologies in Water Treatment - T-CIWVT-113236	156
5.58.	Mikrobiologie - T-CIWVT-113038	157
5.59.	Mikroverfahrenstechnik Projektarbeit - T-CIWVT-103667	158
	Mikroverfahrenstechnik Prüfung - T-CIWVT-103666	
	Numerische Strömungssimulation - T-CIWVT-106035	
	Organisch-Chemische Prozesskunde (OCP) - T-CIWVT-101890	
	Organische Chemie für Ingenieure - T-CHEMBIO-101865	
	Partikeltechnik Klausur - T-CIWVT-106028	
	Physiologie und Anatomie für die Medizintechnik - T-ETIT-111815	
	Praktikum Allgemeine Chemie - T-CIWVT-113015	
	Praktikum Aufarbeitungstechnik - T-CIWVT-113024	
	Praktikum Bioverfahrensentwicklung - T-CIWVT-114542	
	Praktikum Elektrochemische Energietechnologien - T-ETIT-111376	
	Praktikum Mikrobiologie - T-CIWVT-113014	
	Programmierung und numerische Simulation - T-CIWVT-113025	
	Programmierung und numerische Simulation mit MATLAB - Übungen - T-CIWVT-113074	
	Prozessentwicklung und Scale-up - T-CIWVT-103530	
	Prozessentwicklung und Scale-up - 1-CiWV1-103530 Prozessentwicklung und Scale-up Projektarbeit - T-CIWVT-103556	
	Regelungstechnik und Systemdynamik - T-CIWVT-112787	
	Ringvorlesung Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung - T-	17 4 175
3.70.	FORUM-113578	173
5 77	Schriftliche Prüfung Prozess- und Anlagendesign in der Biotechnologie - T-CIWVT-114499	176
	Seminar Prozess- und Anlagendesign in der Biotechnologie - T-CIWVT-114498	
	Technische Mechanik: Dynamik, Klausur - T-CIWVT-101877	
	Technische Mechanik: Dynamik, Vorleistung - T-CIWVT-106290	
	Technische Mechanik: Statik - T-CIWVT-11054	
	Technische Thermodynamik I, Klausur - T-CIWVT-101879	
	Technische Thermodynamik I, Vorleistung - T-CIWVT-101878	
	Technische Thermodynamik II, Vorleistung - T-CIWVT-101880	
	Technologie dünner Schichten - Projektarbeit - T-CIWVT-114692	
	Technologie dünner Schichten - Übungsaufgaben und Praktikum - T-CIWVT-114693	
	Thermische Verfahrenstechnik - T-CIWVT-101885	
	Thermische Verfahrenstechnik II - T-CIWVT-114107	
	Thermodynamik im Bioingenieurwesen - T-CIWVT-114497	
	Übungen zu Höhere Mathematik I - T-MATH-100525	
	Übungen zu Höhere Mathematik II - T-MATH-100526	
	Übungen zu Höhere Mathematik III - T-MATH-100527	
	Vorleistung Prozessentwicklung und Scale-up - T-CIWVT-111005	
5.95.	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Über Wissen und Wissenschaft - Selbstverbuchung - T-FORUM-113580	194
5.96.	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in der Gesellschaft - Selbstverbuchung - T-FORUM-113581	195
	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in gesellschaftlichen Debatten - Selbstverbuchung - T-FORUM-113582	196
5.98.	Wissenschaftliches Schreiben mit LaTeX - T-HOC-113121	197
5.99.	Zellbiologie - T-CIWVT-113037	198

6.	Anhang	. 199
	6.1. Begriffsdefinitionen	199

1 Allgemeine Information

1.1 Studiengangdetails

KIT-Fakultät	KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Akademischer Grad	Bachelor of Science (B.Sc.)
Prüfungsordnung Version	2023
Regelstudienzeit	6 Semester
Maximale Studiendauer	12 Semester
Leistungspunkte	180
Sprache	Deutsch
Berechnungsschema	Gewichtung nach (Gewichtung * LP)
Weitere Informationen	Link zum Studiengang www.ciw.kit.edu
	Fakultät https://www.ciw.kit.edu/1628.php
	Dienstleistungseinheit Studium und Lehre https://www.sle.kit.edu/vorstudium/bachelor-bioingenieurwesen.php

1.2 Qualifikationsziele

Bioingenieurwesen ist auf Verfahrenstechnik im Kontext einer industriellen, ingenieursgetriebenen Anwendung biologischer / biotechnologischer Prinzipien fokussiert. Dadurch unterscheidet es sich von den naturwissenschaftlichen Studiengängen, der Biotechnologie oder der molekularen Biotechnologie, die vor allem die Nutzbarmachung biologischer Prinzipien behandeln. Bioingenieurinnen und Bioingenieure leisten einen entscheidenden Beitrag zur Entwicklung interdisziplinärer Ansätze zur Schaffung einer energetisch und stofflich nachhaltigen, postfossilen Wirtschaft.

Im Bachelorstudium werden die wissenschaftlichen Grundlagen und die Methodenkompetenz im Bereich des Bioingenieurwesens vermittelt. Ziel des Studiums ist es, den Studierenden sowohl einen berufsqualifizierenden Abschluss zu ermöglichen, als auch ihr Wissen und ihre Fähigkeiten auf ein Niveau zu heben, welches ihnen erlaubt, einen Masterstudiengang erfolgreich absolvieren zu können.

Im Pflichtprogramm erwerben die Studierenden methodisch qualifiziertes mathematisches, naturwissenschaftliches und ingenieurwissenschaftliches Grundlagenwissen mit dem Hauptaugenmerk auf die Verfahrenstechnik biologischer Stoffsysteme, Reaktionen und Prozesse in Theorie (Grundlagen-Vorlesungen) und Praxis (Grundlagen-Praktika).

Die Wahl eines Profilfachs, welches auch eine praktische Projektarbeit (Gruppenarbeit) einschließt, erlaubt eine erste fachliche Vertiefung. Im Rahmen der Bachelorarbeit erfolgt der Nachweis, dass die Absolventinnen und Absolventen ein Problem aus ihrem Fachgebiet selbstständig und in begrenzter Zeit mit wissenschaftlichen Methoden bearbeiten können.

Die Absolventinnen und Absolventen sind in der Lage, fachliche Probleme grundlagenorientiert zu identifizieren, zu abstrahieren und zu lösen, biotechnologische Produkte und Prozesse systematisch zu bewerten sowie Analyse- und Simulationswerkzeuge auszuwählen und anzuwenden. Sie haben die Fähigkeit, Theorie und Praxis zu kombinieren und eigenverantwortlich Projekte zu organisieren und durchzuführen sowie mit Fachleuten anderer Disziplinen zusammenzuarbeiten.

1.3 Ansprechpersonen

- Studiendekan: Prof. Dr.-Ing. Achim Dittler
- · Fachstudienberatung: Dr.-Ing. Barbara Freudig
- · Bachelorprüfungsausschuss:
 - Vorsitzender: Prof. Dr.-Ing. Achim Dittler
 - Prüfungssekretariat: Julia Hofer
 - Weitere Informationen: http://www.ciw.kit.edu/bpa.php

1.4 Studien- und Prüfungsordnung

Rechtsgrundlage für den Studiengang sowie die Prüfungen im Studiengang ist die

Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Bioingenieurwesen vom 27. April 2023.

https://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2023_AB_043.pdf

1 ALLGEMEINE INFORMATION Organisatorisches

1.5 Organisatorisches

Termine und Veranstaltungen

Aktuelle Informationen sowie Termine für Informationsveranstaltungen und Klausuren sind auf den Webseiten der Fakultät zu finden: https://www.ciw.kit.edu/4102.php

Anerkennung von Leistungen gemäß § 19 SPO

- Innerhalb des Hochschulsystems erbrachte Leistungen
 Gemäß § 19 der Studien und Prüfungsordnung können Studien- und Prüfungsleistungen, die in Studiengängen an
 staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an
 ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, auf Antrag des Studierenden
 anerkannt werden.
- Außerhalb des Hochschulsystems erbrachte Leistungen
 Auch außerhalb des Hochschulsystems erworbene Kenntnisse können anerkannt werden. Häufiges Beispiel ist die Anerkennung eines oder mehrerer Praktika durch Nachweis einer einschlägigen Berufsausbildung.

Antragsformulare entnehmen Sie bitte der Webseite der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik https://www.ciw.kit.edu/bpa.php

Studierende, die neu in den Studiengang Bioingenieurwesen immatrikuliert wurden, müssen den Antrag innerhalb eines Semesters stellen beim Bachelorprüfungsausschuss stellen.

2 Studienplan Bachelor Bioingenieurwesen Studien- und Prüfungsordnung 2023

2.1 Semesterübersicht

Semester LP	Mathematisch/ Natur- wissenschaftliche Grundlagen	Ingenieurwissen- schaftliche Grundlagen	Verfahrenstechnische Grundlagen	Wahlbereich Verfahrenstechnik	Profilfach, Überfachliche Qualifikation (ÜQ), Bachelorarbeit
1 27	Höhere Mathematik I (7) Allgemeine Chemie und Chemie in wässrigen Lösungen (6) Biologie im Ingenieurwesen (7) - Zellbiologie - Genetik - Biochemie Grundpraktikum (2) - Allgemeine Chemie	Technische Mechanik: Statik (5)			
2 33	Höhere Mathematik II (7) Mathematische Modellbildung für Bioverfahrenstechnik (4) Organische Chemie (5) Biologie im Ingenieurwesen (2) - Mikrobiologie	Konstruktiver Apparatebau (7)	Einführung in das Bioingenieurwesen (5)		Programmieren und Numerische Simulation (3)
3	Höhere Mathematik III (7) Datenanalyse (3) Grundpraktikum (2) - Mikrobiologie	Technische Mechanik: Dynamik (5) Thermodynamik I (7)	Bioverfahrenstechnik (5)		Wissenschaftliches Schreiben mit LaTeX (2)
33		Thermodynamik II (7) Wärme- und Stoffübertragung (7) Fluiddynamik (5) Regelungstechnik und Systemdynamik (5)		Wahlmodul Bioverfahrenstechnik mit Praktikum I (9)	
5 28			Zwei Module aus: Chemische, Mechanische oder Thermische Verfahrenstechnik (2 X 6)	Wahlmodul Bioverfahrenstechnik mit Praktikum II (9) Wahlmodul Verfahrenstechnik I (5)	Profilfach (2)
6 28	mary Leistungspunkte (LDL			Wahlmodul Verfahrenstechnik II (5)	Profilfach (10) ÜQ, frei wählbar (1) Bachelorarbeit (12)

Zahlen in Klammern: Leistungspunkte (LP)

Wahlmodul Bioverfahrenstechnik I und II: Vorlesung mit Klausur (6 LP), Praktikum eine Woche (3 LP), Folgende Module stehen zur Wahl:

- Intensivierung von Bioprozessen
- Lebensmittelbioverfahrenstechnik
- Biopharmazeutische Verfahrenstechnik
- Mikrosysteme in der Bioverfahrenstechnik

Wahlmodul Verfahrenstechnik:

Hier stehen mehrere Module zur Auswahl. Alle oben genannten Module können hier ohne Praktikum gewählt werden. Weitere Angebote sind beispielsweise

- Energieverfahrenstechnik
- Organisch Chemische Prozesskunde
- $\bullet \qquad \text{Weitere Optionen, z. B. aus dem Bereich der Biologie, werden noch ergänzt.}$

Profilfach: Das Profilfach geht über zwei Semester und beginnt immer im Wintersemester. Es kann ein Profilfach aus ca. 10 Angeboten gewählt werden.

2.2 Fach- und Modulübersicht

Fach	Modul	Koordinator	sws	LP
Mathematisch-	Höhere Mathematik I	Griesmaier	6	7
Mathematisch- naturwissenschaftliche Grundlagen	Höhere Mathematik II	Griesmaier	6	7
52 LP	Höhere Mathematik III	Griesmaier	6	7
	Mathematische Modellbildung für Bioverfahrenstechnik	Thäter	2	4
	Datenanalyse	Guthausen	2	3
	Allgem. Chemie/ Chemie in wässrigen Lösungen	Horn	5	6
	Organische Chemie	Meier	4	5
	Biologie im Ingenieurwesen	Holtmann	8	9
	Naturwissenschaftliches Grundpraktikum	West, Neumann	2	4
Ingenieurwissenschaftliche	Technische Mechanik: Statik	Willenbacher	4	5
Grundlagen 48 LP	Technische Mechanik: Dynamik	Dittmeyer	4	5
	Konstruktiver Apparatebau	Nirschl	6	7
	Regelungstechnik und Systemdynamik	Meurer	4	5
	Thermodynamik I	Enders	5	7
	Thermodynamik II	Enders	5	7
	Fluiddynamik	Nirschl	4	5
	Wärme/Stoffübertragung	Wetzel	5	7
Verfahrenstechnische	Einführung in das Bioingenieurwesen	Grünberger	4	5
Grundlagen 22 LP	Bioverfahrenstechnik	Grünberger	4	5
	Wahlbereich: Zwei der folgenden drei Module			
	- Mechanische Verfahrenstechnik	Dittler	4	6
	- Thermische Verfahrenstechnik	Kind	4	6
	- Chemische Verfahrenstechnik	Wehinger	4	6
Wahlbereich Verfahrenstechnik	Wahlmodul Bioverfahrenstechnik I	Grünberger, Holtmann,	4 + P	9
28 LP	Wahlmodul Bioverfahrenstechnik II	Hubbuch, Leister,	4 + P	9
	Wahlmodul Verfahrenstechnik I		4	5 (6)
	Wahlmodul Verfahrenstechnik II		4	5 (4)
Überfachliche	Programmierung und numerische Simulation	Jerono	2	3
Qualifikationen 6 LP	Wissenschaftliches Schreiben mit LaTeX	Kurs des HoC		2
	Überfachliche Qualifikation – frei wählbar			1
Profilfächer 12 LP	1 Modul aus Auswahlliste			12
12 LP	Bachelorarbeit			12
SUMME				180

2.3 Lehrveranstaltungs- und Prüfungsübersicht

	1. Semester (WS)					2. Semester (SS)					
	٧	۳	Р	LP	E	V	Ü	Р	LP	E	
Höhere Mathematik I und II	4	2	-	7	S+K	4	2	-	7	S+K	
Mathematische Modellbildung für Bioverfahrenstechn.	ı	ı	-	-	-	2	1		4	Α	
Technische Mechanik: Statik	2	2	-	5	K	-	-	-	-	-	
Konstruktiver Apparatebau	ı	ı	-	-	1	3	2	-	7	S+K	
Allgemeine Chemie und Chemie in wässrigen Lösungen	3	2	-	6	K		-	-	-	-	
Organische Chemie	-	-	-	-	-	2	2	-	5	K	
Biologie im Ingenieurwesen - Zellbiologie	2	-	-	2	Κ	-	-	-	-	-	
Biologie im Ingenieurwesen - Biochemie	2	ı	-	2,5	K	-	-	-	-	-	
Biologie im Ingenieurwesen - Genetik	2	1	-	2	K	-	-	-	•	-	
Biologie im Ingenieurwesen - Mikrobiologie	ı	ı	-	-	1	2	-	-	2,5	K	
Einführung in das Bioingenieurwesen	-	-	-	-	-	4	0	-	5	K	
Naturwissenschaftliches Grundpraktikum	-	-	2	2	S	-	-	-	-	-	
Programmierung/ numerische Simulation	-	-	-	-	-	1	1	-	3	S	
Summe LP / Anzahl benotete Erfolgskontrollen				27	6				33	6	

	3. Semester (WS)					4. Semester (SS)					
	V	۳	P	LP	E	V	Ü	Р	LP	E	
Höhere Mathematik III	4	2	ı	7	S+K	-	-	ı	1	-	
Datenanalyse	1	1	ı	3	Α	-	-		1	-	
Technische Mechanik: Dynamik	2	2	ı	5	S+K	-	-	ı	1	-	
Regelungstechnik und Systemdynamik	-	ı	ı	ı	-	2	2	ı	5	K	
Fluiddynamik	-	ı	ı	1	1	2	2	ı	5	S+K	
Technische Thermodynamik I und II	3	2	-	7	S+K	3	2	-	7	S+K	
Grundlagen d. Wärme- und Stoffübertragung	-	-	-	-	-	3	2	-	7	K	
Bioverfahrenstechnik	2	2	-	5	K	-	-	-	-	-	
Naturwissenschaftliches Grundpraktikum	-	-	2	2	S						
Wahlmodul Bioverfahrenstechnik I	-	-	-	-	-	2	2	2	9	K+P	
Wissenschaftliches Schreiben mit LaTeX	1	1	ı	2	S						
Summe LP / Anzahl benotete Erfolgskontrollen				31	5				33	6	

	5. Semester (WS)					6. Semester (SS)					
	V	ت	P	LP	E	V	ت	Р	LP	E	
Chemische/ Thermische/ Mechanische Verfahrenst.	2	2	ı	6	K	-	ı	-	-	-	
Chemische/ Thermische/ Mechanische Verfahrenst.	2	2	ı	6	K	-	ı		-	-	
Wahlmodul Bioverfahrenstechnik II	2	2	2	9	K+P	-	ı	-	-	-	
Wallmodul Verfahrenstechnik allgemein	2	2	ı	5	K	2	2	-	5	K	
Profilfach: Vorlesungen, Übungen und Projektarbeit*	1	1	-	2	-	1	1	Р	10	A+M	
Überfachliche Qualifikationen	-	-	-	-	-	1	-	-	1	S	
Bachelor-Arbeit	-	-	-	-	-	360 Stunden		12	Α		
Summe LP / Anzahl benotete Erfolgskontrollen				28	5				28	4	

Der Umfang von Vorlesungen, Übungen und Projektarbeit unterscheiden sich je nach gewähltem Profilfach.

WS: Wintersemester

SS: Sommersemester

V: Vorlesung

Ü: Übung

P: Praktikum

LP: Leistungspunkte (ECTS)

E: Erfolgskontrolle/ Prüfungsleistung

K: Klausur

M: Mündliche Prüfung

A: Prüfungsleistung anderer Art/ Abschlussarbeit

S: unbenotete Studienleistung

3 Aufbau des Studiengangs

Pflichtbestandteile	
Orientierungsprüfung Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	
Bachelorarbeit	12 LP
Mathematisch-naturwissenschaftliche Grundlagen	52 LP
Ingenieurwissenschaftliche Grundlagen	48 LP
Verfahrenstechnische Grundlagen	22 LP
Wahlbereich Verfahrenstechnik	28 LP
Profilfach	12 LP
Überfachliche Qualifikationen	6 LP
Freiwillige Bestandteile	
Zusatzleistungen Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	
Mastervorzug Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	

3.1 Orientierungsprüfung

Pflichtbestandteile			
M-CIWVT-106447 Orientierungsprüfung	DE	WS+SS	0 LP

3.2 Bachelorarbeit

Leistungspunkte

12

Voraussetzung:

Die Bachelorarbeit kann erst begonnen werden, wenn die Voraussetzung mindestens 120 Leistungspunkte erfüllt ist.

Ablauf der Anmeldung zu einer Bachelorarbeit:

Die Anmeldung der Bachelorarbeit läuft über den Bachelorprüfungsausschuss.

- · Anmeldung vor Beginn der Arbeit
- Unterlagen möglichst über Institutssekretariat an den Bachelorprüfungsauschuss senden
- · Allerspätestens vier Wochen nach Beginn der Arbeit benötig der Bachelorprüfungsaussschuss folgende Unterlagen
 - Zulassungsbescheinigung https://www.ciw.kit.edu/1838.php ausgefüllt und unterschrieben
 - Kopie der Aufgabenstellung (vom Aufgabensteller unterschrieben)
- Die Bachelorarbeit wird vom Bachelorprüfungsausschuss im Campusmanagementsystem erfasst und angemeldet. Die Abgabefrist wird ebenfalls vom Bachelorprüfungsausschuss erfasst.

Abgabe der Bachelorarbeit:

- Die maximale Bearbeitungszeit beträgt vier Monate. Die Abgabefrist wird im Campusmanagementsystem hinterlegt. Die Arbeit ist innerhalb der Abgabefrist abzugeben.
- Bei der Abgabe der Bachelorarbeit haben die Studierenden zu versichern, dass sie die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Der genaue Wortlaut ist der Studien- und Prüfungsordnung zu entnehmen.
- · abzugeben ist
 - 1 Exemplar im pdf-Format, Upload im Studierendenportal
 - Falls vom Aufgabensteller gewünscht: Ein gedrucktes Exemplar
- Abgabedatum ist das Datum des Uploads im Studierendenportal

Pflichtbestandteile					
M-CIWVT-106580	Modul Bachelorarbeit	DE	WS+SS	12	
				LP	

3.3 Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte

52

Pflichtbestandteile				
M-MATH-100280	Höhere Mathematik I	DE	Jährlich	7 LP
M-CIWVT-106414	Biologie im Ingenieurwesen	DE	WS	9 LP
M-CIWVT-106431	Allgemeine Chemie und Chemie in wässrigen Lösungen	DE	WS	6 LP
M-CIWVT-106427	Naturwissenschaftliches Grundpraktikum	DE	WS	4 LP
M-MATH-106443	Mathematische Modellbildung für Bioverfahrenstechnik	DE	SS	4 LP
M-MATH-100281	Höhere Mathematik II	DE	SS	7 LP
M-CHEMBIO-101115	Organische Chemie für Ingenieure	DE	SS	5 LP
M-MATH-100282	Höhere Mathematik III	DE	WS	7 LP
M-CIWVT-106432	Datenanalyse	DE	WS	3 LP

3.4 Ingenieurwissenschaftliche Grundlagen

Leistungspunkte

48

Pflichtbestandteile				
M-CIWVT-105846	Technische Mechanik: Statik	DE	WS	5 LP
M-CIWVT-101128	Technische Mechanik: Dynamik	DE	WS	5 LP
M-CIWVT-101941	Konstruktiver Apparatebau	DE	SS	7 LP
M-CIWVT-101129	Technische Thermodynamik I	DE	WS	7 LP
M-CIWVT-106308	Regelungstechnik und Systemdynamik	DE	SS	5 LP
M-CIWVT-101130	Technische Thermodynamik II	DE	SS	7 LP
M-CIWVT-101131	Fluiddynamik	DE	SS	5 LP
M-CIWVT-101132	Grundlagen der Wärme- und Stoffübertragung	DE	SS	7 LP

3.5 Verfahrenstechnische Grundlagen

Leistungspunkte

22

Pflichtbestandteile						
M-CIWVT-106433	Einführung in das Bioingenieurwesen	DE	SS	5 LP		
M-CIWVT-106434	Bioverfahrenstechnik	DE	WS	5 LP		
Verfahrenstechnis	Verfahrenstechnische Grundoperationen (Wahl: 12 LP)					
M-CIWVT-101134	Thermische Verfahrenstechnik	DE	WS	6 LP		
M-CIWVT-101135	Mechanische Verfahrenstechnik	DE	WS	6 LP		
M-CIWVT-101133	Chemische Verfahrenstechnik	DE	WS	6 LP		

3.6 Wahlbereich Verfahrenstechnik

Leistungspunkte 28

Vertiefung Biover	Vertiefung Bioverfahrenstechnik (Wahl: 18 LP)					
M-CIWVT-106437	Biopharmazeutische Verfahrenstechnik	DE	SS	9 LP		
M-CIWVT-106416	Intensivierung von Bioprozessen	DE	SS	9 LP		
M-CIWVT-106436	Lebensmittelbioverfahrenstechnik	DE	WS	9 LP		
M-CIWVT-107406	Bioverfahrensentwicklung	DE	WS	9 LP		
Vertiefung Verfah	renstechnik (Wahl: mind. 10 LP)					
M-CIWVT-103297	Angewandter Apparatebau Die Erstverwendung ist ab 01.04.2025 möglich.	DE	SS	5 LP		
M-CIWVT-106475	Biopharmazeutische Verfahrenstechnik	DE	SS	6 LP		
M-CIWVT-107403	Bioverfahrensentwicklung	DE	WS	6 LP		
M-ETIT-105690	Electrochemical Energy Technologies Die Erstverwendung ist nur zwischen 01.04.2024 und 31.03.2026 möglich.	EN	WS	5 LP		
M-CIWVT-101136	Energieverfahrenstechnik	DE	WS	5 LP		
M-CIWVT-106880	Fortgeschrittene Methoden der linearen Regelungstechnik Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	6 LP		
M-CIWVT-106444	Intensivierung von Bioprozessen	DE	SS	6 LP		
M-CIWVT-106476	Lebensmittelbioverfahrenstechnik	DE	WS	6 LP		
M-ETIT-106778	Medical Imaging Technology Die Erstverwendung ist ab 01.04.2025 möglich.	EN	SS	6 LP		
M-CIWVT-101137	Organisch-chemische Prozesskunde	DE	WS	5 LP		
M-ETIT-105874	Physiologie und Anatomie für die Medizintechnik Die Erstverwendung ist ab 01.10.2025 möglich.	DE	WS	6 LP		
M-ETIT-105703	Praktikum Elektrochemische Energietechnologien Die Erstverwendung ist ab 01.04.2025 möglich.	DE/EN	SS	5 LP		

3.7 Profilfach

Leistungspunkte

Im fünften Semester besteht erstmals die Möglichkeit der Profilbildung. Elf Profilfächer stehen zur Auswahl. Umfang und Aufbau der Profilfächer sind ähnlich. Die Profilfächer erstrecken sich über zwei Semester, beginnen im Wintersemester und enden spätestens Ende Mai. Im Wintersemester finden in der Regel Vorlesungen statt, in denen erweitere, fachspezifische Kenntnisse vermittelt werden. Im Anschluss wird forschungsnahe Projektarbeit in Kleingruppen bearbeitet. Voraussetzung für die Teilnahme an den Profilfächern sind mindestens 60 ECTS und mindestens ein erfolgreich absolviertes Praktikum (z. B. Naturwissenschaftliches Grundpraktikum).

Die Erfolgskontrolle in den Profilfächern besteht aus zwei Teilleistungen, die in der Beschreibung der einzelnen Profilfächer aufgeführt sind (z. B. mündliche Prüfung und Präsentation der Projektarbeit). Das Profilfach ist nur dann bestanden, wenn beide Teilleistungen mit mindestens "ausreichend" bewertet werden. Eine nicht bestandene Teilleistung kann nur einmal wiederholt werden. Termine für Wiederholungsprüfungen werden mit dem Profilfachverantwortlichen vereinbart.

Da die praktische Arbeit im Labor durchgeführt wird, ist die Teilnehmerzahl in den einzelnen Profilfächern begrenzt. Die Anmeldung zu den Profilfächern ist in der Regel im Juni oder Juli vor Beginn des Profilfachs möglich. Innerhalb eines Anmeldezeitraums von zwei Wochen haben Studierende die Möglichkeit, Ihr Wunschprofilfach zu wählen (Mindestens ein Erstund ein Zweitwunsch). Nach Anmeldeschluss werden die Plätze automatisch vergeben, wobei die Wünsche nach Möglichkeit berücksichtigt werden.

Vor Beginn des Anmeldezeitraums findet eine Informationsveranstaltung statt, in der die einzelnen Profilfächer vorgestellt werden und das Anmeldeverfahren erläutert wird.

Ort und Zeit der Informationsveranstaltung werden rechtzeitig auf den Homepages der Fakultät und der Fachschaft sowie im Vorlesungsverzeichnung (institutsübergreifende Veranstaltungen) veröffentlicht.

Besonderheiten zur Wahl

Wahlen in diesem Bereich sind genehmigungspflichtig.

Profilfach (Wahl: 1 Bestandteil)					
M-CIWVT-104458	Angewandte Thermische Verfahrenstechnik	DE	WS	12 LP	
M-CIWVT-106477	Automatisierungs- und Regelungstechnik	DE	WS	12 LP	
M-CIWVT-101143	Biotechnologie	DE	WS	12 LP	
M-CIWVT-106825	Chemische Reaktionstechnik Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	12 LP	
M-CIWVT-101145	Energie- und Umwelttechnik	DE	WS	12 LP	
M-CIWVT-106700	Formulierung und Charakterisierung von Energiematerialien Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	12 LP	
M-CIWVT-104457	Grundlagen der Kältetechnik	DE	WS	12 LP	
M-CIWVT-105995	Kreislaufwirtschaft	DE	WS	12 LP	
M-CIWVT-101148	Lebensmitteltechnologie	DE	Jährlich	12 LP	
M-CIWVT-106448	Luftreinhaltung	DE	WS	12 LP	
M-CIWVT-101147	Mechanische Separationstechnik	DE	WS	12 LP	
M-CIWVT-101154	Mikroverfahrenstechnik	DE	WS	12 LP	
M-CIWVT-101153	Prozessentwicklung und Scale-up	DE	WS	12 LP	
M-CIWVT-107495	Technologie dünner Schichten Die Erstverwendung ist ab 01.10.2025 möglich.	DE	WS	12 LP	

3.8 Überfachliche Qualifikationen

Leistungspunkte

6

Während des Bachelorstudiums sind insgesamt 6 LP im Bereich "Überfachliche Qualifikationen" zu absolvieren. Zu Überfachlichen Qualifikationen zählen nichttechnische Module, beispielsweise Module aus anderen Fachbereichen, Sprachkurse oder andere Angebote des House of Competence (HoC) oder des Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZaK).

Anmeldung im Studierendenportal / Anerkennung

Zusatzleistungen und Überfachliche Qualifikationen können nicht immer im CAS System direkt angemeldet werden (z.B. manche Module aus einer anderen Fakultät). Sie müssen sich in jedem Fall VOR der Prüfung mit dem Bachelorprüfungsausschuss in Verbindung setzen.

Ausnahme:

Überfachliche Qualifikation am House of Competence (HoC) oder Sprachenzentrum

Wenn die Überfachliche Qualifikation am HoC oder Sprachenzentrum erbracht wird, dann wird keine Zulassungsbescheinigung für eine Prüfungsleistung benötigt, da die Leistungen automatisch im CAS System unter **"nicht zugeordnete Leistungsnachweise"** gebucht werden. Soll eine Leistung angerechnet werden, die bei den "nicht zugeordneten Leistungsnachweisen" gelistet ist, dann muss ein Antrag an den Bachelorprüfungsausschuss gestellt werden.

Antragsformulare entnehmen Sie bitte der Webseite der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik https://www.ciw.kit.edu/bpa.php

Wahlinformationen

Folgende Module sind Pflichtmodule:

- · Programmierung und numerische Simulation
- Wissenschaftliches Schreiben mit LaTeX

Pflichtbestandteile					
M-CIWVT-106438	Programmierung und numerische Simulation	DE	SS	3 LP	
M-HOC-106502	Wissenschaftliches Schreiben mit LaTeX	DE	WS	2 LP	

3.9 Zusatzleistungen

Neben den Pflicht- und Wahlmodulen können auch Zusatzleistungen im Umfang von bis zu 30 Leistungspunkten aus dem Gesamtangebot des KIT erworben werden. Diese Zusatzleistungen gehen nicht in die Berechnung der Gesamtnote ein. Zusatzleistungen werden im Transcript of Records aufgeführt und als Zusatzleistungen gekennzeichnet. Auf Antrag der/des Studierenden werden die Zusatzleistungen die das Bachelorzeugnis aufgenommen und als Zusatzleistungen gekennzeichnet.

Für die Anmeldung zu Zusatzleistungen wenden sie sich bitte rechtzeitig an den Bachelorprüfungsausschuss. Bei Veranstaltungen mit begrenzter Teilnehmerzahl ist die Teilnahme nur möglich, wenn Kapazitäten frei sind.

Zusatzleistungen (Wahl: max. 30 LP)				
M-CIWVT-102017	Weitere Leistungen	DE	WS+SS	30 LP
M-FORUM-106753	Begleitstudium Wissenschaft, Technologie und Gesellschaft Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS+SS	16 LP

3.10 Mastervorzug

Allgemeine Informationen zum Mastervorzug

Zweck des Mastervorzugs

Studierende, die sich im Bachelor zurückmelden müssen, weil Ihnen beispielsweise noch einzelnen Prüfungsleistungen fehlen oder weil die Bachelorarbeit nicht mehr innerhalb des Prüfungszeitraums abgegeben werden kann, können den Mastervorzug nutzen, um "Leerlauf" zwischen Bachelor und Master zu vermeiden. So können bereits während des Bachelorstudiums Prüfungen aus dem Master abgelegt werden, die späte im Masterstudium anerkannt werden können.

Voraussetzungen

Sobald im Bachelorstudium mindestens 120 LP erreicht sind, ist die Anmeldung zu Prüfungen im Rahmen des Mastervorzugs möglich. Nach Auswahl der gewünschten Teilleistungen ist die online-Anmeldung im Studierendenportal für die Prüfungen möglich.

Welche Mastervorzugsleistungen sind möglich

Der Mastervorzug ist auf maximal 30 LP beschränkt. Als Mastervorzugsleistungen können Teilleistungen aus den folgenden Fächern der Masterstudiengänge Chemieingenieurwesen und Verfahrenstechnik sowie Bioingenieurwesen absolviert werden.

- · Erweiterte Grundlagen
- Berufspraktikum
- · Überfachliche Qualifikationen

Nähere Informationen zu einzelnen Modulen sind dem Modulhandbuch des Masterstudiengangs zu entnehmen.

Übertrag der Mastervorzugsleistungen

Innerhalb des ersten Mastersemesters kann ein Antrag auf Übertragung der Mastervorzugsleistungen beim Masterprüfungsausschuss (Frau Benoit) gestellt werden. Das Antragsformular ist unter folgendem Link zu finden:

http://www.ciw.kit.edu/img/content/Formular_Uebertrag_Mastervorzug_MPA.pdf

Folgende Regeln gelten, sofern Sie noch im Bachelor immatrikuliert sind und noch keine Masterzulassung vorliegt (s. auch Erläuterung unter Wahl-Informationen):

Sollte während des Bachelorstudiums eine Prüfungsleistung aus dem Mastervorzug endgültig nicht bestanden werden, so erlischt der Prüfungsanspruch im Bachelorstudiengang **nicht**.

Eine Verpflichtung zur Übertragung der Mastervorzugsleistungen besteht nicht.

!! Wenn Sie sich gegen die Übernahme entscheiden und die Klausur erneut schreiben, ist das "neue" Ergebnis relevant. Auch, wenn Sie sich verschlechtern oder durchfallen sollten!!

Wahlinformationen

Bitte beachten Sie: Eine als Mastervorzugsleistung angemeldete Erfolgskontrolle kann nach dem erfolgreichen Ablegen aller für den Bachelorabschluss erforderlichen Studien- und Prüfungsleistungen nur als Mastervorzugsleistung erbracht werden, solange Sie im Bachelorstudiengang immatrikuliert sind. Weiter darf noch keine Masterzulassung vorliegen und gleichzeitig das Mastersemester begonnen haben.

Dies bedeutet, dass ab Bekanntgabe der Zulassung zum Masterstudium und Beginn des Mastersemester die Teilnahme an der Prüfung als **regulärer erster Prüfungsversuch** im Rahmen des Masterstudiums erfolgt.

Mastervorzug (Wahl: max. 30 LP)					
M-CIWVT-101991	Erfolgskontrollen	DE	WS+SS	30 LP	

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein.

4 Module

4.1 Modul: Allgemeine Chemie und Chemie in wässrigen Lösungen [M-CIWVT-106431]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CIWVT-101892	Allgemeine Chemie und Chemie in wässrigen Lösungen	6 LP	Horn

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 150 Minuten zu Lehrveranstaltung "Allgemeine Chemie und Chemie in wässrigen Lösungen" (Vorlesung 3 SWS und Übung 2 SWS).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden erlangen ein grundlegendes Verständnis der allgemeinen Chemie: Sie verstehen das Periodensystem, sie können chemische Bindungen erläutern, Molekülgeometrien darstellen und stöchiometrische Berechnungen durchführen. Die wichtigsten Grundlagen über die Reaktionen in wässrigen Lösungen, über Säure-Base und Redox-Reaktionen, chemische Gleichgewichte, Kinetik und die Elektrochemie können die Studierenden darlegen.

Inhalt

Grundlagen der allgemeinen, anorganischen und physikalischen Chemie.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- · Selbststudium: 60 h
- Prüfungsvorbereitung: 60 h

Literatur

- Mortimer, Müller: Chemie, aktuelle Auflage, Thieme Verlag 2014
- Riedel, Meyer: Allgemeine und Anorganische Chemie, aktuelle Auflage, de Gruyter Verlag 2013
- · Horn: Vorlesungsskript, aktuelle Ausgabe, siehe ILIAS Studierendenportal

4.2 Modul: Angewandte Thermische Verfahrenstechnik [M-CIWVT-104458]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	4

Pflichtbestandteile				
T-CIWVT-109120	Angewandte Thermische Verfahrenstechnik - Projektarbeit	6 LP	Dietrich	
T-CIWVT-110803	Angewandte Thermische Verfahrenstechnik - Übungsaufgaben und Praktikum	6 LP	Dietrich	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus zwei Prüfungsleistungen anderer Art:

- 1. Übungsaufgaben und Praktikum (Wintersemester)
- 2. Projektarbeit zu Scale-up Fragestellungen inkl. Präsentation (Sommersemester)

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind, 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können

- grundlegende, zukunftsorientierte Prozesse der Angewandten Thermischen Verfahrenstechnik erläutern
- Prozesskette einer wissenschaftlichen Fragestellung bis hin zu deren Beantwortung: Planung, Konzeptionierung, Realisierung, Durchführung und Auswertung von grundlegenden Versuchen, Aspekte zur Umsetzung in einen technischen Maßstab (Scale-Up) beschreiben
- · wissenschaftlich unter Verwendung von DV-Standardtools arbeiten
- wissenschaftliche Ergebnisse präsentieren
- · eigenständig Fachwissen erarbeiten

Inhalt

Im Rahmen dieses Moduls soll ein Einblick in die aktuelle Forschung des Instituts ermöglicht werden, welche sich u.a. mit zukunftsorientierten Themen, wie erneuerbaren Energiekonzepten, Elektromobilität sowie Energiespeicherung beschäftigt. Dazu werden drei grundlegende Versuche im Bereich der Trocknung, Wärmeübertragung und Kristallisation in Form einer Projektarbeit angeboten.

Zunächst werden in einer Vorlesung sowohl die entsprechenden fachlichen als auch methodischen Grundlagen präsentiert. Dies umfasst auch die Vermittlung notwendiger Kenntnisse zur Erstellung eines wissenschaftlichen Berichts bzw. einer wissenschaftlichen Präsentation sowie die Verwendung von speziellen Excel-Tools wie z.B. Solver oder Makros. Innerhalb spezieller Workshops am TVT kann das Gelernte dann trainiert werden. Daran anschließend wird im Labor unter Verwendung moderner, zum Teil selbst aufzubauender Messtechnik (z.B. Temperatursensorik auf Basis von Einplatinencomputern / Arduino) zum jeweiligen Thema der Versuch durchgeführt. Die Auswertung erfolgt mittels der in der Vorlesung gelegten Grundlagen und unter Zuhilfenahme entsprechender Kapitel des VDI-Wärmeatlas. Die Ergebnisse werden in einem Arbeitsbericht zusammengefasst. Im nachfolgenden Schritt wird für einen der Versuche eine Auslegungsrechnung zum industriellen Scale-Up mit entsprechenden Spezifikationen der benötigen Geräte erarbeitet. Die Auslegung ist in einem wissenschaftlichen Seminar mittels einer Präsentation den übrigen Studierenden des Profilfachs vorzustellen. Abgerundet wird der praktische Teil durch eine Exkursion zur BASF in Ludwigshafen, wodurch Einblicke zur Anwendung des Gelernten in der industriellen Umsetzung gewonnen werden können.

Zusammensetzung der Modulnote

Die Modulnote wird aus den Noten der beiden Teilleistungen gebildet. Gewichtung 1:1.

Anmerkungen

Das Profilfach Angewandte Thermische Verfahrenstechnik wird im Wintersemester 2024/25 nicht angeboten.

Arbeitsaufwand

Präsenzzeit: 100 h Selbststudium: 160 h

Praktikum (incl. Auwertung): 100 h

Empfehlungen

Die erfolgreiche Teilnahme an der Vorlesung "Grundlagen der Wärme- und Stoffübertragung" des TVT ist von Vorteil.

Literatur

- VDI-Wärmeatlas, Springer 2013Eigene Skripte

4.3 Modul: Angewandter Apparatebau [M-CIWVT-103297]

Verantwortung: Dr. Martin Neuberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik) (EV ab 01.04.2025)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106562	Angewandter Apparatebau Klausur	5 LP	Neuberger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können notwendige Schritte von der Konzeptfindung, Planung sowie Auslegung einer Apparatekonstruktion bis zur Inbetriebsetzung erläutern. Das beinhaltet insbesondere die Auswahl und Auslegung einzelner Komponenten. Die Studierenden können die Prinzipien des Apparatebaus für Anforderungen verschiedener Edukte, Produkte und Prozesse anwenden.

Neben den technischen Anforderungen können sie dabei auch andere Aspekte, wie beispielsweise Kosten, Termine und Qualitätsmanagement mit in Betracht ziehen. Der Ablauf von Genehmigungs- und Beschaffungsprozessen kann in Grundzügen dargestellt werden.

Inhalt

Projektabwicklung

Terminplanung, Ressourcenplanung, Kostenschätzung, Kalkulation, Arbeitspakete, Projektstruktur, Kostenstruktur

Ablauf einer Apparatekonstruktion

Produkt (Charakterisierung und Anforderungen an das Produkt: korrosive Medien, Reinheit, Sauberkeit etc.), Prozess (Erfordernisse der Herstellung, wie Druck, Temperatur etc.), Werkstoffauswahl, Planung (Realisierungsoptionen, Auswahl Komponenten: Motoren, Armaturen, Ventile, Pumpen, Gebläse, Rührwerke, Sonderkomponenten), Wartungs- und Reparaturfreundlichkeit, Zugänglichkeit, Anlagensicherheit, Auslegung, Fertigung (Fertigungsverfahren, Schweißen, Löten etc.), Transport (Transportüberwachung, Gefahrenübergang etc.), Montage (Vorgaben, Ablauf etc.), Inbetriebsetzung (Leistungstest etc.)

Beschaffung

Technische Spezifikation, Ausschreibungsverfahren, Anfrageunterlagen, Auswertung Angebote, Vertragsgestaltung

Qualitätsmanagement

Zertifizierung nach ISO 9001:2015, Qualitätsplanung, Prüfung Planunterlagen (Vorprüfunterlagen)

Beispiel Schweißen: Verfahrensqualifikation, qualifizierte Schweißer etc.

Werkstoffprüfzeugnisse, Überprüfung der Machbarkeit von Prüfungen, Fertigungs- und Montageüberwachung, Funktionsprüfungen und Inbetriebsetzung

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 h Selbststudium: 45 h Prüfungsvorbereitung: 45 h

Literatur

Walter Wagner: Planung im Anlagenbau; Vogel Business Media; Auflage: 3. Auflage (August 2009)

4.4 Modul: Automatisierungs- und Regelungstechnik [M-CIWVT-106477]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-113088	Automatisierungs- und Regelungstechnik - Prüfung	6 LP	Meurer
T-CIWVT-113089	Automatisierungs- und Regelungstechnik - Projektarbeit	6 LP	Meurer

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- · mündliche Prüfung im Umfang von ca. 30 Minuten
- Prüfungsleistung anderer Art: Projektarbeit als Gruppenarbeit
 Es werden Vorbereitung, Durchführung, Präsentation und schriftlicher Bericht bewertet.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- 60 LP
- 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden kennen Konzepte und Methoden zur Analyse, zur Simulation und zum Regler- sowie zum Beobachterentwurf für lineare zeitkontinuierliche und zeitdiskrete Systeme im Zustandsraum. Sie können diese formulieren und erläutern und sind in der Lage darauf aufbauend komplexere Zusammenhänge abzuleiten. Sie besitzen praktische Fertigkeiten in der Systemanalyse und im Entwurf von Regelungen und Beobachtern für lineare Systeme im Zustandsraum. Sie können deren Verhalten und Eigenschaften evaluieren und beurteilen. Sie sammeln Problemlösungskompetenz im Team und Erfahrungen in der Anwendung wissenschaftlicher Methoden.

Inhalt

- · Modellierung und Simulation physikalischer Systeme
- · Zeitkontinuierliche und zeitdiskrete lineare Systeme
- Struktureigenschaften (Stabilitätstheorie, Steuerbarkeit, Beobachtbarkeit)
- Synthese von Regelkreisen im Zustandsraum (zeitkontinuierlich und zeitdiskret) für lineare Ein- und Mehrgrößensysteme
- Rechnergestützte Umsetzung der Konzepte und Methoden unter Einbezug von MATLAB/Simulink
- Die Anwendung auf konkrete Problemstellungen erfolgt in der Projektarbeit (Teamarbeit), wobei neben simulationstechnischen Analysen auch die experimentelle Evaluation an Versuchsaufbauten angestrebt werden.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Anmerkungen

Das Profilfach kann nicht gewählt werden, wenn im Bereich Wahlpflichtfächer das Modul Fortgeschrittene Methoden der linearen Regelungstechnik gewählt wird.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 30 h, (Computer-)Übungen 15 h
- · Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h
- Projektarbeit: ca. 6 Wochen/ 180 h

Literatur

- T. Meurer: Regelungstechnik und Systemdynamik, Vorlesungsskript.
 K. Aström, R. Murray: Feedback Systems, Princeton University Press, 2008.
 C.T. Chen: Linear System Theory and Design, Oxford Univ. Press, 1999.
 J.C. Doyle, B.A. Francis, A.R. Tannenbaum: Feedback Control Theory, Dover, 2009.
 J. Lunze: Regelungstechnik II, Springer-Verlag, 2010.

4.5 Modul: Begleitstudium Wissenschaft, Technologie und Gesellschaft [M-FORUM-106753]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: Zusatzleistungen (EV ab 01.10.2024)

Leistungspunkte 16 LP **Notenskala** Zehntelnoten **Turnus** Jedes Semester **Dauer** 3 Semester Sprache Deutsch Level 3 Version 1

Wahlinformationen

Die im Begleitstudium Wissenschaft, Technologie und Gesellschaft erworbenen Leistungen werden von den Studierenden selbstständig im Studienablaufplan verbucht. Im Campus-Management-System werden diese Leistungen durch das FORUM (ehemals ZAK) zunächst als "nicht zugeordnete Leistungen" verbucht. Anleitungen zur Selbstverbuchung von Leistungen finden Sie in den FAQ unter https://campus.studium.kit.edu/ sowie auf der Homepage des FORUM unter https://www.forum.kit.edu/ begleitstudium-wtg.php. Prüfungstitel und Leistungspunkte der verbuchten Leistung überschreiben die Platzhalter-Angaben im Modul

Sofern Sie Leistungen des FORUM für die Überfachlichen Qualifikationen und das Begleitstudium nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des FORUM (stg@forum.kit.edu).

Im Vertiefungsbereich können Leistungen in den drei Gegenstandsbereichen "Über Wissen und Wissenschaft", "Wissenschaft in der Gesellschaft" und "Wissenschaft in gesellschaftlichen Debatten" abgelegt werden. Es wird empfohlen, in der Vertiefungseinheit aus jedem der drei Gegenstandsbereiche Veranstaltungen zu absolvieren.

Für die Selbstverbuchung im Vertiefungsbereich ist zunächst eine freie Teilleistung zu wählen. Die Titel der Platzhalter haben dabei *keine* Auswirkung darauf, welche Leistungen des Begleitstudiums dort zugeordnet werden können!

Pflichtbestandteile					
T-FORUM-113578	Ringvorlesung Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung	2 LP	Mielke, Myglas		
T-FORUM-113579	Grundlagenseminar Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung	2 LP	Mielke, Myglas		
Vertiefungseinheit	Begleitstudium Wissenschaft, Technologie und Gesellschaft (Wahl	: mind. 12	LP)		
T-FORUM-113580	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Über Wissen und Wissenschaft - Selbstverbuchung	3 LP	Mielke, Myglas		
T-FORUM-113581	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in der Gesellschaft - Selbstverbuchung	3 LP	Mielke, Myglas		
T-FORUM-113582	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in gesellschaftlichen Debatten - Selbstverbuchung	3 LP	Mielke, Myglas		
Pflichtbestandteile					
T-FORUM-113587	Anmeldung zur Zertifikatsausstellung - Begleitstudium Wissenschaft, Technologie und Gesellschaft	0 LP	Mielke, Myglas		

Erfolgskontrolle(n)

Die Erfolgskontrollen sind im Rahmen der jeweiligen Teilleistung erläutert.

Sie können bestehen aus:

- Protokollen
- Reflexionsberichten
- Referaten
- Präsentationen
- Ausarbeitung einer Projektarbeit
- einer individuellen Hausarbeit
- einer mündlichen Prüfung
- einer Klausur

Nach dem erfolgreichen Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat, die vom FORUM ausgestellt werden.

Voraussetzungen

Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Für alle Erfolgskontrollen der Module des Begleitstudiums ist eine Immatrikulation erforderlich.

Die Teilnahme am Begleitstudium wird durch § 3 der Satzung geregelt. Die Anmeldung zum Begleitstudium erfolgt für KIT-Studierende durch Wahl dieses Moduls im Studierendenportal und Selbstverbuchung einer Leistung. Die Anmeldung zu Lehrveranstaltungen, Erfolgskontrollen und Prüfungen ist in § 8 der Satzung geregelt und ist in der Regel kurz vor Semesterbeginn möglich.

Vorlesungsverzeichnis, Modulbeschreibung (Modulhandbuch), Satzung (Studienordnung) und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des FORUM unter https://www.forum.kit.edu/begleitstudium-wtg zu finden.

Anmeldung und Prüfungsmodalitäten:

BITTE BEACHTEN SIE:

Eine Anmeldung am FORUM, also zusätzlich über die Modulwahl im Studierendenportal, ermöglicht, dass Studierende aktuelle Informationen über Lehrveranstaltungen oder Studienmodalitäten erhalten. Außerdem sichert die Anmeldung am FORUM den Nachweis der erworbenen Leistungen. Da es momentan (Stand WS 24-25) noch nicht möglich ist, im Bachelorstudium erworbene Zusatzleistungen im Masterstudium elektronisch weiterzuführen, raten wir dringend dazu, die erbrachten Leistungen selbst durch Archivierung des Bachelor-Transcript of Records sowie durch die Anmeldung am FORUM digital zu sichern. Für den Fall, dass kein Transcript of Records des Bachelorzeugnisses mehr vorliegt – können von uns nur die Leistungen angemeldeter Studierender zugeordnet und damit beim Ausstellen des Zeugnisses berücksichtigt werden.

Qualifikationsziele

Absolventinnen und Absolventen des Begleitstudiums Wissenschaft, Technologie und Gesellschaft weisen ein fundiertes Grundlagenwissen über das Verhältnis zwischen Wissenschaft, Öffentlichkeit, Wirtschaft und Politik auf und eignen sich praktische Fertigkeiten an, die sie auf den Umgang mit Medien, auf die Politikberatung oder das Forschungsmanagement vorbereiten sollen. Um Innovationen anzustoßen, gesellschaftliche Prozesse mitgestalten und in den Dialog mit Politik und Gesellschaft treten zu können, erhalten die Teilnehmenden Einblicke in disziplinäre sozial- und geisteswissenschaftliche Auseinandersetzungen mit dem Gegenstand Wissenschaft, Technologie und Gesellschaft und lernen, interdisziplinär zu denken. Ziel der Lehre im Begleitstudium ist es deshalb, dass Teilnehmende neben ihren fachspezifischen Kenntnissen auch erkenntnistheoretische, wirtschafts-, sozial-, kulturwissenschaftliche sowie psychologische Perspektiven auf wissenschaftliche Erkenntnis sowie ihre Verarbeitung in Wissenschaft, Wirtschaft, Politik und Öffentlichkeit erwerben. Sie können die Folgen ihres Handelns an der Schnittstelle zwischen Wissenschaft und Gesellschaft als Studierende, Forschende und spätere Entscheidungstragende ebenso wie als Individuum und Teil der Gesellschaft auf Basis ihrer disziplinären Fachausbildung und der fachübergreifenden Lehre im Begleitstudium einschätzen und abwägen.

Teilnehmende können die im Begleitstudium gewählten vertiefenden Inhalte in den Grundlagenkontext einordnen sowie die Inhalte der gewählten Lehrveranstaltungen selbständig und exemplarisch analysieren, bewerten und sich darüber in schriftlicher und mündlicher Form wissenschaftlich äußern. Absolventinnen und Absolventen können gesellschaftliche Themen- und Problemfelder analysieren und in einer gesellschaftlich verantwortungsvollen und nachhaltigen Perspektive kritisch reflektieren.

Inhalt

Das Begleitstudium Wissenschaft, Technologie und Gesellschaft kann ab dem 1. Fachsemester begonnen werden und ist zeitlich nicht eingeschränkt. Das breite Angebot an Lehrveranstaltungen des FORUM ermöglicht es, das Studium in der Regel innerhalb von drei Semestern abzuschließen. Das Begleitstudium umfasst 16 oder mehr Leistungspunkte (LP). Es besteht aus zwei Einheiten: Grundlageneinheit (4 LP) und Vertiefungseinheit (12 LP).

Die **Grundlageneinheit** umfasst die Pflichtveranstaltungen "Ringvorlesung Wissenschaft in der Gesellschaft" und ein Grundlagenseminar mit insgesamt 4 LP.

Die **Vertiefungseinheit** umfasst Lehrveranstaltungen im Umfang von 12 LP zu den geistes- und sozialwissenschaftlichen Gegenstandsbereichen "Über Wissen und Wissenschaft", "Wissenschaft in der Gesellschaft" sowie "Wissenschaft in gesellschaftlichen Debatten". Die Zuordnungen von Lehrveranstaltungen zum Begleitstudium sind auf der Homepage https://www.forum.kit.edu/wtg-aktuell und im gedruckten Vorlesungsverzeichnis des FORUM zu finden.

Gegenstandsbereich 1: Über Wissen und Wissenschaft

Hier geht es um die Innenperspektive von Wissenschaft: Studierende beschäftigen sich mit der Entstehung von Wissen, mit der Unterscheidung von wissenschaftlichen und nicht-wissenschaftlichen Aussagen (z. B. Glaubenssätze, Pseudowissenschaftliche Aussagen, ideologische Aussagen), mit den Voraussetzungen, Zielen und Methoden der Wissensgenerierung. Dabei beleuchten Studierende zum Beispiel den Umgang Forschender mit den eigenen Vorurteilen im Erkenntnisprozess, analysieren die Struktur wissenschaftlicher Erklärungs- und Prognosemodelle in einzelnen Fachdisziplinen oder lernen die Mechanismen der wissenschaftlichen Qualitätssicherung kennen.

Nach dem Besuch der Lehrveranstaltungen im Bereich "Wissen und Wissenschaft" sind Studierende in der Lage, Ideal und Wirklichkeit der gegenwärtigen Wissenschaft sachkundig zu reflektieren, zum Beispiel anhand der Fragen: Wie robust ist wissenschaftliches Wissen? Was können Vorhersagemodelle leisten, was können sie nicht leisten? Wie gut funktioniert die Qualitätssicherung in der Wissenschaft und wie kann sie verbessert werden? Welche Arten von Fragen kann Wissenschaft beantworten, welche Fragen kann sie nicht beantworten?

Gegenstandsbereich 2: Wissenschaft in der Gesellschaft

Hier geht es um Wechselwirkungen zwischen Wissenschaft und verschiedenen Gesellschaftsbereichen – zum Beispiel um die Frage, wie wissenschaftliches Wissen in gesellschaftliche Willensbildungsprozesse und wie gesellschaftliche Ansprüche in die wissenschaftliche Forschung einfließen. Studierende lernen die spezifischen Funktionslogiken unterschiedlicher Gesellschaftsbereiche kennen und lernen auf dieser Grundlage abzuschätzen, wo es zu Ziel- und Handlungskonflikten in Transferprozessen kommt – zum Beispiel zwischen der Wissenschaft und der Wirtschaft, der Wissenschaft und der Politik oder der Wissenschaft und dem Journalismus. Typische Fragen in diesem Gegenstandsbereich sind: Wie und unter welchen Bedingungen entsteht aus einer wissenschaftlichen Entdeckung eine Innovation? Wie läuft wissenschaftliche Politikberatung ab? Wie beeinflussen Wirtschaft und Politik die Wissenschaft und wann ist das problematisch? Nach welchen Kriterien greifen Journalisten wissenschaftliche Erkenntnisse in der Medienberichterstattung auf? Woher kommt Wissenschaftsfeindlichkeit und wie kann gesellschaftliches Vertrauen in Wissenschaft gestärkt werden?

Nach dem Besuch von Lehrveranstaltungen im Gegenstandsbereich "Wissenschaft in der Gesellschaft" können Studierende die Handlungsziele und Handlungsrestriktionen von Akteuren in unterschiedlichen Gesellschaftsbereichen verstehen und einschätzen. Dies soll sie im Berufsleben in die Lage versetzen, die unterschiedlichen Perspektiven von Kommunikations- und Handlungspartnern in Transferprozessen einzunehmen und kompetent an verschiedenen gesellschaftlichen Schnittstellen zur Forschung zu agieren.

Gegenstandsbereich 3: Wissenschaft in gesellschaftlichen Debatten

Die Lehrveranstaltungen im Gegenstandsbereich geben Einblicke in aktuelle Debatten zu gesellschaftlichen Großthemen wie Nachhaltigkeit, Digitalisierung/Künstliche Intelligenz oder Geschlechtergerechtigkeit/soziale Gerechtigkeit/Bildungschancen. Öffentliche Debatten mit komplexen Herausforderungen verlaufen häufig polarisiert und begünstigen Vereinfachungen, Diffamierungen oder ideologisches Denken. Dies kann sachgerechte gesellschaftliche Lösungsfindungsprozesse erheblich erschweren und Menschen vom politischen Prozess sowie von der Wissenschaft entfremden. Auseinandersetzungen um eine nachhaltige Entwicklung sind hiervon in besonderer Weise betroffen, weil sie eine besondere Breite wissenschaftlichen und technologischen Wissens berühren – dies sowohl bei den Problemdiagnosen (z. B. Verlust der Biodiversität, Klimawandel, Ressourcenverbrauch) als auch bei der Entwicklung von Lösungsoptionen (z. B. Naturschutz, CCS, Kreislaufwirtschaft).

Durch den Besuch von Lehrveranstaltungen im Gegenstandsbereich "Wissenschaft in gesellschaftlichen Debatten" sollen Studierende im Umgang mit Sachdebatten anwendungsorientiert geschult werden – im Austausch von Argumenten, im Umgang mit eigenen Vorurteilen, im Umgang mit widersprüchlichen Informationen usw. Sie erfahren, dass Sachdebatte häufig tiefer und differenzierter geführt werden können als das in Teilen der Öffentlichkeit häufig der Fall ist. Dies soll sie befähigen, sich auch im Berufsleben möglichst unabhängig von eigenen Vorurteilen und offen für differenzierte und faktenreiche Argumente sich mit konkreten Sachfragen zu beschäftigen.

Ergänzungsleistungen:

Es können auch weitere LP (Ergänzungsleistungen) im Umfang von höchstens 12 LP aus dem Begleitstudienangebot erworben werden (siehe Satzung Begleitstudium WTG § 7). § 4 und § 5 der Satzung bleiben davon unberührt. Diese Ergänzungsleistungen gehen nicht in die Festsetzung der Gesamtnote des Begleitstudiums ein. Auf Antrag der*des Teilnehmenden werden die Ergänzungsleistungen in das Zeugnis des Begleitstudiums aufgenommen und als solche gekennzeichnet. Ergänzungsleistungen werden mit den nach § 9 vorgesehenen Noten gelistet.

Zusammensetzung der Modulnote

Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen, die in der Vertiefungseinheit erbracht wurden.

Anmerkungen

Klimawandel, Biodiversitätskrise und Antibiotikaresistenzen, Künstliche Intelligenz, Carbon Capture and Storage und Genschere – Wissenschaft und Technologie können zur Diagnose und Bewältigung zahlreicher gesellschaftlicher Probleme und globaler Herausforderungen beitragen. Inwieweit wissenschaftliche Ergebnisse in Politik und Gesellschaft Berücksichtigung finden, hängt von zahlreichen Faktoren ab, etwa vom Verständnis und Vertrauen der Menschen, von wahrgenommenen Chancen und Risiken von ethischen, sozialen oder juristischen Aspekten usw.

Damit Studierende sich als Entscheidungstragende von morgen mit ihren Sachkenntnissen konstruktiv an der Lösung gesellschaftlicher und globaler Herausforderungen beteiligen können, möchten wir sie befähigen, an den Schnittstellen zwischen Wissenschaft, Wirtschaft und Politik kompetent und reflektiert zu navigieren.

Dazu erwerben sie im Begleitstudium Grundwissen über die Wechselwirkungen zwischen Wissenschaft, Technologie und Gesellschaft.

Sie lernen

- wie verlässliches wissenschaftliches Wissen entstehen kann,
- wie gesellschaftliche Erwartungen und Ansprüche wissenschaftliche Forschung beeinflussen

und

- wie wissenschaftliches Wissen gesellschaftlich aufgegriffen, diskutiert und verwertet wird.

Zu diesen Fragestellungen integriert das Begleitstudium grundlegende Erkenntnisse aus der Psychologie, der Philosophie, Wirtschafts-, Sozial- und Kulturwissenschaft.

Nach dem Abschluss des Begleitstudium können die Studierenden die Inhalte ihres Fachstudiums in einen weiteren gesellschaftlichen Kontext einordnen. Dies bildet die Grundlage dafür, dass sie als Entscheidungsträger von morgen kompetent und reflektiert an den Schnittstellen zwischen Wissenschaft und verschiedenen Gesellschaftsbereichen – wie der Politik, der Wirtschaft oder dem Journalismus – navigieren und sich versiert etwa in Innovationsprozesse, öffentliche Debatten oder die politische Entscheidungsfindung einbringen.

Arbeitsaufwand

Der Arbeitsaufwand setzt sich aus der Stundenanzahl von Grundlagen- und Vertiefungseinheit zusammen:

- Grundlageneinheit ca. 120 h
- Vertiefungseinheit ca. 360 h
- > Summe: ca. 480 h

In Form von Ergänzungsleistungen können bis zu ca. 360 h Arbeitsaufwand hinzukommen.

Empfehlungen

Es wird empfohlen, das Begleitstudium in drei oder mehr Semestern zu absolvieren und mit der Ringvorlesung desBegleitstudiums Wissenschaft, Technologie und Gesellschaft im Sommersemester zu beginnen. Alternativ kann im Wintersemester mit dem Besuch des Grundlagenseminars begonnen werden und anschließend im Sommersemester die Ringvorlesung besucht werden. Parallel können bereits Veranstaltungen aus der Vertiefungseinheit absolviert werden.

Es wird zudem empfohlen, in der Vertiefungseinheit aus jedem der drei Gegenstandsbereiche Veranstaltungen zu absolvieren.

Lehr- und Lernformen

- Vorlesungen
- Seminare/Projektseminare
- Workshops

4.6 Modul: Biologie im Ingenieurwesen [M-CIWVT-106414]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile				
T-CIWVT-111063	Genetik	2 LP	Neumann	
T-CIWVT-112997	Biochemie	2,5 LP	Rudat	
T-CIWVT-113037	Zellbiologie	2 LP	Gottwald	
T-CIWVT-113038	Mikrobiologie	2,5 LP	Neumann	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus vier Teilleistungen:

- schriftliche Prüfung Zellbiologie mit einem Umfang von 90 Minuten
- schriftliche Prüfung Genetik mit einem Umfang von 90 Minuten
- · schriftliche Prüfung Biochemie mit einem Umfang von 90 Minuten
- schriftliche Prüfung Mikrobiologie mit einem Umfang von 90 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Teil Zellbiologie:

Identifizieren pro- und eukaryotischer Zellen, Identifizieren der Bestandteile pro- und eukaryotischer Zellen, Kenntnis der wichtigsten Stoffwechselvorgänge, der wichtigsten Molekülklassen und deren Vorkommen, Beherrschung der Lichtmikroskop-Theorie, In der Lage sein Bioreaktoren und deren Betriebsmodus entsprechend der Anwendung auszuwählen.

Teil Genetik

Die Studierenden sind in der Lage, grundlegende Aspekte der Genetik von Pro- und Eukaryoten detailliert zu beschreiben und mit eigenen Worten zu erläutern. Dazu zählen Aufbau und Organisation der Nukleinsäuren, Replikationsmechanismen, Transkription, Translation, Genregulation, Rekombination, Transposition, Reparaturmechanismen und Grundlagen der Virologie. Darauf aufbauend sind sie in der Lage, ihr Grundlagenwissen anzuwenden, z. B. um Graphiken zu erklären oder dies auf gentechnische Methoden zu übertragen.

Teil Biochemie:

Die Studierenden können die verschiedenen Gruppen von Biomolekülen beschreiben. Neben der Bedeutung von Wasser für den Zellstoffwechsel und den Grundlagen der Bioenergetik können Sie den Bau von Kohlenhydraten, Lipiden, Aminosäuren, Peptiden, Proteinen und Nukleinsäuren und deren Bedeutung für die lebende Zelle erläutern. Sie können im Primärstoffwechsel Anabolismus und Katabolismus inklusive der grundlegenden Regulationsprinzipien im Detail beschreiben. Sie können die Abläufe biochemischer Prozesse auch unter energetischen Gesichtspunkten interpretieren. Sie können die Photosynthese erläutern. Sie können die grundlegenden Vorgänge der Proteinbiosynthese verdeutlichen.

Teil Mikrobiologie:

Die Studierenden können die Teilgebiete der Mikrobiologie beschreiben. Sie können den Bau und die Morphologie pro- und eukaryotischer Mikroorganismen und deren Eingruppierung in das phylogenetische System erläutern. Sie können den mikrobiellen Primärstoffwechsel beschreiben und die Unterschiede zwischen aeroben und anaeroben Atmungs- sowie Gärungsprozessen erläutern. Sie können Lithotrophie und die Verwertung anorganischer Elektronendonatoren verdeutlichen. Sie können die Rolle der Mikroorganismen für die Umwelt und die globalen Stoffkreisläufe erläutern. Sie können die Abläufe mikrobieller Prozesse in der Biotechnologie interpretieren.

Inhalt

Zellbiologie: Mikroskopie, Zellaufbau bei Prokaryoten und Eukaryoten, eukaryotische Zellkompartimente, Bau und Funktion biologischer Makromoleküle, Zellkommunikation, Zellzyklus -

<u>Genetik:</u> DNA, Chromatin und Chromosomen; Gene und Genome; DNA-Replikation; Transkription; Translation; Rekombination; Mutation und Reparaturmechanismen; Regulation der Genexpression; Methoden und Anwendungen der molekularen Gentechnik

<u>Biochemie:</u> Struktur und Funktion der Biomoleküle; Einführung in den Primärstoffwechsel; Bioenergetik & Regulationsprinzipien; Aminosäuren und Peptide; Proteinstruktur und Funktion; Enzyme, Coenzyme und Vitamine; Kohlenhydrate; Glykolyse und Gluconeogenese; Citratcyclus und Atmungskette; Photosynthese; Lipide und Membranen; Proteinstoffwechsel;

<u>Mikrobiologie</u>: Geschichte und Teilgebiete der Mikrobiologie; Morphologie und Aufbau von Pro- und Eukaryonten; Mikrobiologische Arbeitsmethoden; Klassifizierung und Struktur des phylogenetischen Systems; Wachstum von einzelligen Mikroorganismen; Grundlagen des mikrobiellen Primärstoffwechsels; Anaerobe Atmungsprozesse und mikrobielle Gärungen; Lithotrophie & Verwertung anorganischer Elektronendonatoren; mikrobieller Synthesestoffwechsel; mikrobielle Evolution; mikrobielle Ökologie und globale Stoffkreisläufe; Grundlagen der mikrobiellen Biotechnologie und Umweltmikrobiologie

Zusammensetzung der Modulnote

Die Modulnote berechnet sich aus dem LP-gewichteten Mittel der vier Teilleistungen.

Arbeitsaufwand

Präsenzzeit:

- · Vorlesung Wintersemester (Zellbiologie und Genetik) 4 SWS: 60 h
- Vorlesung Sommersemester (Biochemei und Mikrobiologie) 4 SWS: 60 h

Selbststudium:

- · Vor- und Nachbereitung der Lehrveranstaltungen: 70 h
- Klausurvorbereitung: 80 h (ca. 20 h je Teilklausur)

Empfehlungen

Keine

Literatur

Zellbiologie:

- · Alberts: Lehrbuch Molekulare Zellbiologie (Wiley-VCH)
- · Munk: Biochemie Zellbiologie (Thieme)
- Plattner/Hentschel: Zellbiologie (Thieme)

Genetik:

- Munk: Taschenlehrbuch Biologie, Genetik (Thieme)
- Knippers: Genetik (Thieme)

Biochemie:

- Voet/Voet/Pratt: Lehrbuch der Biochemie (Wiley-VCH)
- Koolman/Röhm: Taschenatlas der Biochemie (Thieme)
- Stryer: Biochemie (SpringerSpektrum)

Mikrobiologie:

- · Munk: Taschenlehrbuch Mikrobiologie (Thieme)
- Cypionka: Grundlagen der Mikrobiologie (Springer)

4.7 Modul: Biopharmazeutische Verfahrenstechnik [M-CIWVT-106437]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Bioverfahrenstechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile				
T-CIWVT-113023	Biopharmazeutische Verfahrenstechnik	6 LP	Hubbuch	
T-CIWVT-113024	Praktikum Aufarbeitungstechnik	3 LP	Hubbuch	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- · Schriftliche Prüfung mit einem Umfang von 120 Minuten
- · Praktikum: Prüfungsleistung anderer Art.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Probleme im Bereich der biotechnologischen Trennverfahren analysieren, strukturieren und formal beschreiben. Die Studierenden sind fähig, die unterschiedlichen Verfahren kritisch zu beurteilen.

Die Studierenden sind in der Lage die in der Vorlesung Biotechnologische Trennverfahren erworbenen Grundlagen der Proteinaufarbeitung in experimentell umzusetzen. Sie sind dazu in der Lage unter Anleitung verschiedene Verfahren zu planen, vorzubereiten und durchzuführen. Sie können analytische Verfahren verwenden um die von ihnen durchgeführten Experimente zu quantifizieren. Sie können die zur Auswertung der Daten benötigten Formeln angemessen gebrauchen und den Einfluss wichtiger Prozessparameter erkennen. Sie können die Ergebnisse wissenschaftlich und formal korrekt dokumentieren und darstellen.

Inhalt

Die VL vermittelt grundlegende Aspekte in der Aufarbeitung und Analytik biotechnologischer Produkte.

Praktikum

Methoden zur Aufreinigung von Proteinen, welche auf Löslichkeit von Proteinen sowie auf Wechselwirkungen zwischen Proteinen und Trägermaterialien basieren. Probenahme und Probenaufarbeitung; Proteincharakterisierung; Analysenmethoden zur Bestimmung von Produktkonzentrationen; Ermittlung und Berechnung der verschiedenen Prozessparameter; Graphische Darstellung und Interpretation der Ergebnisse; Linearisierungsverfahren; Computergestützte Prozessmodellierung und -optimierung.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Anmerkungen

Praktikum:

Die in der vorherigen Woche stattfindende, Sicherheitsbelehrung ist für alle Teilnehmer obligatorisch. Auch das Bestehen des Vortests/Exceltests ist obligatorisch. Aus arbeitsschutzrechtlichen Gründen müssen lange Hosen und geschlossene Schuhe während des Praktikums getragen werden.

Bei Nichtteilnahme an einzelnen Praktikumstagen durch Krankheit des Studierenden muss eine Krankmeldung zum frühestmöglichen Zeitpunkt an das Sekretariat des betreffenden Modulverantwortlichen erfolgen und für diese Fehlzeit ein ärztlicher Nachweis vorgelegt werden. Der Arzt soll hierbei entscheiden, ob und ab wann eine Weiterarbeit im naturwissenschaftlichen Labor und der Umgang mit Gefahrstoffen sicherheitstechnisch unbedenklich sind. Werden Teile des Praktikums aufgrund von Krankheit versäumt, wird im Einzelfall entschieden, in welcher Form die für das Bestehen des Praktikums erforderlichen Leistungen nachzuholen sind.

Die Modulverantwortlichen sind jederzeit dazu befugt, Studierende aus Sicherheitsgründen des Labors zu verweisen.

Arbeitsaufwand

Vorlesung/ Klausur:

Präsenzzeit: 60 hSelbststudium: 80 hKlausurvorbereitung: 40 h

Praktikum (eine Woche):

Präsenszeit: 40h

• Vor- und Nachbereitung: 50 h

Empfehlungen

Die Inhalte der folgenden Module sind für das Verständnis wichtig:

- Einführung in das Bioingenieurwesen
- Bioverfahrenstechnik

Literatur

wird bekannt gegeben

4.8 Modul: Biopharmazeutische Verfahrenstechnik [M-CIWVT-106475]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113023	Biopharmazeutische Verfahrenstechnik	6 LP	Hubbuch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Probleme im Bereich der biotechnologischen Trennverfahren analysieren, strukturieren und formal beschreiben. Die Studierenden sind fähig, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhali

Die VL vermittelt grundlegende Aspekte in der Aufarbeitung und Analytik biotechnologischer Produkte.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 hSelbststudium: 80 hKlausurvorbereitung: 40 h

Empfehlungen

Die Inhalte der folgenden Module sind für das Verständnis wichtig:

- Einführung in das Bioingenieurwesen
- Bioverfahrenstechnik

Literatur

wird bekannt gegeben

4.9 Modul: Biotechnologie [M-CIWVT-101143]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	4

Pflichtbestandteile				
T-CIWVT-103668	Biotechnologie - Prüfung	3 LP	Henke	
T-CIWVT-103669	Biotechnologie - Projektarbeit	9 LP	Perner-Nochta	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Schriftlichen Prüfung im Umfang von 90 Minuten zu den Lehrinhalten der Vorlesung Bioanalytik.
- 2. Praktischen Anteil (Prüfungsleistung anderer Art)

Hier gehen folgende Leistungen ein:

- ∘ (0 20 Punkte) Projektplan
- ∘ (0 20 Punkte) die praktische Arbeit
- ∘ (0 20 Punkte) eine Präsentation der Ergebnisse (Poster und Kurzvortrag)
- ∘ (0 20 Punkte) die schriftliche Ausarbeitung ein.

Notenschlüssel auf Anfrage. Die Teilleistung ist bestanden, wenn mindestens 40 Punkte erreicht wurden.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- mind. 1 Praktikum
- für einzelne Versuche werden die Inhalte des Praktikums Biotechnologie vorausgesetzt

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Es muss eine von 8 Bedingungen erfüllt werden:
 - 1. Das Modul Dictionary Error: Id module.0x382CC4BF1B23294C934FD4756C815CA9 in category mhbplus not found. Dictionary Error: Id module.0x382CC4BF1B23294C934FD4756C815CA9 in category mhbplus not found. muss erfolgreich abgeschlossen worden sein.
 - 2. Das Modul Dictionary Error: Id module.0x99E432C44626924F8A9AED137292D27D in category mhbplus not found. Dictionary Error: Id module.0x99E432C44626924F8A9AED137292D27D in category mhbplus not found. muss erfolgreich abgeschlossen worden sein.
 - 3. Das Modul Dictionary Error: Id module.0xEE633ED1DA92794B9973CB21C4D7D7FD in category mhbplus not found. Dictionary Error: Id module.0xEE633ED1DA92794B9973CB21C4D7D7FD in category mhbplus not found. muss erfolgreich abgeschlossen worden sein.
 - 4. Das Modul Dictionary Error: Id module.0xCC15775F35D1E643BFD82A40B0DDB3BA in category mhbplus not found. Dictionary Error: Id module.0xCC15775F35D1E643BFD82A40B0DDB3BA in category mhbplus not found. muss erfolgreich abgeschlossen worden sein.
 - Das Modul M-CHEMBIO-101115 Organische Chemie für Ingenieure muss erfolgreich abgeschlossen worden sein.
 - 6. Die Teilleistung Dictionary Error: Id brick.0xE282F555AF744740838407BEDDC7FCCB in category mhbplus not found. Dictionary Error: Id brick.0xE282F555AF744740838407BEDDC7FCCB in category mhbplus not found. muss erfolgreich abgeschlossen worden sein.
 - 7. Das Modul M-CIWVT-106427 Naturwissenschaftliches Grundpraktikum muss erfolgreich abgeschlossen worden sein
 - 8. Das Modul Dictionary Error: Id module.0x432CFF22C44745BA88AFC2636B8021E3 in category mhbplus not found. Dictionary Error: Id module.0x432CFF22C44745BA88AFC2636B8021E3 in category mhbplus not found. muss erfolgreich abgeschlossen worden sein.
- 2. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Grundlegendes Verständnis von Prozessen und Prozesssynthesen in der biotechnologischen Produktion

Vorlesung Bioanalytik:

Die Studierenden können die Auswahl und Durchführung von Methodiken für die Analytik von Biomolekülen wiedergeben. Die Studierenden können Vorteile sowie Limitationen der unterschiedlichen Methodiken hinsichtlich ihrer Einsatzgebiete in der biotechnologischen Forschung in Bezug auf die unterschiedlichen Biomoleküle (insbesondere DNA, RNA, Proteine/Enyzme, Metabolite) bewerten. Die Studierenden sind in der Lage, geeignete Methoden sowie Experimentierdesigns für (künftige) eigene Arbeiten im Kontext der qualitativen und quantitativen Bioanalytik zu selektieren.

Vorlesung über Management wissenschaftlicher Projekte mit Übung:

Die Studierenden sind in der Lage, eine eigenständige Literaturrecherche durchzuführen, eigene Versuche zu planen, eigene Daten zu analysieren, eigene wissenschaftliche Texte zu schreiben, selbständig ein kleines Projekt hinsichtlich benötigter Zeit und Finanzen zu planen und einen Projektplan zu erstellen. Sie können den Projektplan vorstellen und ein Poster erstellen und dieses präsentieren.

Projektarbeit:

Die Studierenden können eigene Untersuchungen und praktische Arbeiten auf dem Gebiet der Biotechnologie durchführen, ihre gewonnen Daten analysieren und einen Projektbericht erstellen.

Inhalt

Vorlesungen Bioanalytik:

Die Vorlesung soll die wichtigsten Methoden für die Analyse von Biomolekülen verstellen. Entsprechend des genetischen Informationsflusses in der Zelle, werden Methoden der Bioanalytik von DNA, RNA, Proteinen/Enzymen sowie Metaboliten vermittelt. Die Theorie sowie die Anwendung von Methoden werden anhand von Forschungsbeispielen angeführt. Methodenschwerpunkte bilden Sequenziertechnologien, Proteinanalytik, Enzymologie, chromatographische Verfahren sowie Grundlagen der Massenspektrometrie und NMR. Darüber hinaus werden weitere Methoden der Mikroskopie sowie Reportersysteme zur Analyse von Biomolekülen in ganzen Zellen vorgestellt.

Vorlesung über Management wissenschaftlicher Projekte und Übung:

Literaturrecherche, Versuchsplanung, Datenauswertung, Schreiben wissenschaftlicher Texte, Projektmanagement; teilweise Software-basiert; electronic classroom, dazu praktische Übungen in Literaturrecherche, Erstellen eines Projektplans, Projektplanvorstellung, Erstellen eines Posters, Posterpräsentation

Projektarbeit:

Durchführung eigener Untersuchungen und praktische Arbeiten auf dem Gebiet der Biotechnologie, Erstellen eines Projektberichts

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Instrumentelle Bioanalytik:

- Präsenszeit: 30 h (2 SWS)
- · Vor- und Nachbereitung: 30 h
- Klausurvorbereitung: 30 h

Vorlesung und Übung Management wissenschaftlicher Projekte:

- Präsenszeit: 45 h (2 + 1 SWS)
- · Vor- und Nachbereitung: 45 h

Praktikum Praktische Übungen):

- Präsenszeit: 80 h
- · Vor- und Nachbereitung: 10 h

Projektarbeit:

- Präsenszeit: 10 h
- · Vor- und Nachbereitung: 80 h

Empfehlungen

Module des 1. -4. Semesters, Praktikum Biotechnologie

Literatur

Wird in der Vorlesung bekannt gegeben.

4.10 Modul: Bioverfahrensentwicklung [M-CIWVT-107406]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Bioverfahrenstechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-114538	Bioverfahrensentwicklung	6 LP	
T-CIWVT-114542	Praktikum Bioverfahrensentwicklung	3 LP	Grünberger

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Schriftliche Prüfung im Umfang von 120 Minuten.
- Praktikum: Prüfungsleistung anderer Art.

Voraussetzungen

Keine.

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen:

Die Studierenden

- · Kennen die grundlegenden Schritte der Entwicklung eines Bioprozesses, von der Konzeption bis zur Umsetzung.
- Verstehen und wenden grundlegende Methoden an, die für jede Phase der Bioprozessentwicklung relevant sind.
- Erkennen, wie die aufeinanderfolgenden Schritte der Bioprozessentwicklung miteinander verbunden sind und wie Veränderungen in einer Phase andere Phasen beeinflussen können.
- Sind sich der Komplexität und des interdisziplinären Charakters der Bioprozessentwicklung bewusst und integrieren Wissen aus Biologie, Chemie, Ingenieurwesen und Wirtschaft.
- Lernen, einen neuen Bioprozess theoretisch von Grund auf zu entwerfen und dabei alle relevanten Rahmenbedingungen zu berücksichtigen.
- Bewerten und minimieren kritische Schritte und Risiken während der Bioprozessentwicklung.
- Entwickeln Bioprozesse mit Blick auf das Endprodukt unter Berücksichtigung von Marktanforderungen, Kosteneffizienz und Nachhaltigkeit.
- Bleiben über neue Trends, Methoden und Technologien im Fachgebiet informiert, einschließlich des Einflusses von Künstlicher Intelligenz auf die zukünftige Bioprozessentwicklung.

Sozial- und Selbstkompetenz:

Die Studierenden:

- Erkennen die Schlüsselaspekte und Rahmenbedingungen komplexer Bioprozesse.
- Entwickeln effektive Kommunikationsfähigkeiten, um erfolgreich mit Experten verschiedener Disziplinen in der Bioprozessentwicklung zusammenzuarbeiten.
- Betreiben eigenständiges Lernen, um das Wissen kontinuierlich zu erweitern und sich neuen Herausforderungen im Fachgebiet anzupassen.
- Entwickeln kritisches Denken, Kreativität und Problemlösungskompetenz, die für die Entwicklung grundlegend neuer Prozesse und Lösungen notwendig sind.
- Entwickeln mögliche Lösungsansätze und wägen Optionen für die Entwicklung eines Bioprozesses ab.

Prakikum:

Die Studierenden

- können eigenständig biotechnologische Prozesse modellieren und simulieren.
- sind in der Lage, Fließbilder zu erstellen, Prozessmodule auszuwählen und zu verschalten sowie Material- und Energiebilanzen zu berechnen.
- verstehen die Grundlagen der Kostenabschätzung und können Investitions- und Betriebskosten für Bioprozesse mit SuperPro Designer ermitteln.
- können Prozessalternativen unter technischen, ökonomischen und ökologischen Gesichtspunkten bewerten und Optimierungspotenziale identifizieren.
- sind in der Lage, die Ergebnisse kritisch zu interpretieren und für die Entwicklung und das Scale-up biotechnologischer Verfahren zu nutzen

Inhalt

Erfolgreiche Bioprozessentwicklung erfordert eine Vielzahl technischer und kommunikativer Fähigkeiten. Der Kurs verknüpft die mikrobielle Stammentwicklung mit der Bioverfahrenstechnik und baut auf dem in den ersten Studienjahren erworbenen bioverfahrenstechnischen Grundwissen auf. Kenntnisse aus vorherigen Kursen werden vertieft und für die technische Entwicklung von Bioprozessen angewendet. Zentrale Leitlinien und Konzepte zur Entwicklung robuster, wirtschaftlicher und nachhaltiger Bioprozesse werden eingeführt. Ziel dieses Kurses ist es, den Studierenden das notwendige und grundlegende Verständnis für die Bioprozessentwicklung sowie für die Interaktion verschiedener Fachbereiche zu vermitteln. Dies umfasst (i) die Definition des Produkts, (ii) die Auswahl des Rohstoffs, (iii) die Auswahl des mikrobiellen Wirts, (iv) die Stammentwicklung, (v) die Bioprozessoptimierung sowie (vi) das Scale-up und den Betrieb des Bioprozesses. Aktuelles Wissen wird durch Einblicke in aufkommende Themenfelder wie Miniaturisierung, Automatisierung und Digitalisierung ergänzt, die die Bioprozessentwicklung in Zukunft beschleunigen werden. Die Studierenden lernen, interdisziplinär zu denken und die zentralen Prinzipien der verschiedenen Schritte der Bioprozessentwicklung anzuwenden, um zukünftige Bioprozesse zu entwickeln.

Lehrformate beinhalten Vorlesungen, Übungen und Fallstudien. Die Vorlesungsthemen umfassen:

- 1. Workflow und Leitlinien der Bioprozessentwicklung
- 2. Substrat- und Wirtsauswahl
- 3. Stammentwicklung und Screening
- 4. Bioprozessoptimierung
- 5. Bioprozess-Scale-up
- 6. Kosten- und Nachhaltigkeitsabschätzung
- 7. Fallstudien
- 8. Regulatorische Anforderungen und Qualitätskontrolle
- 9. Digitalisierung und Künstliche Intelligenz

Praktikum:

- Einführung in Planung, Modellierung und Optimierung von Bioprozessen am Rechner (mit Verwendung von SuperPro Designer)
- · Auslegung ausgewählter Gesamtprozesse
- Technoökonomische und (ökologische) Bewertung von Prozessen

Zusammensetzung der Modulnote

Modulnote ist das LP gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

- Präsenzzeit: Vorlesung und Übung 60 h
- · Selbststudium: Vor- und Nachbereitung der Lehrveranstaltungen: 80 h
- Prüfungsvorbereitung: 40 h
- Praktikum: 90 h

Empfehlungen

Bioverfahrenstechnik.

Literatur

- · Lecture scripts
- Pauline M. Doran, Bioprocess Engineering Principles, Academic Press; 2nd edition, ISBN: 012220851X
- Winfried Storhas, Bioverfahrensentwicklung, Wiley-VCH, 2. Aufl. 2014, ISBN: 978-3-527-32542-5

4.11 Modul: Bioverfahrensentwicklung [M-CIWVT-107403]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-114538	Bioverfahrensentwicklung	6 LP	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen:

Die Studierenden

- · Kennen die grundlegenden Schritte der Entwicklung eines Bioprozesses, von der Konzeption bis zur Umsetzung.
- · Verstehen und wenden grundlegende Methoden an, die für jede Phase der Bioprozessentwicklung relevant sind.
- Erkennen, wie die aufeinanderfolgenden Schritte der Bioprozessentwicklung miteinander verbunden sind und wie Veränderungen in einer Phase andere Phasen beeinflussen können.
- Sind sich der Komplexität und des interdisziplinären Charakters der Bioprozessentwicklung bewusst und integrieren Wissen aus Biologie, Chemie, Ingenieurwesen und Wirtschaft.
- Lernen, einen neuen Bioprozess theoretisch von Grund auf zu entwerfen und dabei alle relevanten Rahmenbedingungen zu berücksichtigen.
- Bewerten und minimieren kritische Schritte und Risiken während der Bioprozessentwicklung.
- Entwickeln Bioprozesse mit Blick auf das Endprodukt unter Berücksichtigung von Marktanforderungen, Kosteneffizienz und Nachhaltigkeit.
- Bleiben über neue Trends, Methoden und Technologien im Fachgebiet informiert, einschließlich des Einflusses von Künstlicher Intelligenz auf die zukünftige Bioprozessentwicklung.

Sozial- und Selbstkompetenz:

Die Studierenden:

- Erkennen die Schlüsselaspekte und Rahmenbedingungen komplexer Bioprozesse.
- Entwickeln effektive Kommunikationsfähigkeiten, um erfolgreich mit Experten verschiedener Disziplinen in der Bioprozessentwicklung zusammenzuarbeiten.
- Betreiben eigenständiges Lernen, um das Wissen kontinuierlich zu erweitern und sich neuen Herausforderungen im Fachgebiet anzupassen.
- Entwickeln kritisches Denken, Kreativität und Problemlösungskompetenz, die für die Entwicklung grundlegend neuer Prozesse und Lösungen notwendig sind.
- Entwickeln mögliche Lösungsansätze und wägen Optionen für die Entwicklung eines Bioprozesses ab.

Inhalt

Erfolgreiche Bioprozessentwicklung erfordert eine Vielzahl technischer und kommunikativer Fähigkeiten. Der Kurs verknüpft die mikrobielle Stammentwicklung mit der Bioverfahrenstechnik und baut auf dem in den ersten Studienjahren erworbenen bioverfahrenstechnischen Grundwissen auf. Kenntnisse aus vorherigen Kursen werden vertieft und für die technische Entwicklung von Bioprozessen angewendet. Zentrale Leitlinien und Konzepte zur Entwicklung robuster, wirtschaftlicher und nachhaltiger Bioprozesse werden eingeführt. Ziel dieses Kurses ist es, den Studierenden das notwendige und grundlegende Verständnis für die Bioprozessentwicklung sowie für die Interaktion verschiedener Fachbereiche zu vermitteln. Dies umfasst (i) die Definition des Produkts, (ii) die Auswahl des Rohstoffs, (iii) die Auswahl des mikrobiellen Wirts, (iv) die Stammentwicklung, (v) die Bioprozessoptimierung sowie (vi) das Scale-up und den Betrieb des Bioprozesses. Aktuelles Wissen wird durch Einblicke in aufkommende Themenfelder wie Miniaturisierung, Automatisierung und Digitalisierung ergänzt, die die Bioprozessentwicklung in Zukunft beschleunigen werden. Die Studierenden lernen, interdisziplinär zu denken und die zentralen Prinzipien der verschiedenen Schritte der Bioprozessentwicklung anzuwenden, um zukünftige Bioprozesse zu entwickeln.

Lehrformate beinhalten Vorlesungen, Übungen und Fallstudien. Die Vorlesungsthemen umfassen:

- 1. Workflow und Leitlinien der Bioprozessentwicklung
- 2. Substrat- und Wirtsauswahl
- 3. Stammentwicklung und Screening
- 4. Bioprozessoptimierung
- 5. Bioprozess-Scale-up
- 6. Kosten- und Nachhaltigkeitsabschätzung
- 7. Fallstudien
- 8. Regulatorische Anforderungen und Qualitätskontrolle
- 9. Digitalisierung und Künstliche Intelligenz

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung und Übung 60 h
- · Selbststudium: Vor- und Nachbereitung der Lehrveranstaltungen: 80 h
- Prüfungsvorbereitung: 40 h

Empfehlungen

Bioverfahrenstechnik.

- · Lecture scripts
- Pauline M. Doran, Bioprocess Engineering Principles, Academic Press; 2nd edition, ISBN: 012220851X
- Winfried Storhas, Bioverfahrensentwicklung, Wiley-VCH, 2. Aufl. 2014, ISBN: 978-3-527-32542-5

4.12 Modul: Bioverfahrenstechnik [M-CIWVT-106434]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen (Pflichtbestandteil)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-113019	Bioverfahrenstechnik	5 LP	Grünberger, Hubbuch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, grundlegende Operationen und Denkschemata der Verfahrenstechnik auf Bioprozesse anzuwenden. Sie können reaktionstechnische Ansätze auf den mikrobiellen Stoffwechsel zu übertragen und daraus reale Prozesse verstehen. Sie lernen verschiedene Prozesse, Bioreaktoren und Prozessführungsstrategien konkret kennen und trainieren daran die Berechnung und Bewertung aus theoretischer und anwendungstechnischer Sicht. Sie lernen verschiedene Bioprozesse im Detail vor dem theoretischen Hintergrund zu interpretieren, diskutieren und kritisch zu beurteilen. Die Studierenden können Probleme im Bereich der biotechnologischen Trennverfahren analysieren, strukturieren und formal beschreiben. Die Studierenden sind fähig, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Die Bioverfahrenstechnik umfasst das Design, den Betrieb, die Regelung und die Optimierung biotechnologischer Prozesse unter kontrollierten Bedingungen in einem Bioreaktor. Bioprozesse werden für die Herstellung einer Vielzahl kommerzieller Produkte entwickelt, die von billigen bis hin zu teuren Spezialchemikalien wie Antibiotika, therapeutischen Proteinen und Impfstoffen reichen. Die Bioverfahrenstechnik ist somit das Rückgrat der Biotechnologieindustrie, die Forschung und Entwicklung auf die Industrie überträgt und hauptsächlich aus drei Bereichen besteht: (i) Upstream-Verarbeitung (ii) Bioreaktor und Bioreaktionen (iii) Downstream-Verarbeitung.

Der Kurs verknüpft die grundlegenden ingenieurwissenschaftlichen und biotechnologischen Kenntnisse, die in den ersten Studienjahren erworben wurden. Kenntnisse aus den bisherigen Lehrveranstaltungen werden vertieft und für die technische Entwicklung von Bioprozessen angewendet. Ziel dieser Lehrveranstaltung ist es, den Studierenden die notwendigen und grundlegenden Kenntnisse der Bioverfahrenstechnik zu vermitteln. Dazu gehören Grundlagen der Biokatalyse (hauptsächlich Zellen als Biokatalysatoren), mikrobielle Kinetik, Massen- und Energiebilanz in Bioprozessen sowie Kinetik von Bioprozessen und Fermentation. Dabei liegt der Schwerpunkt auf grundlegenden kinetischen und stöchiometrischen Prinzipien des mikrobiellen Stoffwechsels. Darauf aufbauend wird das Design von Kultivierungsmedien aufgezeigt und diskutiert. Im zweiten Teil werden das Design, der Betriebs und der Optimierung von Fermentationsprozessen zur Herstellung hochwertiger Bioprodukte diskutiert. Zu den Themen gehören Grundlagen von Prozessführungsstrategien wie Batch-, Fed-Batch- und kontinuierliche Kultivierung. Aufbau, Funktionsweise und Funktionsweise unterschiedlicher Arten von Bioprozessen werden demonstriert. Vor- und Nachteile werden besprochen. Es werden erste Einblicke in die Bioprozessanalytik und -steuerung gegeben. Abschließend wird ein Ausblick auf neue Themen der Bioverfahrenstechnik gegeben, darunter Themen wie Automatisierung und Digitalisierung von Bioprozessen sowie ökonomische und Nachhaltigkeitsaspekte von Bioprozessen. Darüber hinaus wird eine Einführung in die Grundlagen der Aufarbeitung von Bioprodukten gegeben, einschließlich Zellaufschluss, Fest-Flüssig-Trennung, Partitionierung, Adsorption und Chromatographie. Die Studierenden lernen, interdisziplinär zu denken und die Schlüsselprinzipien der verschiedenen Schritte einen Bioprozesses anzuwenden. Die Vorlesungsinhalte werden durch Übungen vertieft.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit Vorlesung: 60 h

· Selbststudium: 50 h

· Klausurvorbereitung: 40 h

- Horst Chmiel, Bioprozesstechnik, 2011, DOI:10.1007/978-3-8274-2477-8
- Wilfried Storhas, Bioverfahrensentwicklung, 2013, ISBN: 978-3-527-32899-4
- Clemens Posten, Integrated Bioprocess Engineering, 2018, DOI:10.1515/9783110315394

4.13 Modul: Chemische Reaktionstechnik [M-CIWVT-106825]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2024)

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
2 SemesterLevel
DeutschVersion
4

Pflichtbestandteile				
T-CIWVT-113695	Chemische Reaktionstechnik - Prüfung	6 LP	Wehinger	
T-CIWVT-113696	Chemische Reaktionstechnik - Projektarbeit	6 LP		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- · mündliche Prüfung im Umfang von ca. 20 Minuten
- Prüfungsleistung anderer Art:

Projektarbeit als Gruppenarbeit (3er Gruppen).

Bewertet werden Vorbereitung, Durchführung, Präsentation und schriftlicher Bericht.

Voraussetzungen

Mindestens 60 LP, mindestens ein Praktikum.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden verstehen die Konzepte und Methoden der chemischen Reaktionstechnik. Dies umfasst das Aufstellen und Lösen von Material- und Energiebilanzen sowie die Analyse chemischer Reaktionskinetiken. Sie können dieses Wissen zur Lösung von konkreten Fragestellungen der chemischen Reaktionstechnik von Mehrphasensystemen anwenden und die erzielten Ergebnisse in einen größeren Rahmen einordnen. Sie sammeln Problemlösungskompetenz im Team und Erfahrungen in der Anwendung wissenschaftlicher Methoden.

Inhalt

Die Vorlesung vermittelt einen Überblick über Mehrphasen-Reaktionssysteme. Dies beinhaltet Grundwissen zu den wichtigsten Reaktortypen und deren Modellierung mit vereinfachten homogenen Ansätzen. Die Anwendung auf konkrete Problemstellungen erfolgt in der Projektarbeit (Teamarbeit), wobei neben simulationstechnischen Analysen auch die experimentelle Evaluation an Versuchsaufbauten angestrebt werden

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenzzeit:

Vorlesung und Übung: 45 hProjektarbeit 5 Wochen: 185 h

Selbststudium:

- Vor- und Nachbereitung Vorlesung: 30 h
- · Vorbereitung Präsentation und Bericht: 60 h
- Prüfungsvorbereitung: 40 h

4.14 Modul: Chemische Verfahrenstechnik [M-CIWVT-101133]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen (Verfahrenstechnische Grundoperationen)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-CIWVT-101884	Chemische Verfahrenstechnik	6 LP	Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die technisch relevanten Reaktor-Typen für chemische Umsetzungen einphasiger (homogener) Reaktionsmischungen und können ihre Systemeigenschaften erklären. Sie können diese Reaktoren sowohl einzeln als auch in verschiedenen Verschaltungen bilanzieren und Betriebsdaten analysieren. Wenn in einem chemischen Prozess Folge- und Parallelreaktionen auftreten, sind die Studierenden in der Lage, den am besten geeigneten Reaktor auszuwählen und optimale Betriebsbedingungen zu berechnen, um die Reaktionsrichtung zugunsten des Zielprodukts zu lenken. Die Studierenden kennen Methoden zu simultanen Lösung von Material- und Energiebilanzen und sind in der Lage, Wärmeeffekte bei exo- und endothermen Reaktionen zu erklären, zu analysieren und Bedingungen für sicheren Reaktorbetrieb zu identifizieren.

Inhalt

Anwendung von Material- und Energiebilanzen zur Analyse und Auslegung von Modellreaktoren für einphasige Umsetzungen sowie zur Festlegung optimaler Betriebsbedingungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 2 SWS Vorlesung + 2 SWS Übung = 60 h

Selbststudium: 60 hKlausurvorbereitung: 60 h

Empfehlungen

Module des 1. - 4. Semesters

- · Skript Chemische Verfahrenstechnik I, https://ilias.studium.kit.edu
- G.W. Roberts: Chemical Reactions and Chemical Reactors, Wiley VCH 2009
- O. Levenspiel: Chemical Reaction Engineering, John Wiley & Sons Inc. 1998

4.15 Modul: Datenanalyse [M-CIWVT-106432]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte
3 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-CIWVT-113039	Datenanalyse	3 LP	Guthausen	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Bewertet werden Leistungen in Form von Gruppenarbeit und einem abschließenden Gruppenvortrag.

Voraussetzungen

Keine

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage, oft genutzte Verfahren der Datenanalyse zu benennen und zu beschreiben. Sie können mathematische Grundprinzipien auf die Datenanalyse anwenden.

Sie sollen lernen, über Fachgrenzen, hier der Messung, der Prozessierung der Daten bis hin zur quantitativen Interpretation, hinweg zu denken. Der Überblick über die Möglichkeiten der Datenanalyse soll dazu beitragen, dass Studierende sich an der Entwicklung innovativer Lösungen direkt beteiligen können.

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage, sich im Team in eine neue Thematik einzuarbeiten, Ideen und Ergebnisse sowohl schriftlich als auch mündlich klar und präzise zu kommunizieren.

Inhalt

Klassische statistische Qualitätsparameter und Grundlagen, Verteilungen, Regression und Approximation, chemometrische Datenanalyse, Grundlagen neuronaler Netze

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Arbeitsaufwand

Präsenszeit: 30 h
Selbststudium: 20 h

· Prüfungsvorbereitung: 40 h

Empfehlungen

Höhere Mathematik I und Höhere Mathematik II.

4.16 Modul: Einführung in das Bioingenieurwesen [M-CIWVT-106433]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann Prof. Dr. Jürgen Hubbuch Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile					
T-CIWVT-113018	Einführung in das Bioingenieurwesen	5 LP	Grünberger, Holtmann, Hubbuch, van der Schaaf		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- Die wissenschaftlich/technische Bedeutung des Bioingenieurwesen in der Biotechnologie zu beschreiben
- Grundoperationen des Bioingenieurwesens zu beschreiben und erläutern
- · Biotechnologische Anwendungsfelder aufzuzeigen
- Charakteristika von industriellen Prozessen in der Bio- und Lebenstechnik zu erklären
- Das Zusammenspiel von Upstream und Downstream-Verfahren in der Bio- und Lebenstechnik zu beschreiben
- (Produktions-)Prozess der Biotechnologie/Biopharmazeutischer Technologie sowie Lebensmitteltechnik zu skizzieren und zu erläutern
- Über Fachgrenzen hinweg zu denken und Konzepte und Techniken aus verschiedenen Disziplinen zu integrieren, um innovative Lösungen zu entwickeln.
- Die Studierenden sollten ein Bewusstsein für sozioökonomische und ökologische Themen entwickeln und lernen, ethische Grundsätze und Nachhaltigkeitsprinzipien bei der Entwicklung neuer Bioprozesse zu berücksichtigen

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- · Die Interdisziplinarität innerhalb der Bio- und Lebensmitteltechnik zu erkennen und zu beschreiben
- Das Berufsbild der Bio-Ingenieur*innen eingehend zu beschreiben
- · Ideen und Ergebnisse klar und präzise zu kommunizieren, sowohl schriftlich als auch mündlich
- · Eigenständig in eine neue Thematik einzuarbeiten

Inhalt

Das Feld der Biotechnologie beschäftigt sich im Allgemeinen mit der Erforschung und vor allem mit der Anwendung pro- und eukaryotischen Organismen sowie Teilen von diesen (z.B. Enzymen und Nukleinsäuren), um ein breites Spektrum an gesellschaftlich relevanten Produkten und Anwendungen bereit zu stellen. Die Anwendungen reichen dabei von der biologischen Abwasserreinigung bis zur Produktion von Grundchemikalien, pharmazeutischer Wirkstoffe als auch alternativer Lebensmittel. Neue Produktionsplattformen, Prozesse und Produkte sind die treibende Kraft für die Entwicklung zahlreicher neuer Anwendungen in den nächsten Jahrzehnten und bieten ein großes Potential, um bestehende Herausforderungen im Bereich Gesundheit, Ernährung und Umwelt zu lösen. Ein immer bedeutend werdender Aspekt ist dabei die Entwicklung und Etablierung nachhaltiger Verfahren, so dass das Bioingenieurwesen eine der wichtigsten Säulen der aufstrebenden Bioökonomie darstellt.

Diese Einführungsvorlesung gibt einen Überblick über biotechnologische und bioverfahrenstechnische Grundlangen und Anwendungen. Ein Einblick über einen biotechnologischen Entwicklungsprozess vom Gen zum Produkt wird gegeben. Die Biotechnologie und das Bioingenieurwesen sind interdisziplinär angelegt. Zusammenhänge zwischen beteiligten Fachdisziplinen und Anwendungen wird an ausgewählten Beispielen aufgezeigt. Die Vorlesung wird sowohl Grundlagen in verschiedenen Teilbereichen des Bioingenieurwesens als auch ausgewählte Anwendungsfelder vermitteln und diskutieren. Dies beinhaltet zum Beispiel Grundlagen in Enzymtechnologie, fermentative Herstellungsverfahren in Bioreaktoren und Aufarbeitung von Bioproduktionen als auch deren Formulierung. Anwendungsschwerpunkte kommen hierbei aus der industriellen (weißen), medizinischen (roten) Biotechnologie und Lebensmittelbiotechnologie. Aktuelle Fragestellungen aus der Forschung und ein Blick in zukünftige Anwendungsfelder der Biotechnologie und des Bioingenieurwesens runden die Veranstaltung ab.

Die vom Themenspektrum breit angelegte Vorlesung richtet sich an Studierende des Bioingenieurwesen und an alle technisch interessierte Studierende der Biologie, Chemie, Physik und Wirtschaftswissenschaften.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- · Vor- und Nachbereitung: 50 h
- Prüfungsvorbereitung: 40 h

- Horst Chmiel, (2011), Bioprozesstechnik, DOI: 10.1007/978-3-8274-2477-8
- Karl-Erich Jaeger, (2019), Einführung in die Enzymtechnologie, DOI:10.1007/978-3-662-57619-9
- Klaus Mudrack, (2010), Biologie der Abwasserreinigung, ISBN: 978-3-8274-2576-8
- Johannes Krämer, (2022), Lebensmittelmittelmikrobiologie, ISBN 978-3-8252-5854-2

4.17 Modul: Electrochemical Energy Technologies [M-ETIT-105690]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik) (EV zwischen 01.04.2024 und

31.03.2026)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile				
T-ETIT-111352	Electrochemical Energy Technologies	5 LP	Krewer	

Erfolgskontrolle(n)

Type of Examination: Written exam Duration of Examination: 120 minutes

Voraussetzungen

none

Qualifikationsziele

Students have well-grounded knowledge of electrochemical energy technologies for conversion and storage of electrical energy. They know the working principle of fuel cells, batteries and electrolysers and their components. They understand the underlying electrochemical, electrical and physical processes, and the resulting loss processes as function of operation and cell design. Participation in the course puts them in a position to build cells and evaluate and understand their performance and operating behavior. Furthermore, they can select the appropriate electrochemical cell for a given application, analyse, interpret and operate it.

Inhalt

Lecture:

- Application and operating principle of fuel cells, batteries and elec-trolysers
- · Thermodynamics, potential and voltage of electrochemical cells
- · Kinetics and electrochemical reactions
- · Transport processes in electrochemical cells
- · Composition and types of fuel cells and electrolysers
- · Composition and types of batteries
- · Operation and characterization of electrochemical cells
- Electrochemical systems

Exercise:

• Application of the theory to batteries and fuel cells including example calculations.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

- 1. Attendance in lectures: 30 * 45 Min. = 22,5 h
- 2. Attendance in excercises: 15 * 45 Min. = 11,25 h
- 3. Preparation/follow-upder Vorlesungen und Übungen: 76,25 h (approx. 1,75 h per lecture/exercise)
- 4. Preparation of and attendance in examination: 40 h

In total: 150 h = 5 LP

4.18 Modul: Energie- und Umwelttechnik [M-CIWVT-101145]

Verantwortung: Prof. Dr. Reinhard Rauch

Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	4

Pflichtbestandteile					
T-CIWVT-103527	Energie- und Umwelttechnik Projektarbeit	4 LP	Rauch, Trimis		
T-CIWVT-108254	Energie- und Umwelttechnik	8 LP	Rauch, Trimis		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Schriftlichen Prüfung (8 LP) mit einem Umfang von 120 Minuten
- · Projektarbeit (4 LP), Prüfungsleistung anderer Art

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können nach der Vorlesung verfahrenstechnische Prozesse in den Bereichen Energiebereitstellung und Umweltschutz (primäre/sekundäre Maßnahmen, Effizienz, Rohstoffbasis u.a.) erläutern, analysieren und vergleichen.

Inhalt

Einführung in die Erzeugung von Brennstoffen (chemische Energieträger) aus fossilen und nachwachsenden Rohstoffen und ihre Nutzung, Vermeidung von Schadstoffbildung, Entfernung von Schadstoffen, Übersicht und ausgewählte Beispiele, Grundlagen und Anwendungen der Hochtemperatur-Energieumwandlung.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der Teilleistungen.

Arbeitsaufwand

Präsenzzeit: 60 h Exkursionen: 20 h Selbststudium: 90 h Projektarbeit: 90 h

Prüfungsvorbereitung: 100 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

Vorlesungsskripte sowie weitere in den Vorlesungen angegebene Literatur, zusätzlich:

- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 1997
- G. Schaub, T. Turek: Energy Flows, Material Cycles and Global Development, Springer Verlag, Berlin 2011
- M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010
- E. Rebhan (Hrsg.): Energiehandbuch Gewinnung, Wandlung und Nutzung von Energie, Springer-Verlag, Berlin 2002
- B. Elvers (Hrsg.): Handbook of Fuels, Wiley-VCH, Weinheim 2008

4.19 Modul: Energieverfahrenstechnik [M-CIWVT-101136]

Verantwortung: Dr. Frederik Scheiff

Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-101889	Energieverfahrenstechnik	5 LP	Scheiff, Stein

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 150 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Einordnung des Begriffs Energie und der unterschiedlichen Erscheinungsformen von Energie, Kenntnis der unterschiedlichen Energieträger und des nationalen und globalen Energiebedarfs, Kenntnis und Lösung von einfachen Problemstellungen der Energieumwandlung mit unterschiedlichen Energieumwandlungsverfahren.

Inhalt

Grundlagen: Energiebegriff, Erscheinungsformen der Energie, Systeme und Bilanzen

Verfahrenstechnik: Energieträger, Energieumwandlung, Transport und Speicherung, Dezentrale Systeme

Ökologie / Ökonomie / Politik

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 56 h Selbststudium: 50 Klausurvorbereitung: 44

Empfehlungen

Thermodynamik

- In der Vorlesung angegebene Litaratur, zusätzlich:
- P. Stephan, K. Schaber, K. Stephan, F. Mayinger: Thermodynamik, Springer Verlag, Berlin 2006
- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 1997
- · G. Schaub, T. Turek: Energy Flows, Material Cycles and Global Development, Springer Verlag, Berlin 2011
- VDI-Gesellschaft Energietechnik (Hrsg.): Energietechnische Arbeitsmappe, Springer-Verlag, Berlin 2000
- M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010
- E. Rebhan (Hrsg.): Energiehandbuch Gewinnung, Wandlung und Nutzung von Energie, Springer-Verlag, Berlin 2002
- B. Elvers (Hrsg.): Handbook of Fuels, Wiley-VCH, Weinheim 2008

4.20 Modul: Erfolgskontrollen [M-CIWVT-101991]

Verantwortung: Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mastervorzug

Leistungspunkte
30 LPNotenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
6

Mastervorzugsleistungen (Wahl: mind. 30 LP)				
T-CIWVT-114498	Seminar Prozess- und Anlagendesign in der Biotechnologie	2 LP	Holtmann	
T-CIWVT-114499	Schriftliche Prüfung Prozess- und Anlagendesign in der Biotechnologie	4 LP	Holtmann	
T-CIWVT-114497	Thermodynamik im Bioingenieurwesen	6 LP	Enders, Zeiner	
T-CIWVT-106029	Biopharmazeutische Aufarbeitungsverfahren	6 LP	Hubbuch	
T-CIWVT-106032	Kinetik und Katalyse	6 LP	Wehinger	
T-CIWVT-113235	Excercises: Membrane Technologies	1 LP	Horn, Saravia	
T-CIWVT-113236	Membrane Technologies in Water Treatment	5 LP	Horn, Saravia	
T-CIWVT-106035	Numerische Strömungssimulation	6 LP	Nirschl	
T-CIWVT-106028	Partikeltechnik Klausur	6 LP	Dittler	
T-CIWVT-114107	Thermische Verfahrenstechnik II	6 LP	Zeiner	
T-CIWVT-106036	Berufspraktikum	14 LP	Bajohr	

Voraussetzungen

Keine

4.21 Modul: Fluiddynamik [M-CIWVT-101131]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile				
T-CIWVT-101882	Fluiddynamik, Klausur	5 LP	Nirschl	
T-CIWVT-101904	Fluiddynamik, Vorleistung	0 LP	Nirschl	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus:

1. einer unbenoteten Studienleistung nach § 4 Abs. 3 SPO

Als Vorleistung für die schriftliche Klausur sind vier von fünf Hausarbeiten zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

2. einer schriftlichen Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können Probleme im Bereich der Fluidmechanik analysieren, strukturieren und formal beschreiben. Sie sind in der Lage, die Methoden zur Berechnung von spezifischen Strömungen anzuwenden. Sie sind zusätzlich in der Lage, Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Außerdem werden Sie in die Lage versetzt, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Grundlagen der Strömungslehre: Hydrostatik, Aerostatik, kompressible und inkompressible Strömungen, turbulente Strömungen, Navier-Stokes Gleichungen, Grenzschichttheorie

Zusammensetzung der Modulnote

Note der Prüfungsklausur

Arbeitsaufwand

Prässenzzeit: Vorlesung 2 SWS Übung 2 SWS: 56 h

Selbststudium: 56 h Prüfungsvorbereitung: 56 h

Empfehlungen

Module des 1. - 3. Semesters

Literatur

Nirschl, Zarzalis: Skriptum Fluidmechanik

Zierep: Grundzüge der Strömungslehre, Teubner 2008 Prandtl: Führer durch die Strömungslehre, Teubner 2008

4.22 Modul: Formulierung und Charakterisierung von Energiematerialien [M-CIWVT-106700]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2024)

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile						
T-CIWVT-113478	Formulierung und Charakterisierung von Energiematerialien - Prüfung	8 LP	Oelschlaeger			
T-CIWVT-113479	Formulierung und Charakterisierung von Energiematerialien - Projektarbeit	4 LP	Oelschlaeger			

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Einer mündlichen Einzelprüfung im Umfang von ca. 30 Minuten über die Inhalte der Vorelsung und der Übung
- 2. Einer Prüfungsleistung anderer Art: Projektarbeit (Teamnote):

Voraussetzung für die Zulassung zur Projektarbeit ist die Teilnahme an der mündlichen Einzelprüfung und eine Bewertung mit mind. "ausreichend".

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Basiswissen zur Gestaltung komplexer Fluide auf Basis von Dispersionen oder Emulsionen durch verfahrenstechnische Prozesse; Verständnis der Anwendungs- und Verarbeitungseigenschaften, des Fließverhaltens und der kolloidalen Stabilität disperser Systeme. Anwendung dieses Wissen im Rahmen einer Projektarbeit. Sammeln von Erfahrungen in der teamorientiertem Erarbeitung von Problemlösungen.

Inhalt

Vermittlung einer Systematik, welche die Qualitätsmerkmale von Produkten mit den physikalisch-chemischen Eigenschaften des Produktes in Beziehung setzt. Diese Eigenschaften werden durch die jeweiligen Herstellprozesse generiert. Diese Systematik wird grundlegend in der Vorlesung "Herstellung und rheologische Charakterisierung von Energiematerialien" dargestellt. Die Anwendung auf konkrete Fälle wird in der Projektarbeit erprobt.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenzztei: 135 hSelbststudium: 225 h

Literatur

- · Skripte, Artikel aus Fachzeitschriften
- · Fachbücher:
- Lagaly/Schulz/Zimehl: Dispersionen und Emulsionen, Steinkopff (1997)
- Barnes/Hutton/Walters: An Introduction to Rheology, Elsevier (1989)
- · Macosko: Rheology: Principles, Measurements and Applications, Wiley-VCH (1994)
- Eric M. Furst and Todd M. Squires: Microrheology, Oxford University Press;

Auflage: 1 (29. Dezember 2017)

4.23 Modul: Fortgeschrittene Methoden der linearen Regelungstechnik [M-CIWVT-106880]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik) (EV ab 01.10.2024)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113088	Automatisierungs- und Regelungstechnik - Prüfung	6 LP	Meurer

Erfolgskontrolle(n)

Erfolgskontrolleist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden kennen Konzepte und Methoden zur Analyse, zur Simulation und zum Regler- sowie zum Beobachterentwurf für lineare zeitkontinuierliche und zeitdiskrete Systeme im Zustandsraum. Sie können diese formulieren und erläutern und sind in der Lage darauf aufbauend komplexere Zusammenhänge abzuleiten. Sie besitzen praktische Fertigkeiten in der Systemanalyse und im Entwurf von Regelungen und Beobachtern für lineare Systeme im Zustandsraum. Sie können deren Verhalten und Eigenschaften evaluieren und beurteilen.

Inhalt

- Modellierung und Simulation physikalischer Systeme
- Zeitkontinuierliche und zeitdiskrete lineare Systeme
- · Struktureigenschaften (Stabilitätstheorie, Steuerbarkeit, Beobachtbarkeit)
- Synthese von Regelkreisen im Zustandsraum (zeitkontinuierlich und zeitdiskret) für lineare Ein- und Mehrgrößensysteme
- Rechnergestützte Umsetzung der Konzepte und Methoden unter Einbezug von MATLAB/Simulink

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Das Modul kann nicht gewählt werden, wenn das Profilfach Automatisierungs- und Regelungstechnik gewählt wird.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 30 h, (Computer-)Übungen 15 h
- · Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h

- · T. Meurer: Regelungstechnik und Systemdynamik, Vorlesungsskript.
- K. Aström, R. Murray: Feedback Systems, Princeton University Press, 2008.
- C.T. Chen: Linear System Theory and Design, Oxford Univ. Press, 1999.
- J.C. Dovle, B.A. Francis, A.R. Tannenbaum: Feedback Control Theory, Dover, 2009.
- · J. Lunze: Regelungstechnik II, Springer-Verlag, 2010.

4.24 Modul: Grundlagen der Kältetechnik [M-CIWVT-104457]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	4

Pflichtbestandteile				
T-CIWVT-109117	Grundlagen der Kältetechnik Prüfung	6 LP	Grohmann	
T-CIWVT-109118	Grundlagen der Kältetechnik Projektarbeit	6 LP	Grohmann	

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst zwei benotete Leistungsnachweise:

- 1. Projektarbeit und Gruppenpräsentation der Projektarbeit, Prüfungsleistung anderer Art
- 2. einer mündlichen Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung Kältetechnik A

Voraussetzung für die Anmeldung zur mündlichen Prüfung ist die Teilnahme an der Projektarbeit und eine Bewertung mit mindestens "ausreichend".

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können die Grundlagen der Kältetechnik erläutern und auf verschiedene Verfahren anwenden. Sie können Eigenschaften verschiedener Kältemittel und Arbeitsstoffe beschreiben und können deren Umwelteinfluss auf der Basis verschiedener Kriterien bewerten. Sie können Kälte- und Wärmepumpenprozesse unter Verwendung von Zustandsdiagrammen und Stoffdatenprogrammen konzipieren und auslegen, sowie die Ursachen des Energiebedarfs unter Anwendung des 1. und 2. Hauptsatzes der Thermodynamik analysieren. Sie können geeignete Verdichter und Wärmeübertrager auswählen und auslegen, sowie Schaltungen und Reglungskonzepte erarbeiten.

Inhalt

Einführung in die Grundlagen der Kältetechnik, Zustandsdiagramme, Mindestenergiebedarf und Analyse von Energietransformationsprozessen auf Basis des 1. und 2. Hauptsatzes der Thermodynamik, Arbeitsstoffe und deren Umwelteinfluss, Funktionsweise und Ausführungen der wichtigsten Kälte- und Wärmepumpenprozesse einschließlich der Kreislaufkomponenten, sowie Reglung von Kälteanlagen.

Zusammensetzung der Modulnote

Die Modulnote errechnet sich aus dem LP-gewichteten Mittel der beiden Teilleistungen: Eine Teamnote für die Projektarbeit und -präsentation sowie eine Einzelnote für die mündliche Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 2 SWS, Übung 1 SWS: 45 h

Selbststudium: 60 h Prüfungsvorbereitung: 75 h

Projektarbeit einschließlich Präsentation: 180 h

Empfehlungen

. Keine

- Jungnickel, H., Agsten, R. und Kraus, W.E., 3. Auflage (1990), Verlag Technik GmbH, Berlin
- v. Cube, H.L. (Hrsg.), Lehrbuch der Kältetechnik Band 1 und 2, 4. Auflage (1997), C.F. Müller, Heidelberg

- Gosney, W.B., Principles of Refrigeration, Cambridge University Press, Cambridge, 1982
 Berliner, P., Kältetechnik Vogel-Verlag, Würzburg (1986 und frühere)
 Kältemaschinenregeln, Deutscher Kälte- und Klimatechnischer Verein (DKV) (Herausgeber)
- DKV-Arbeitsblätter für die Wärme- und Kältetechnik in: C.F. Müller Verlag, Hüthig Gruppe, Heidelberg, wird jeweils aktualisiert (Sept. 2008)

4.25 Modul: Grundlagen der Wärme- und Stoffübertragung [M-CIWVT-101132]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
7 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-101883	Grundlagen der Wärme- und Stoffübertragung	7 LP	Dietrich, Wetzel

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 180 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können die Grundlagen und Gesetze der Wärmeübertragung und der Stoffübertragung erläutern und sind in der Lage, die methodischen Hilfsmittel in beiden Fachgebieten angemessen zu gebrauchen und zur Lösung ingenieurtechnischer Aufgabenstellungen anzuwenden.

Inhalt

Wärmeübertragung: Definitionen - System, Bilanzen und Erhaltungssätze; Kinetik der Wärmeübertragung, Wärmeleitung, Wärmestrahlung, Wärmeübertragung in ruhenden und an strömende Medien, Dimensionslose Kennzahlen.

Stoffübertragung: Kinetik der Stoffübertragung, Gleichgewicht, Diffusions- und Stoffströme, Knudsen- und Mehrkomponenten-Diffusion, Lewis-Analogie zwischen Wärme- und Stoffübertragung.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 75 hSelbststudium: 55 h

· Klausurvorbereitung: 80 h

Empfehlungen

Module des 1. - 3. Semesters, insbesondere Grundlagen der Thermodynamik

Literatur

v. Boeckh, Wetzel: Wärmeübertragung, Springer 2009

4.26 Modul: Höhere Mathematik I [M-MATH-100280]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jährlich	1 Semester	Deutsch	3	3

Pflichtbestandteile						
T-MATH-100275	Höhere Mathematik I	7 LP	Arens, Griesmaier, Hettlich			
T-MATH-100525	Übungen zu Höhere Mathematik I Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen der eindimensionalen Analysis. Der korrekte Umgang mit Grenzwerten, Funktionen, Potenzreihen und Integralen gelingt ihnen sicher. Sie verstehen zentrale Begriffe wie Stetigkeit, Differenzierbarkeit oder Integrierbarkeit, wichtige Aussagen hierzu sind ihnen bekannt. Die in der Vorlesung dargelegten Begründungen dieser Aussagen können die Studierenden nachvollziehen und einfache, hierauf aufbauende Aussagen selbstständig begründen.

Inhalt

Grundbegriffe, Folgen und Konvergenz, Funktionen und Stetigkeit, Reihen, Differentialrechnung einer reellen Veränderlichen, Integralrechnung.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

· Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Literatur

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik II

4.27 Modul: Höhere Mathematik II [M-MATH-100281]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile						
T-MATH-100276	Höhere Mathematik II	7 LP	Arens, Griesmaier, Hettlich			
T-MATH-100526	Übungen zu Höhere Mathematik II Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen der Vektorraumtheorie.

Die Verwendung von Vektoren, linearen Abbildungen und Matrizen gelingt ihnen problemlos. Sie haben grundlegende Kenntnisse über Fourierreihen. Weiterhin beherrschen die Studierenden den theoretischen und praktischen Umgang mit Anfangswertproblemen für gewöhnliche Differentialgleichungen. Sie können klassische Lösungsmethoden für lineare Differentialgleichungen anwenden.

Inhalt

Vektorräume, lineare Abbildungen, Eigenwerte, Fourierreihen, Differentialgleichungen, Laplacetransformation

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

· Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Höhere Mathematik 1

Literatur

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik III

4.28 Modul: Höhere Mathematik III [M-MATH-100282]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile						
T-MATH-100277	Höhere Mathematik III	7 LP	Arens, Griesmaier, Hettlich			
T-MATH-100527	Übungen zu Höhere Mathematik III Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalysis wie die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze. Sie haben grundlegende Kenntnisse über partielle Differentialgleichungen und beherrschen Grundbegriffe der Stochastik.

Inhalt

Mehrdimensionale Analysis, Gebietsintegrale, Vekoranalysis, partielle Differentialgleichungen, Stochastik

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Höhere Mathematik I und II

Literatui

wird in der Vorlesung bekannt gegeben.

4.29 Modul: Intensivierung von Bioprozessen [M-CIWVT-106444]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-112998	Intensivierung von Bioprozessen - Klausur	6 LP	Holtmann

Erfolgskontrolle(n)

Erfolgskontrolleist eine schriftliche Prüfung mit einer Dauer von 90 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- Die Konzepte der Prozessintensivierung zu erläutern
- · Verschiedene intensivierte Prozesse quantitativ zu beschreiben
- bioverfahrenstechnische Prozesse auf Basis der PI zu konzipieren und zu bewerten
- interdisziplinäre Problemstellungen an der Schnittstelle von Technik und biologischen Systemen zu analysieren und Problemlösungen zu erarbeiten
- durch die Kombination der Vorteile von Einzeldisziplinen Prozesse mit optimalen Produktivitäten bei möglichst geringem Energie- und Rohstoffeinsatz zu entwickeln

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- die Rahmenbedingungen für innovative Prozesse analysieren und die wesentlichen Aspekte identifizieren
- (interdisziplinäre) Handlungsoptionen aufzustellen und abzuwägen
- sich eigenständig in eine neue Thematik einzuarbeiten
- komplexe wissenschaftliche Prozesse zusammenzufassen

Inhalt

Unternehmen der chemischen und biotechnologischen Industrie stehen in Zeiten steigender Rohstoffkosten, verstärkten Wettbewerbs und kürzerer Produktlebenszyklen vor besonderen Herausforderungen.

Prozessintensivierte Verfahren bieten ein hohes Ressourceneffizienzpotenzial, da sie dazu beitragen, Materialien und Energie einzusparen. Gemäß einer allgemeingültigen Definition ist "Prozessintensivierung (PI) eine Zusammenstellung radikal innovativer Prinzipien (Paradigmenwechsel) für Apparate und Prozesse, welche hinsichtlich der Effizienz von Prozessen oder Prozessketten, Investitions- und Betriebskosten, Qualität, Abfall, Prozesssicherheit (und andere Aspekte) eine signifikante Verbesserung mit sich bringen kann."

In den letzten Jahren kommen auch in der Bioverfahrenstechnik (USP und DSP) verstärkt die Methoden der Prozessintensivierung zum Einsatz. Diese Methoden stehen im Fokus des Moduls. Folgende Themen werden in dem Modul behandelt:

- · Definition von PI, Abgrenzung zwischen Prozessoptimierung und PI
- · Beispiele aus der Chemietechnik
- Intensivierte Bioreaktoren und Reaktorauswahl (z.B. Single-use-Technologien, Rotating-Bed Reaktoren, Enzymmembranreaktoren, Biofilmreaktoren)
- PI durch angepasste Betriebsweisen (z.B. repeated Fed-Batch, Perfusion, kontinuierliche Verfahren, in-situ-Produktentfernung)
- · Prozessintensivierung durch immobilisierte Enzyme und Mikroorganismen
- · Integration von Chemo- und Biokatalyse
- · Elektrobiotechnologische Prozesse
- · Fotobiotechnologische Prozesse
- · Einsatz von Ultraschall und Mikrowellen zur Intensivierung von Bioprozessen
- · Bioprozesse in alternativen Reaktionsmedien
- · Einsatz von extremophilen Organismen/ unkonventionellen Produktionsorganismen

Bei allen Teilaspekten steht die quantitative Beschreibung der intensivierten Prozesse im Fokus.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- · Präsenzzeit: 60 h Vorlesung und Übung
- · Vor- und Nachbereitung: 80 h
- Klausurvorbereitung: 40 h

Empfehlungen

Grundlagen in Bioverfahrenstechnik werden vorausgesetzt.

Literatur

- Frerich J. Keil (2017) Process intensification, doi.org/10.1515/revce-2017-0085
- Andrzej Stankiewicz, Tom van Gerven, Georgios Stefanidis (2019) The Fundamentals of Process Intensification, Wiley-VCH, Weinheim, ISBN: 978-3-527-32783-6
- VDI ZRE Publikationen: Kurzanalyse Nr. 24, Ressourceneffizienz durch Prozessintensivierung
- Burek et al (2022) Process Intensification as Game Changer in Enzyme Catalysis, https://doi.org/10.3389/ fctls.2022.858706

Weitere Literaturempfehlungen werden jeweils aktuell bekannt gegeben.

4.30 Modul: Intensivierung von Bioprozessen [M-CIWVT-106416]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Bioverfahrenstechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-CIWVT-112998	Intensivierung von Bioprozessen - Klausur	6 LP	Holtmann		
T-CIWVT-112999	Intensivierung von Bioprozessen - Praktikum	3 LP	Holtmann, Neumann		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- schriftliche Prüfung mit einer Dauer von 90 Minuten
- · Praktikum: Prüfungsleistung anderer Art

Voraussetzungen

Keine

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- Die Konzepte der Prozessintensivierung zu erläutern
- · Verschiedene intensivierte Prozesse quantitativ zu beschreiben
- bioverfahrenstechnische Prozesse auf Basis der PI zu konzipieren und zu bewerten
- interdisziplinäre Problemstellungen an der Schnittstelle von Technik und biologischen Systemen zu analysieren und Problemlösungen zu erarbeiten
- durch die Kombination der Vorteile von Einzeldisziplinen Prozesse mit optimalen Produktivitäten bei möglichst geringem Energie- und Rohstoffeinsatz zu entwickeln

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- · die Rahmenbedingungen für innovative Prozesse analysieren und die wesentlichen Aspekte identifizieren
- (interdisziplinäre) Handlungsoptionen aufzustellen und abzuwägen
- sich eigenständig in eine neue Thematik einzuarbeiten
- komplexe wissenschaftliche Prozesse zusammenzufassen

Inhalt

Unternehmen der chemischen und biotechnologischen Industrie stehen in Zeiten steigender Rohstoffkosten, verstärkten Wettbewerbs und kürzerer Produktlebenszyklen vor besonderen Herausforderungen.

Prozessintensivierte Verfahren bieten ein hohes Ressourceneffizienzpotenzial, da sie dazu beitragen, Materialien und Energie einzusparen. Gemäß einer allgemeingültigen Definition ist "Prozessintensivierung (PI) eine Zusammenstellung radikal innovativer Prinzipien (Paradigmenwechsel) für Apparate und Prozesse, welche hinsichtlich der Effizienz von Prozessen oder Prozessketten, Investitions- und Betriebskosten, Qualität, Abfall, Prozesssicherheit (und andere Aspekte) eine signifikante Verbesserung mit sich bringen kann."

In den letzten Jahren kommen auch in der Bioverfahrenstechnik (USP und DSP) verstärkt die Methoden der Prozessintensivierung zum Einsatz. Diese Methoden stehen im Fokus des Moduls. Folgende Themen werden in dem Modul behandelt:

- · Definition von PI, Abgrenzung zwischen Prozessoptimierung und PI
- · Beispiele aus der Chemietechnik
- Intensivierte Bioreaktoren und Reaktorauswahl (z.B. Single-use-Technologien, Rotating-Bed Reaktoren, Enzymmembranreaktoren, Biofilmreaktoren)
- PI durch angepasste Betriebsweisen (z.B. repeated Fed-Batch, Perfusion, kontinuierliche Verfahren, in-situ-Produktentfernung)
- · Prozessintensivierung durch immobilisierte Enzyme und Mikroorganismen
- · Integration von Chemo- und Biokatalyse
- Elektrobiotechnologische Prozesse
- · Fotobiotechnologische Prozesse
- Einsatz von Ultraschall und Mikrowellen zur Intensivierung von Bioprozessen
- · Bioprozesse in alternativen Reaktionsmedien
- · Einsatz von extremophilen Organismen/ unkonventionellen Produktionsorganismen

Bei allen Teilaspekten steht die quantitative Beschreibung der intensivierten Prozesse im Fokus.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Vorlesung und Übung:

- · Präsenzzeit: 60 h
- Vor- und Nachbereitung: 80 h
- Klausurvorbereitung: 40 h

Praktikum (in Summe 90 h)

- Vorbereitung
- Versuchsdurchführung
- Protokollerstellung

Empfehlungen

Grundlagen in Bioverfahrenstechnik werden vorausgesetzt.

Literatur

- Frerich J. Keil (2017) Process intensification, doi.org/10.1515/revce-2017-0085
- Andrzej Stankiewicz, Tom van Gerven, Georgios Stefanidis (2019) The Fundamentals of Process Intensification, Wiley-VCH, Weinheim, ISBN: 978-3-527-32783-6
- VDI ZRE Publikationen: Kurzanalyse Nr. 24, Ressourceneffizienz durch Prozessintensivierung
- Burek et al (2022) Process Intensification as Game Changer in Enzyme Catalysis, https://doi.org/10.3389/ fctls.2022.858706

Weitere Literaturempfehlungen werden jeweils aktuell bekannt gegeben.

4.31 Modul: Konstruktiver Apparatebau [M-CIWVT-101941]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-CIWVT-103641	Konstruktiver Apparatebau, Vorleistung	0 LP	Gleiß	
T-CIWVT-103642	Konstruktiver Apparatebau, Klausur	7 LP	Gleiß	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Prüfungsvorleistung/ Studienleistung unbenotet: Vier von fünf Hausarbeiten sind zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.
- Schriftlichen Prüfung mit einem Umfang von 120.
 Die besteht aus einem Kurzfragen- (30 min) und einem Berechnungsteil (90min). Für den Berechnungsteil der Prüfung ist das Vorlesungsskriptum sowie ein Taschenrechner zugelassen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Probleme im Bereich der Konstruktion von Maschinen und Apparaten analysieren, strukturieren und formal beschreiben. Sie sind in der Lage, die Methoden zur Berechnung anzuwenden. Sie sind zusätzlich in der Lage, Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Außerdem werden sie in die Lage versetzt, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Technisches Zeichnen, Einführung in die Werkstoffkunde, insbesondere der Herstellung und Verarbeitung von Stählen, Berechnungsmethoden von Maschinenelementen; Auslegung von Behältern, Hygenic Design

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 3 SWS Übung 2 SWS: 70 h
- Selbststudium:70 h
- Prüfungsvorbereitung: 70 h (ca. 2 Wochen)

Empfehlungen

Module des 1. Semesters.

4.32 Modul: Kreislaufwirtschaft [M-CIWVT-105995]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	2

Pflichtbestandteile				
T-CIWVT-112172	Kreislaufwirtschaft - mündliche Prüfung	8 LP	Stapf	
T-CIWVT-112173	Kreislaufwirtschaft - Projektarbeit	4 LP	Stapf	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. mündliche Prüfung über die Inhalte von Vorlesung, Übung und Fallstudien, Dauer ca. 30 Minuten
- Prüfungsleistung anderer Art/ Projektarbeit; bewertet werden die schriftliche Ausarbeitung sowie die Präsentation der Ergebnisse

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden verstehen wichtige Stoffsysteme und wesentliche verfahrenstechnische Prozessschritte der Bereitstellung und des Recyclings mineralischer und metallischer Grundstoffe und des anthropogenen Kohlenstoffs. Mit dem Ziel der Schließung von Kreisläufen können sie Methoden der Prozessbewertung anwenden, Prozessketten analysieren und anhand von Effizienzindikatoren beurteilen. Hierzu bearbeiten die Studierenden zunehmend komplexe Fallbeispiele im Team selbstständig mit wissenschaftlichen Methoden und wenden dies in der Projektarbeit an.

Inhalt

Einführung in den Ressourcen- und Technologiewandel für eine nachhaltige Kreislaufwirtschaft. Kenntniserwerb in der System-, Effizienz- und Nachhaltigkeitsbewertung. Motivation für verfahrenstechnische Forschung und Entwicklung auf dem Gebiet der nachhaltigen Rohstoffversorgung einer klimaneutralen Gesellschaft:

- Stoffstrom- und Prozesswissen der Grundstoff- und Recyclingindustrien
- Methodenwissen (betriebswirtschaftliche Grundlagen, Stoffstromanalyse, Indikatorenermittlung)
- Selbstständiges wissenschaftliches Arbeiten (Wissensanwendung, Analyse, Beurteilung) in Fallstudien und als Projektarbeit.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenszeit:

- Vorlesung und Übung: 45 h
- Projektarbeit: 80

Selbststudium:

- · Vor- und Nacharbeit der Vorlesung: 45 h
- · Vor- und Nachbereitung der Fallstudien: 60 h
- · Verfassen des Projektberichts, Erstellen der Präsentation: 40 h

Prüfungsvorbereitung: 90 h

4.33 Modul: Lebensmittelbioverfahrenstechnik [M-CIWVT-106476]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik)

taliaten von. Wanibereion verlaniensteennik (vertielding verlaniensteennik)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-CIWVT-113021	Lebensmittelbioverfahrenstechnik	6 LP	Leister

Erfolgskontrolle(n)

Die Erfolgskontrolleist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Vorlesung:

Die Studierenden können die Grundlagen des mikrobiellen Verderbs sowie die Möglichkeiten zur Konservierung von Lebensmitteln und Life-Science-Produkten beschreiben. Sie sind in der Lage, die Eignung verschiedener Konservierungsmethoden für unterschiedliche Produkte zu analysieren und deren jeweilige Vor- und Nachteile zuzuordnen. Zudem können die Studierenden biotechnologisch hergestellte Lebensmittel benennen und die entsprechenden Prozesse sowie die verwendeten Apparate beschreiben. Anhand von Anwendungsbeispielen aus der Lebensmittelbioverfahrenstechnik können sie die Besonderheiten der Prozessführung aufzeigen, diskutieren und erörtern.

Übung:

Die Studierenden sind in der Lage, für ausgewählte Anwendungsfälle Berechnungen zur Prozessauslegung selbständig durchzuführen und die dafür benötigten Hilfsmittel methodisch angemessen zu gebrauchen.

Inhalt

Die Studierenden lernen

- welche Mikroorganismen(gruppen) für die Sicherheit und die Herstellung von Lebensmitteln und Life Science Produkten wichtig sind.
- technische Möglichkeiten, um die Sicherheit von Lebensmitteln zu gewährleisten.
- anhand ausgewählter historischer biotechnologischer Verfahren zur Lebensmittelherstellung deren modernen technologischen Umsetzungsmöglichkeiten kennen.
- anhand von aktuellen Fallstudien das Vorgehen eines Lebensmittelingenieurs in der Produkt- und Prozessentwicklung.
- · die Berechnungsgrundlagen für technische Prozessauslegungen.
- · produktorientierte Anwendungsbeispiele kennen.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- · Selbststudium. 80 h
- Klausurvorbereitung: 40

- · Vorlesungsfolien, Skripte mit Übungsfragen, FAQ zum Vorlesungsstoff
- Lebensmittelmikrobiologie (J. Krämer, UTB Ulmer)
- · Lebensmittelbiotechnologie (Heinz Rutloff, Akademie Verlag)
- · Lebensmittelverfahrenstechnik, Teil A (Schuchmann, Wiley)
- Lebensmittelbiotechnologie: eine Einführung (P. Czermak, GIT)
- Lebensmittelbiotechnolige (R. Heiss, Springer)
- Lexikon der Lebensmitteltechnologie (B. Kunz, Springer)

4.34 Modul: Lebensmittelbioverfahrenstechnik [M-CIWVT-106436]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Bioverfahrenstechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	2

Pflichtbestandteile			
T-CIWVT-113021	Lebensmittelbioverfahrenstechnik	6 LP	Leister
T-CIWVT-113022	Lebensmittelbioverfahrenstechnik Praktikum	3 LP	Leister

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus:

- 1. einer schriftlichen Prüfung im Umfang von 120 Minuten.
- 2. Praktikum: Prüfungsleistung anderer Art.

Voraussetzungen

Keine.

Qualifikationsziele

Vorlesung:

Die Studierenden können die Grundlagen des mikrobiellen Verderbs sowie die Möglichkeiten zur Konservierung von Lebensmitteln und Life-Science-Produkten beschreiben. Sie sind in der Lage, die Eignung verschiedener Konservierungsmethoden für unterschiedliche Produkte zu analysieren und deren jeweilige Vor- und Nachteile zuzuordnen. Zudem können die Studierenden biotechnologisch hergestellte Lebensmittel benennen und die entsprechenden Prozesse sowie die verwendeten Apparate beschreiben. Anhand von Anwendungsbeispielen aus der Lebensmittelbioverfahrenstechnik können sie die Besonderheiten der Prozessführung aufzeigen, diskutieren und erörtern.

Übuna

Die Studierenden sind in der Lage, für ausgewählte Anwendungsfälle Berechnungen zur Prozessauslegung selbständig durchzuführen und die dafür benötigten Hilfsmittel methodisch angemessen zu gebrauchen.

Praktikum

Die Studierenden können biotechnologisch hergestellte Lebensmittel selbst im Labormaßstab herstellen und das Vorgehen wissenschaftlich und formal korrekt dokumentieren. Den Einfluss der Veränderung von Prozess- und Rezepturparametern können sie vorhersagen, messtechnisch erfassen und die Ergebnisse kritisch diskutieren.

Inhalt

Die Studierenden lernen

- welche Mikroorganismen(gruppen) für die Sicherheit und die Herstellung von Lebensmitteln und Life Science Produkten wichtig sind.
- technische Möglichkeiten, um die Sicherheit von Lebensmitteln zu gewährleisten.
- anhand ausgewählter historischer biotechnologischer Verfahren zur Lebensmittelherstellung deren modernen technologischen Umsetzungsmöglichkeiten kennen.
- anhand von aktuellen Fallstudien das Vorgehen eines Lebensmittelingenieurs in der Produkt- und Prozessentwicklung.
- · die Berechnungsgrundlagen für technische Prozessauslegungen.
- produktorientierte Anwendungsbeispiele kennen.
- kleine Forschungsstudien in der Produktgestaltung von Lebensmitteln durchzuführen.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden benoteten Teilleistungen

Arbeitsaufwand

Präsenzzeit/ Vorlesungen und Übungen:

- · Präsenzzeit: 60 h
- · Selbststudium. 80 h
- Klausurvorbereitung: 40 h

Praktikum (eine Woche)

- Präsenzzeit: 40 h
- · Vor- und Nachbereitung: 50 h

- Vorlesungsfolien, Skripte mit Übungsfragen, FAQ zum Vorlesungsstoff
 Lebensmittelmikrobiologie (J. Krämer, UTB Ulmer)
- Lebensmittelbiotechnologie (Heinz Rutloff, Akademie Verlag)
- · Lebensmittelverfahrenstechnik, Teil A (Schuchmann, Wiley)
- Lebensmittelbiotechnologie: eine Einführung (P. Czermak, GIT)
- Lebensmittelbiotechnolige (R. Heiss, Springer)
- · Lexikon der Lebensmitteltechnologie (B. Kunz, Springer)

4.35 Modul: Lebensmitteltechnologie [M-CIWVT-101148]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jährlich	2 Semester	Deutsch	4	5

Pflichtbestandteile					
T-CIWVT-103528	Lebensmitteltechnologie	5 LP	Leister		
T-CIWVT-103529	Lebensmitteltechnologie Projektarbeit	7 LP	Leister		

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. Einer mündlichen Gruppenprüfung im Umfang von ca. 45 Minuten.
- 2. Einer Projektarbeit. Hier gehen die Abschlusspräsentation, Abschlussbericht, wissenschaftliches Arbeiten und Soft Skills in die Bewertung mit ein.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind, 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können einfache Lebensmittel formulieren und bewerten. Sie sind in der Lage, Aufgaben meilensteinorientiert in einem interdisziplinären Projektteam zu definieren, klar zu umreißen, fokussieren und gezielt zu bearbeiten. Die Studierenden können ein Beispielprodukt im Labormaßstab selbstständig herstellen und die Einflüssen von Rezeptur und Prozessführung auf die Eigenschaften des Produkts bewerten. Sie können Ziele und Ergebnisse ihres im Team bearbeiteten Projektes klar, nachvollziehbar und verständlich präsentieren.

Inhalt

V: Grundlegende Einführung in die Gestaltung und Qualitätssicherung ausgewählter Lebensmittel;

Projektarbeit (Teamarbeit): Definition, Herstellung und Bewertung eines ausgewählten Lebensmittels als Team; Präsentation und Verteidigung des Vorgehens sowie der Ergebnisse incl. Degustation in der Gesamtgruppe; Exkursion zu ausgewählten Industriebetrieben

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

- Präsenzzeit: 115 h
 - (Vorlesung 2 SWS Vorlesung, Projektarbeit 5 SWS)
- Selbststudium: 185 h
 - (dies beinhaltet Projektplanung, Projekttreffen, Recherche zur Projektarbeit, projektbezogene Vor- und Selbstversuche, sowie Vor- und Nachbereiten der theoretischen Grundlagen)
- Prüfungsvorbereitung: 60 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

Wird entsprechend der auswählbaren Produkte in der Vorlesung verteilt

4.36 Modul: Luftreinhaltung [M-CIWVT-106448]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile				
T-CIWVT-113046	Luftreinhaltung	7 LP	Dittler	
T-CIWVT-113047	Luftreinhaltung - Projektarbeit	5 LP	Dittler	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. einer mündlichen Prüfung im Umfang von ca. 30 Minuten
- 2. Bewertung der Projektarbeit: Bewertet werden Vorbereitung, Durchführung, Präsentation u. schriftlicher Bericht

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Studierende verstehen Transportverhalten und Messmethoden für Partikelgrößenverteilungen von gasgetragenen feinen Partikeln im Kontext von Umwelttechnik und Nanopartikeltechnik. Sie können dieses Wissen zur Lösung von elementaren Aufgaben der Partikeltechnik praktisch anwenden.

Inhalt

Die Vorlesungen vermitteln das Grundwissen zu Partikeldispergierung, Partikeltransport in der Gasphase und Messverfahren mit Bezug zu Umwelttechnik und Arbeitsplatz. Die Anwendung auf konkrete Fälle wird in einer teambasierten Projektarbeit erprobt.

Zusammensetzung der Modulnote

Die Modulnote setzt sich zu 40 % aus der Note der Projektarbeit und zu 60 % aus der Note der mündliche Prüfung zusammen.

Arbeitsaufwand

- Präsenzzeit: 56 h (V+Ü) + 120 (Projektarbeit) + 10 (Exk.)
- · Selbststudium: 24 h
- Prüfungsvorbereitung: 140 h

Literatur

Skriptum Gas-Partikel-Messtechnik

4.37 Modul: Mathematische Modellbildung für Bioverfahrenstechnik [M-MATH-106443]

Verantwortung: PD Dr. Gudrun Thäter **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

 Pflichtbestandteile

 T-MATH-113040
 Mathematische Modellbildung für Bioverfahrenstechnik
 4 LP Thäter

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in der Regel durch die Einreichung einer schriftlichen Projektarbeit

Voraussetzungen

Keine

Qualifikationsziele

Qualifikationsziele:

Absolventinnen und Absolventen können

- · Projektorientiert arbeiten
- Mathematische Modelle kritisch hinterfragen
- Mathematisches Wissen mit Anwendungen verknüpfen
- Typische Modellansätze weiterentwickeln

Inhalt

Inhalt:

Mathematisches Denken (als Modellieren) und mathematische Techniken (als Handwerkszeug) treffen auf Anwendungsprobleme wie:

- Gruppenentscheidungen
- Bevölkerungsentwicklung
- Biokinetik
- · Verkehrsflussbeschreibung und -regelung
- Infektionsgeschehen

Diese werden gelöst mit Hilfe von

- Spieltheorie
- Differenzengleichungen
- Differentialgleichungen
- elementare stochastische Ansätze

Zusammensetzung der Modulnote

Die Modulnote ist die Note auf die schriftliche Projektausarbeitung

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden

Präsenzzeit: 43 Stunden Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 77 Stunden

Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes

Bearbeitung von Übungsaufgaben

Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Anfertigung der schriftlichen Projektausarbeitung

4.38 Modul: Mechanische Separationstechnik [M-CIWVT-101147]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	3

Pflichtbestandteile				
T-CIWVT-103448	Mechanische Separationstechnik Prüfung	8 LP	Gleiß	
T-CIWVT-103452	Mechanische Separationstechnik Projektarbeit	4 LP	Gleiß	

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst zwei benotete Leistungsnachweise

- Mündliche Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung "Mechanische Separationstechnik" und den dazu gehörenden Übungen
- Projektarbeit. Es werden die praktische Mitarbeit, der schriftliche Bericht sowie die mündliche Präsentation der Ergebnisse individuell bewertet.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

mind, 60 LP

· mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können die grundlegenden Gesetze und daraus folgende physikalischen Prinzipien der Abtrennung von Partikeln aus Flüssigkeiten erläutern und nicht nur den prinzipiell dafür geeigneten Trennapparaten zuordnen, sondern auch spezielle Varianten. Sie sind in der Lage, den Zusammenhang zwischen Produkt-, Betriebs- und Konstruktionsparametern auf verschiedene Trenntechniken anzuwenden. Sie können Trennprobleme mit wissenschaftlichen Methoden analysieren und alternative Lösungsvorschläge angeben. Die Studierenden können Grundlagen- und Prozesswissen auf das Beispiel des Bierbrauens praktisch anwenden.

Inhalt

Physikalische Grundlagen, Apparate, Anwendungen, Strategien; Charakterisierung von Partikelsystemen und Suspensionen; Vorbehandlungsmethoden zur Verbesserung der Trennbarkeit von Suspensionen; Grundlagen, Apparate und Anlagentechnik der statischen und zentrifugalen Sedimentation, Flotation, Tiefenfiltration, Querstromfiltration, Kuchenbildenden Vakuum- und Gasüberdruckfiltration, Filterzentrifugen und Pressfilter; Filtermedien; Auswahlkriterien und Dimensionierungsmethoden für trenntechnische Apparate und Maschinen; Kombinationsschaltungen; Fallbeispiele zur Lösung trenntechnischer Aufgabenstellungen.

Zusammensetzung der Modulnote

Die Modulnote errechnet sich aus dem LP-gewichteten Mittel der beiden Teilleistungen.

Arbeitsaufwand

Vorlesung 3 SWS und Übung 1 SWS:

Präsenzzeit: 60 h

Selbststudium: 80 h

Prüfungsvorbereitung: 80 h

Projektarbeit:

• Präsenzzeit und Selbststudium:140 h

Literatur

Anlauf: Skriptum "Mechanische Separationstechnik - Fest/Flüssig-Trennung"

4.39 Modul: Mechanische Verfahrenstechnik [M-CIWVT-101135]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen (Verfahrenstechnische Grundoperationen)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile				
T-CIWVT-101886	Mechanische Verfahrenstechnik	6 LP	Dittler	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120.

Voraussetzungen

Keine

Qualifikationsziele

Studierende verstehen das Verhalten von Partikelsystemen in wichtigen Ingenieuranwendungen; sie können dieses Verständnis auf die grundlegende Berechnung und Auslegung ausgewählter Verfahrensschritte/Vorgänge anwenden.

Inhalt

- Grundoperationen der Mechanischen Verfahrenstechnik Einführung & Übersicht
- · Partikelgrößenverteilungen Bestimmung, Darstellung & Umrechnung
- Kräfte auf Partikeln in Strömungen
- · Trennfunktion Charakterisierung einer Trennung
- Grundlagen des Mischens & Rührens
- · Einführung in die Dimensionsanalyse
- Charakterisierung von Packungen
- Kapillarität in porösen Feststoff-Systemen
- · Durchströmung von Packungen, Wirbelschicht
- · Grundlagen der Agglomeration
- · Grundlagen des Lagerns und Förderns

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- · Selbststudium: 45 h (ca. 3 h pro Semesterwoche)
- Klausurvorbereitung: zusätzlich 75 h

Empfehlungen

Module des 1. - 4. Semesters

- · Dittler, Skriptum MVT
- · Löffler, Raasch: Grundlagen der Mechanischen Verfahrenstechnik, Vieweg 1992
- Schubert, Heidenreich, Liepe, Neeße: Mechanische Verfahrenstechnik, Deutscher Verlag Grundstoffindustrie, Leipzig 1990
- Dialer, Onken, Leschonski: Grundzüge Verfahrenstechnik&Reaktionstechnik, Hanser Verlag 1986
- Zogg: Einführung in die Mechanische Verfahrenstechnik, Teubner 1993

4.40 Modul: Medical Imaging Technology [M-ETIT-106778]

Verantwortung: Prof. Dr.-Ing. Maria Francesca Spadea

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik) (EV ab 01.04.2025)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-ETIT-113625	Medical Imaging Technology	6 LP	Spadea

Erfolgskontrolle(n)

The examination takes place in form of a written examination lasting 120 minutes.

Voraussetzungen

none

Qualifikationsziele

For each imaging modality students will be able to:

- · identify required energy source;
- analyze the interactions between the form of energy and biological tissue distinguishing desired signal from noise contribution;
- critically interpret the image content to derive knowledge
- · evaluate image quality and implementing strategies to improve it.

Moreover, the students will be able to communicate in technical and clinical English languange.

Inhalt

- Basic knowledge of mathematical and physical principles of medical imaging formation, including X-ray based modalities, nuclear medicine imaging, magnetic resonance imaging and ultrasound
- · Components of medical imaging devices.
- Assessment of image quality in terms of signal-to-noise-ratio, presence of artifact, spatial, Spectral and temporal resolution
- · Safety and protection for patients and workers.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

A bonus can be earned for voluntary tasks such as:

- · presentation and discussion of a specific topic,
- · participation to writing the lecture minutes
- implementation of educational tools

The exact criteria for awarding a bonus will be announced at the beginning of the lecture period. If the grade in the oral exam is between 4.0 and 1.3, the bonus improves the grade by 0.3 or 0.4.

Bonus points do not expire and are retained for any examinations taken at a later date.

Arbeitsaufwand

- 1. attendance in lectures an exercises: 15*4 h = 60 h
- 2. preparation / follow-up: 15*6 h = 90 h
- 3. preparation of and attendance in examination: 30 h

A total of 180 h = 6 CR

Empfehlungen

Basic knowledge in the field of physics and signal processing is helpful.

4.41 Modul: Mikroverfahrenstechnik [M-CIWVT-101154]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	3

Pflichtbestandteile				
T-CIWVT-103666	Mikroverfahrenstechnik Prüfung	7 LP	Pfeifer	
T-CIWVT-103667	Mikroverfahrenstechnik Projektarbeit	5 LP	Dittmeyer, Pfeifer	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. Einer mündlichen Einzelprüfung im Umfang von ca. 25 Minuten zu Lehrveranstaltung "Auslegung von Mikroreaktoren"
- 2. Einer Prüfungsleistung anderer Art: Projektarbeit (Teamnote), bei der Mitarbeit (max. 30 Punkte), Bericht (max. 20 Punkte) und Abschlusspräsentation (max 10 Punkte) bewertet wird; Notenschlüssel auf Anfrage. Die Teilleistung ist bestanden, wenn mindestens 20 Punkte erreicht wurden.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

mind. 60 LP

· mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können die Methoden der Prozessintensivierung durch Mikrostrukturierung des Reaktionsraumes anwenden und sind in der Lage, die Vorteile und Nachteile einer Übertragung von gegebenen Prozessen in mikroverfahrenstechnische Apparate zu analysieren. Mit Kenntnis über spezielle Herstellverfahren für Mikroreaktoren sind die Studierenden in der Lage, Auslegungsmethoden auf mikrostrukturierte Systeme hinsichtlich des Wärmetauschs anzuwenden und die Möglichkeiten zur Übertragung von Prozessen aus konventioneller Verfahrenstechnik in den Mikroreaktor hinsichtlich der Wärmeübertragungsleistung zu analysieren. Sie verstehen außerdem, wie die Mechanismen von Stofftransport und Mischung in strukturierten Strömungsmischern zusammenspielen, und sind in der Lage diese Kenntnisse auf die Kombination von Mischung und Reaktion anzuwenden. Darüber hinaus können sie mögliche Limitierungen bei der Prozessumstellung analysieren und so mikrostrukturierten Reaktoren für homogene Reaktionen angemessen auslegen. Die Studierenden verstehen die Bedeutung der Verweilzeitverteilung für Umsatz und Selektivität und sind in der Lage das Zusammenspiel von Stofftransport durch Diffusion und hydrodynamischer Verweilzeit in mikroverfahrenstechnischen Apparaten in gegebenen Anwendungsfällen zu analysieren.

Inhalt

Basiswissen zu mikroverfahrenstechnischen Systemen: Herstellung von mikrostrukturierten Systemen und Wechselwirkung mit Prozessen, Intensivierung von Wärmetausch und spezielle Effekte durch Wärmeleitung, Verweilzeitverteilung in Reaktoren und Besonderheiten in mikrostrukturierten Systemen, strukturierte Strömungsmischer (Bauformen und Charakterisierung) und Auslegung von strukturierten Reaktoren hinsichtlich Stoff- und Wärmetransport.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichteten Mittel der beiden Teilleistungen.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 3 SWS Übung 1 SWS: 60 h
- Selbststudium: 60 h
- Prüfungsvorbereitung: 60 h (ca. 2 Wochen)
- Projektarbeit 180 h

Literatur

Skript (Foliensammlung)

Fachbücher:

- Kockmann, Norbert (Hrsg.), Micro Process Engineering, Fundamentals, Devices, Fabrication, and Applications, ISBN-10: 3-527-31246-3
- Micro Process Engineering A Comprehens (Hardcover), Volker Hessel (Editor), Jaap C. Schouten (Editor), Albert Renken (Editor), Yong Wang (Editor), Junichi Yoshida (Editor), 3 Bände, 1500 Seiten, Wiley VCH, ISBN-10: 3527315500
- Winnacker-Küchler: Chemische Technik, Prozesse und Produkte, BAND 2: NEUE TECHNOLOGIEN, Kapitel Mikroverfahrenstechnik S. 759-819, ISBN-10: 3-527-30430-4
- Emig, Gerhard, Klemm, Elias, Technische Chemie, Einführung in die chemische Reaktionstechnik, Springer-Lehrbuch, 5., aktual. u. erg. Aufl., 2005, 568 Seiten, ISBN-10: 3-540-23452-7 (Kapitel Mikroreaktionstechnik S. 444-467)
- Chemical Kinetics, ISBN 978-953-51-0132-1 "Application of Catalysts to Metal Microreactor Systems", P. Pfeifer, http://www.intechopen.com/books/chemical-kinetics/application-of-catalysts-to-metal-microreactor-systems

4.42 Modul: Modul Bachelorarbeit [M-CIWVT-106580]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Bachelorarbeit

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CIWVT-113255	Bachelorarbeit	12 LP	

Erfolgskontrolle(n)

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende

Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende

Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, ein Problem aus ihrem Fach selbständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten.

Inhalt

Theoretische oder experimentelle Bearbeitung einer komplexen Problemstellung aus einem Teilbereich des Bioingenieurwesens nach wissenschaftlichen Methoden.

Arbeitsaufwand

Es gelten die Regelungen aus § 14 SPO Bachelor Bioingenieurwesen.

4.43 Modul: Naturwissenschaftliches Grundpraktikum [M-CIWVT-106427]

Verantwortung: Prof. Dr. Harald Horn

Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	best./nicht best.	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-CIWVT-113015	Praktikum Allgemeine Chemie	2 LP	Horn, West	
T-CIWVT-113014	Praktikum Mikrobiologie	2 LP	Neumann	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus zwei Teilleistungen

1. Studienleistung: Praktikum Allgemeine Chemie

Unter folgenden Voraussetzungen ist das Praktikum bestanden:

Teilnahme an allen Versuchen, Abgabe von Versuchsprotokollen mit Analysenergebnissen.

Vor jedem Versuch ist ein schriftliches Antestat (15 min) zu bestehen;

bei nicht bestandenem Antestat besteht die Möglichkeit, den Versuch an einem anderen Versuchstag (falls organisatorisch möglich) oder im Folgemester zu wiederholen.

- 2. Studienleistung: Praktikum Mikrobiologie im Umfang von 1 Woche.
 - Unter folgenden Voraussetzungen ist das Praktikum bestanden:
 - a) Bestandendes Eingangskolloquium
 - b) Teilnahme an allen Versuchen
 - c) Bestehen der Praktikumsprotokolle

Voraussetzungen

Voraussetzung für die Teilnahme am Praktikum ist, dass die Klausur Allgemeine Chemie und Chemie in wässrigen Lösungen bestanden ist

Die Teilnahme am Praktikumsteil Mikrobiologie ist nur nach Teilnahme am Praktikumsteil Allgemeine Chemie möglich.

Qualifikationsziele

Teil Allgemeine Chemie:

Die Studierenden vertiefen mit praktischen Versuchen die wichtigsten Grundlagen der Allgemeinen Chemie und der Reaktionen in wässrigen Lösungen (Redox- und Säure-Base-Reaktionen, chemische Gleichgewichte, Elektrochemie). Mit der eigenständigen Durchführung von qualitativen und quantitativen chemischen Analysen und Reaktionen können die Studierenden mit chemischen Stoffen umgehen. Sie sind fähig Berechnungen durchzuführen, die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Teil Mikrobiologie

Die Studierenden beherrschen den Umgang mit dem Lichtmikroskop. Sie können Kultivierungen auf Schrägagarröhrchen, Agarplatten und in Schüttelkolben unter sterilen Bedingungen durchführen. Sie können Reinkulturen anlegen. Sie können Wachstumskurven aufnehmen und interpretieren. Sie können aus den aufgenommenen Messwerten die Wachstumsparameter berechnen.

Inhalt

Teil Allgemeine Chemie:

Grundlagen der allgemeinen, anorganischen und physikalischen Chemie; Durchführung von qualitativen und quantitativen chemischen Analysen und Reaktionen.

Teil Mikrobiologie:

Ansetzen und Sterilisieren verschiedener Nährmedien; Qualitative und quantitative Untersuchung der Wirksamkeit verschiedener Desinfektionsmittel; Gewinnung von Reinkulturen durch Verdünnungsausstrich sowie Vereinzelung auf festen Nährböden;

Mikroskopieren verschiedener Mikroorganismen (Phasenkontrastmikroskopie); Steriles Animpfen bakterieller Submerskulturen; Aufnahme und Auswertung bakterieller Wachstumskurven; Verfolgen des Wachstums anhand von Parametern wie Optische Dichte, pH-Wert, Biotrockenmasse; Quantifizierung des Kohlenhydratverbrauchs während des Wachstums mittels spektralphotometrischer Enzymtests; Berechnung charakteristischer Wachstumsparameter (Wachstumsrate, Verdoppelungszeit, Ertragskoeffizient)

Zusammensetzung der Modulnote

Unbenotet

Anmerkungen

Die Teilnahme an der Sicherheitsunterweisung ist verpflichtend.

Arbeitsaufwand

Teil Allgemeine Chemie: Präsenzzeit: 5 Versuche/ 20 h

Selbststudium: 40 h Teil Mikrobiologie

Präsenzzeit: eine Woche/ 40 h

Selbststudium: 20 h

- BAST: Mikrobiologische Methoden Steinbüchel/Oppermann-Sanio: Mikrobiologisches Praktikum
- Schweda, E.: Jander/Blasius Anorganische Chemie I+II. Hirzel Verlag, Suttgart, 19. bzw. 18. Auflage, 2022
- Praktikumsskript zu Teilleistung "Allgemeine Chemie," wird in ILIAS zur Verfügung gestellt.

4.44 Modul: Organisch-chemische Prozesskunde [M-CIWVT-101137]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CIWVT-101890	Organisch-Chemische Prozesskunde (OCP)	5 LP	Rauch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 SPO.

Voraussetzungen

Organische Chemie muss bestanden sein.

Qualifikationsziele

Kenntnis von organischen Stoffen und chemischen Reaktionstypen vertiefen; Zusammenhänge verstehen von organischchemischen Reaktionen/R-typen und technischen Prozessen anhand ausgewählter Beispiele; technische Stoffumwandlungswege von Rohstoffen zu Endprodukten verstehen.

Perspektiven der stofflichen Nutzung nachwachsender Rohstoffe aufzeigen können.

Mechanismen der Synthese von synthetischen Polymeren kennen und vertiefen lernen; Wechselbeziehung zwischen Mechanismus und technischer Auslegung des Prozesses nachvollziehen können; Zusammenhang zwischen Struktur, Eigenschaften und Anwendung herstellen können; Einsatzfelder von Hochleistungskunststoffen kennen und beurteilen.

Inhalt

Rohstoffe für die industrielle organische Chemie; Industrielle Herstellung von Grundchemikalien und Zwischenprodukten anhand ausgewählter Beispiele, Digitalisierung und Industrie 4.0 in der chemischen Industrie.

Mechanismen der Bildung von synthetischen Makromolekülen; Herstellungsverfahren und Eigenschaften von Kunststoffen und polymeren Werkstoffen; Spektroskopische Methoden der Strukturaufklärung organischer Moleküle.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 h Selbststudium: 40 h Klausurvorbereitung: 50 h

Literatur

Vorlesungsskripte

Onken, Behr: Chem. Prozeßkunde, Wiley-VCH 1996 Arpe: Industrielle Org. Chemie, Wiley-VCH 2007 Brahm: Polymerchemie kompakt, Hirzel 2009 Tieke: Makromolekulare Chemie, Wiley-VCH 2014

Hesse u.a.: Spektroskop. Methoden in der OC, Thieme 2011

4.45 Modul: Organische Chemie für Ingenieure [M-CHEMBIO-101115]

Verantwortung: Prof. Dr. Michael Meier

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Mathematisch-naturwissenschaftliche Grundlagen

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-101865	Organische Chemie für Ingenieure	5 LP	Meier

Erfolgskontrolle(n)

benotet: Prüfungsklausur

Voraussetzungen

keine

Qualifikationsziele

Bedeutung, Grundlagen- und methoden-orientierte Kenntnis der Organischen Chemie; Zusammenhang zwischen Struktur und Reaktivität herstellen; Kenntnis wichtiger Modelle und Prinzipien der Organischen Chemie; Anwendung des Wissens zur eigenständigen Lösung von Problemstellungen

Inhalt

Nomenklatur, Struktur und Bindung organischer Moleküle; Organische Verbindungsklassen und funktionelle Gruppen; Eigenschaften, Reaktionsmechanismen und Synthese organischer Verbindungen; Stereochemie und optische Aktivität; Technische Polymere und Biopolymere; Methoden zur Strukturaufklärung

Zusammensetzung der Modulnote

Note der Prüfungsklausur

Arbeitsaufwand

Präsenzzeit: 34h Selbststudium: 86h

Literatur

Paula Y. Bruice: Organische Chemie, Pearson Studium, 5. Aufl., München 2007

K.P.C. Vollhardt, Neil Schore; K. Peter: Organische Chemie, 4. Aufl., Wiley-VCH, Weinheim 2005

Neil E. Schore: Arbeitsbuch Organische Chemie, 4. Aufl., Wiley-VCH, Weinheim 2006

Hans Beyer, Wolfgang Walter: Lehrbuch der Organischen Chemie, 24. Aufl., Hirzel, Stuttgart 2004

Adalbert Wollrab: Organische Chemie, 2. Aufl., Springer, Berlin 2002

4.46 Modul: Orientierungsprüfung [M-CIWVT-106447]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Orientierungsprüfung

Leistungspunkte
0 LPNotenskala
best./nicht best.Turnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-MATH-100275	Höhere Mathematik I	7 LP	Arens, Griesmaier, Hettlich	
T-MATH-100525	Übungen zu Höhere Mathematik I		Arens, Griesmaier, Hettlich	
T-CIWVT-111063	Genetik	2 LP	Neumann	
T-CIWVT-113037	Zellbiologie	2 LP	Gottwald	

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

4.47 Modul: Physiologie und Anatomie für die Medizintechnik [M-ETIT-105874]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik) (EV ab 01.10.2025)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-ETIT-111815	Physiologie und Anatomie für die Medizintechnik	6 LP	Nahm	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Die Erfolgskontrolle umfasst den Inhalt von Physiologie und Anatomie I (jedes Wintersemester) and Physiologie und Anatomie II (jedes Sommersemester).

Voraussetzungen

Die Module "M-ETIT-100390 - Physiologie und Anatomie I" und "M-ETIT-100391 - Physiologie und Anatomie II" dürfen nicht begonnen sein.

Qualifikationsziele

Nach dem Studium dieses Moduls

- sind die Studierenden in der Lage die strukturellen und funktionellen Grundprinzipien des Organismus auf verschiedenen Organisationsebenen (molekular und zellular bis Organ- und Organsystemebene) zur Einordnung des Organismus in seine Umwelt zu beschreiben und zu erklären,
- verfügen sie über die Fähigkeit, diese Kenntnisse zur Erklärung übergeordneter Organ- und Organsystemfunktionen anzuwenden,
- kennen sie fortgeschrittene mathematische, naturwissenschaftliche und ingenieurwissenschaftliche Methoden zur Beschreibung physiologischer Vorgänge und sind in der Lage diese einzusetzen,
- können sie die funktionellen Zusammenhänge auf der Ebene der Organe und Organsysteme aus diagnostischer und therapeutischer Sicht beschreiben und daraus die Anforderungen an medizintechnische Systeme ableiten
- und können sie die Quellen von Biosignalen identifizieren und Verbindung zwischen physiologischen Parametern und physikalischen Messgrößen herleiten.

Nachhaltigkeits-Kompetenzziel: Die Studierenden haben ihren Lernprozess aktiv mitgestaltet.

Inhalt

Physiologie und Anatomie I (Wintersemester)

Die Vorlesung vermittelt Basiswissen über die wesentlichen Organsysteme des Menschen und die medizinische Terminologie. Sie wendet sich an Studierende technischer Studiengänge, die an physiologischen Fragestellungen interessiert sind.

Themenblöcke:

- · Organisationsebenen des Organismus
- Bausteine des Lebens
 - Proteine
 - Lipide
 - Kohlenhydrate
 - Lipide
 - Nuleinsäuren
- Zellen
 - Aufbau
 - Membrantransportprozesse
 - Proteinbiosynthese
 - Zellatmung
 - Nervenzellen
 - Muskelzellen
- · Gewebe
 - · Gewebetypen
 - Zellverbindungen
- Sinnesorgane
 - Auge
 - Gehör

Physiologie und Anatomie II (Sommersemester)

Die Vorlesung erweitert das vermittelte Wissen des ersten Teils der Vorlesung und stellt weitere Organsysteme des Menschen vor.

Themenblöcke:

- Das Nervensystem
 - · Anatomie und funktionelle Gliederung
- · Das kardiovaskuläre System
 - Anatomie und Funktion des Herzens
 - Gefäßsystem und Blutdruck
- · Das respiratorische System
 - Anatomie und Ventilation
 - Gastransport
- Das Verdauungssystem
 - · Anatomie
 - Physiologie der Verdauung
- · Das endokrine System
 - Endokrine Organe
 - · Hormonelle Signaltransduktion
- · Säure-Base-Haushalt
- · Wasser-Elektrolyt-Haushalt
- Thermoregulation

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Es können Bonuspunkte für einen studentischen Beitrag zur Vorlesung vergeben werden.

- Der studentische Beitrag besteht aus der Formulierung von Lernzielen und Fragen zur Lernzielkontrolle zu den Vorlesungseinheiten. Die entsprechenden Vorlesungseinheiten werden im ILIAS zur Auswahl gestellt.
- Die Studierenden erstellen die studentischen Beiträge in Kleingruppen. Sie stellen den Beitrag in Form einer Powerpoint-Präsentation zum vorgegebenen Abgabezeitpunkt im ILIAS ein.
- Die Präsentation wird vom Dozenten oder Vorlesungsbetreuer gegebenenfalls korrigiert und freigegeben.
- Der Beitrag wir von der Gruppe in der folgenden Vorlesungseinheit innerhalb des vorgegebenen Zeitraums präsentiert und mit dem Plenum diskutiert. Gegebenenfalls nimmt die präsentierende Gruppe das Feedback auf und erstellt eine überarbeitete Vision. Die finale Version des Beitrags wird allen Vorlesungsteilnehmenden im ILIAS zur Prüfungsvorbereitung zur Verfügung gestellt.
- Die Bonuspunkte werden vom Dozenten anhand der schriftlichen Ausarbeitung und der Präsentation im Plenum vergeben.
- Jeder Teilnehmende kann maximal 6 Bonuspunkte erwerben. Bonuspunkte können nur einmal erworben werden.
- · Die Teilnahme an den studentischen Beiträgen ist freiwillig.

Die Anrechnung der Bonuspunkte erfolgt folgendermaßen:

- Für die bestandene Bonusaufgabe können maximal 6 Punkte auf das Klausurergebnis gutgeschrieben werden.
- Die Note kann damit maximal um einen Notenschritt verbessert werden.
- Die Gesamtpunktzahl bleibt dabei auf 120 Punkte beschränkt. Die Bonuspunkte finden nur bei bestandener Prüfung Berücksichtigung. Bonuspunkte verfallen nicht und bleiben für eventuell zu einem späteren Zeitpunkt absolvierte Prüfungsleistungen erhalten.

Anmerkungen

Achtung:

Die diesem Modul zugeordnete Teilleistung ist Bestandteil der Orientierungsprüfung folgender Studiengänge:

· Bachelor Medizintechnik (SPO 2022, §8)

Die Prüfung ist zum Ende des 2. Fachsemesters anzutreten. Eine Wiederholungsprüfung ist bis zum Ende des 3. Fachsemesters abzulegen.

Arbeitsaufwand

Unter den Arbeitsaufwand fallen:

- Präsenzzeit in Vorlesungen (2 h je 30 Termine) = 60 h
- Selbststudium (3 h je 30 Termine) = 90 h
- Vor-/Nachbereitung = 30 h

Gesamtaufwand ca. 180 Stunden = 6 LP

Lehr- und Lernformen Winter-/Sommersemester:

- · WiSe: Physiologie und Anatomie I
- SoSe: Physiologie und Anatomie II

4.48 Modul: Praktikum Elektrochemische Energietechnologien [M-ETIT-105703]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wahlbereich Verfahrenstechnik (Vertiefung Verfahrenstechnik) (EV ab 01.04.2025)

Leistungspunkte

5 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester **Dauer** 1 Semester Sprache Deutsch/ Englisch

Level 3 Version 3

Pflichtbestandteile

T-ETIT-111376 Praktikum Elektrochemische Energietechnologien

5 LP

Röse

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen, bewertet wird jeweils das schriftliche Versuchsprotokoll. Die Modulnote wird aus dem Gesamteindruck gebildet.

Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen eine Prüfungseinheit. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Voraussetzungen

- Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 Electrochemical Energy Technologies" erfolgreich abgelegt haben.
- Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-ETIT-105690 - Electrochemical Energy Technologies muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden vertiefen und verfestigen ihre zuvor erlernten Grundkenntnisse aus der Vorlesung "Elektrochemische Energietechnologien". Sie verstehen, wie man Prozesse an Grenzflächen unter Stoffumwandlung durch Ladungstransfer experimentell analysiert und quantitativ beschreibt. Sie sind in der Lage elektrochemische Zellen aufzubauen, verstehen deren Funktionsprinzip und werden in die Lage versetzt, ablaufende elektrochemische Prozesse zu bestimmen. Des Weiteren sind sie in der Lage elektrochemische Messmethoden gezielt auf Fragestellungen anzuwenden, die relevant für die Analyse moderner Energiewandler und -Speichertechnologien sind.

Sie sind darüber hinaus befähigt, gemessene Daten zu dokumentieren, auszuwerten und die Ergebnisse kritisch zu diskutieren. Sie können Fehlerabschätzungen kompetent durchführen und beherrschen sicher die rechnergestützte Datenauswertung.

Inhalt

Vier ausgewählte experimentelle Versuche aus den Gebieten der Elektrochemie werden durchgeführt:

Praktikumsversuch 1: Ermittlung von Transportparametern reversibler Systeme

- · Voltammetrie an einer stationären Elektrode
- · Voltammetrie an einer rotierenden Scheibenelektrode

Praktikumsversuch 2: Bestimmung der Wasserstoff- und Sauerstoffüberspannung

Praktikumsversuch 3: Bau einer Polymerelektrolytmembran Brennstoffzell

Praktikumsversuch 4: Untersuchung der selbstgebauten PEM-Brennstoffzelle unter verschiedenen Betriebsbedingungen

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilungen der schriftlichen Versuchsprotokolle ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

Arbeitsaufwand

1. Präsenzzeit im Praktikum: 4x 5 h (Block-Veranstaltung)

2. Vorbereitung für die Versuche: 30 h3. Anfertigung Protokolle: 100 h

4.49 Modul: Programmierung und numerische Simulation [M-CIWVT-106438]

Verantwortung: Dr.-Ing. Pascal Jerono

Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3 LP	best./nicht best.	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-CIWVT-113025	Programmierung und numerische Simulation	1 LP	Jerono, Meurer	
T-CIWVT-113074	Programmierung und numerische Simulation mit MATLAB - Übungen	2 LP	Meurer	

Erfolgskontrolle(n)

Erfolgskontrolle besteht aus zwei ungenoteten Teilleistungen:

- Vorleistung Übungsaufgaben: mindestens 70 % der vorlesungsbegleitenden Übungsaufgaben und ein Abschlussprojekt müssen bestanden sein.
- unbenotete schriftliche Prüfung im Umfang von 60 Minuten.

Die Teilnahme an der mündlichen Prüfung ist nur möglich, wenn die Vorleistung bestanden ist

Voraussetzungen

Keine

Qualifikationsziele

Den Studierenden werden grundlegende Prinzipien und Konzepte der Programmierung vermittelt. Dies umfasst allgemeine Vorgehensweisen zur Problemanalyse, zum Programmentwurf, zur Implementierung und zur Evaluation anhand des Programmpakets MATLAB. Die Studierenden können geeignete Programme zur Lösung von (numerischen) Programmieraufgaben einfacher bis fortgeschrittener Komplexität entwickeln. Sie sind in der Lage, die erworbenen Kenntnisse und Fertigkeiten auch in anderen Programmiersprachen und Programmierumgebungen anzuwenden.

Inhalt

Auf Basis des Programms MATLAB werden elementare Programmierkonzepte und Rechenoperation erlernt und in der Form von MATLAB-Skripten und MATLAB-Funktionen umgesetzt. Dies umfasst u.a. folgende Themen:

- Grundlagen der Programmierung und numerischer Algorithmen
- · Einführung in MATLAB und die Programmierung von MATLAB-Skript-Dateien und -Funktionen
- · Erzeugung von 2D und 3D-Graphiken
- Numerische Lösung von algebraischen Gleichungen und gewöhnlichen Differentialgleichungen
- Einführung in Simulink und die blockorientierte Simulation dynamischer Systeme
- · Umsetzung der behandelten Konzepte für verschiedene Anwendungsbeispiele

Zusammensetzung der Modulnote

Unbenotet

Arbeitsaufwand

- Präsenszeit: 30 h
- · Selbststudium, Bearbeitung von Übungsaufgaben und Abschlussprojekt: 20 h
- Prüfungsvorbereitung: 10 h

4.50 Modul: Prozessentwicklung und Scale-up [M-CIWVT-101153]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	4

Pflichtbestandteile			
T-CIWVT-103530	Prozessentwicklung und Scale-up	8 LP	Sauer
T-CIWVT-103556	Prozessentwicklung und Scale-up Projektarbeit	4 LP	Sauer
T-CIWVT-111005	Vorleistung Prozessentwicklung und Scale-up	0 LP	Sauer

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- einer mündlichen Prüfung im Umfang von ca. 30 Minuten zu Vorlesung und Übung
- Studienleistung: Vorleistung zur mündlichen Prüfung: Online Qick-Tests begleitend zur Vorlesung
- Prüfungsleistung anderer Art: Projektarbeit, zur individuellen Bewertung werden die Präsentation und schriftliche Dokumentation der Ergebnisse herangezogen.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Voraussetzungen innerhalb des Moduls:

Für die Teilnahme an der mündlichen Prüfung müssen 4 von 5 der online Quick-Tests bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können Stoff- und Energiebilanzen für einen komplexen verfahrenstechnischen Prozess ermitteln und diesen Prozess hinsichtlich der Optimierungspotentiale analysieren. Zur Prozessoptimierung können sie geeignete Verfahren ableiten. Die Studierenden können die Hauptapparatekosten ermitteln und die Investkosten für eine Chemieanlage im Schätzungsverfahren bestimmen. Mit der Bestimmung der variablen Herstellkosten können sie die Wirtschaftlichkeit einer Chemieanlage analysieren.

Weiterhin lernen die Studierenden Grundbegriffe des Projektmanagements, werden zur Teamarbeit befähigt und angeleitet zum selbständigen wissenschaftlichen Arbeiten.

Inhalt

Einführung in die Systematik der Verfahrensentwicklung und des Projektmanagements für Entwicklungen aus dem Labor über die Konzipierung eines darauf aufbauenden chemisch-verfahrenstechnischen Prozesses bis zur Auslegung von Miniplant- und Pilotanlagen und der Überführung in den Produktionsmaßstab. Überblick über Methoden für die wirtschaftliche und technische Bewertung von Verfahren, sowie die Erstellung von Businessplänen.

Zusammensetzung der Modulnote

Die Modulnote setzt sich zu 50 % aus der mündlichen Prüfung und zu 50 % aus der Projektarbeit (Präsentation und Ausarbeitung) zusammen.

Anmerkungen

Im Rahmen der Veranstaltung ist eine Exkursion zum IKFT und zur bioliq-Anlage im Campus-Nord geplant, sowie eine Exkursion zu einem Industriebetrieb.

Arbeitsaufwand

- Präsenszeit Vorlesung: 22,5 h
- · Selbststudium Vorlesung: 45 h
- Präsenszeit Übung: 22,5 h
- Selbststudium Übung: 45 h
- Prüfungsvorbereitung mündliche Prüfung: 45 h
- Projektarbeit: 180 h

- Vorlesungs- und Übungsfolien (KIT Studierendenportal ILIAS)
- Helmus, F. P., Process Plant Design: Project Management from Inquiry to Acceptance, Wiley-VCH, 2008.
- Towler, G., Sinnott, R. K., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2012.
- Peters, M.S., Timmerhaus, K.D., West R.E.: Plant Design and Economics for Chemical Engineers, 2003, Mc Graw-Hill, NY.
- Seider, W.D., Seader, J.D., Lewin, D. R., Widagdo, S.: Product and Process Design Principles, Wiley & Sons, NY, 2010.
- Vogel, G.H... Verfahrensentwicklung, Wiley-VCH, 2002.
- Belbin, R.M., Management Teams, Why They Succeed or Fail, Routledge, NY, 2013.
- Busse von Colbe, W.; Coenenberg, A.G., Kajüter, P., Linnhoff, U., Betriebswirtschaftslehre für Führungskräfte, 2002, S. 148

4.51 Modul: Regelungstechnik und Systemdynamik [M-CIWVT-106308]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile			
T-CIWVT-112787	Regelungstechnik und Systemdynamik	5 LP	Meurer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen Konzepte und Methoden zur Analyse und zum Regler- sowie zum Beobachterentwurf für lineare Systeme im Frequenzbereich und im Zustandsraum. Sie können diese formulieren und erläutern und sind in der Lage darauf aufbauend komplexere Zusammenhänge abzuleiten. Sie besitzen praktische Fertigkeiten in der Systemanalyse und im Entwurf von Regelungen und Beobachtern für lineare Systeme im Frequenzbereich und im Zustandsraum. Sie können deren Verhalten und Eigenschaften evaluieren und beurteilen.

Inhalt

- · Einführung in regelungstechnische Fragestellungen und das Systemkonzept
- Modellierung physikalischer Systeme
- Mathematische Analyse dynamischer Systeme (Linearität und Zeitinvarianz, Linearisierung nichtlinearer Systeme)
- Lineare dynamische Systeme im Zeitbereich (Transitionsmatrix, Zustands- und Ähnlichkeitstransformationen, Stabilität linearer Systeme)
- Lineare dynamische Systeme im Frequenzbereich (Übertragungsfunktion, Eingangs-Ausgangs-Stabilität, Nyquist-Ortskurve, Bode-Diagramme, Pol- und Nullstellen, Analyse wichtiger Regelkreisglieder)
- Analyse und Entwurf von Regelkreisen im Frequenzbereich (Regelkreisstrukturen, Stabilitätskriterien, Regelungsentwurf mit dem Frequenzkennlinienverfahren)
- Analyse und Entwurf von Regelkreisen im Zustandsraum (Steuerbarkeit und Beobachtbarkeit, Entwurf von Zustandsreglern und Zustandsbeobachtern, Separationsprinzip)

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit:

Vorlesung: 30 hÜbung: 15 h

Selbststudium:

- · Vor- und Nachbereitung der Lehrveranstaltungen: 60 Stunden
- Prüfungsvorbereitung: 45 Stunden

- Meurer: Regelungstechnik und Systemdynamik, Vorlesungsskript.
- · Aström, R. Murray: Feedback Systems, Princeton University Press, 2008.
- C.T. Chen: Linear System Theory and Design, Oxford Univ. Press, 1999.
- · Lunze: Regelungstechnik I, Springer-Verlag, 2010.
- Lunze: Regelungstechnik II, Springer-Verlag, 2010.
- H. Unbehauen: Regelungstechnik I, Vieweg, 2005.

4.52 Modul: Technische Mechanik: Dynamik [M-CIWVT-101128]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-CIWVT-101877	Technische Mechanik: Dynamik, Klausur	5 LP	Klahn
T-CIWVT-106290	Technische Mechanik: Dynamik, Vorleistung	0 LP	Klahn

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Studienleistung/ Prüfungsvorleistung: Hausaufgabenblätter
- 2. Schriftliche Prüfung mit einem Umfang von 120 Minuten

Voraussetzungen

Die Anmeldung zur Klausur ist erst nach bestandener Prüfungsvorleistung möglich:

Drei von vier Hausaufgabenblättern müssen erfolgreich bearbeitet sein.

Qualifikationsziele

Die Studierenden verfügen über Basiswissen in Technischer Mechanik/Dynamik, sie sind vertraut mit problemlösendem Denken und können dieses Wissen einsetzen um praxisnahe Ingenieurprobleme theoretisch zu analysieren und zu lösen.

Inhalt

Kinematik und Kinetik des Massenpunktes;

Kinematik und Kinetik starrer Körper;

Impulssatz, Drehimpulssatz, Arbeits- und Energiesatz;

Schwingungen von Systemen mit einem und mehreren Freiheitsgraden;

Relativbewegung des Massenpunktes;

Methoden der analytischen Mechanik, Lagrange-Gleichungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 56 h Selbststudium: 56 h Klausurvorbereitung: 40 h

Empfehlungen

Module des 1.-2. Semesters

- Gross/Ehlers/Wriggers/Schröder/Mülle: Formeln und Aufgaben zur Technischen Mechanik 3, 13. Auflage https://doi.org/ 10.1007/978-3-662-66190-1
- Kühlhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
- Hibbler: Dynamik, Pearson 2006, 10. Auflage
- Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner2006

4.53 Modul: Technische Mechanik: Statik [M-CIWVT-105846]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile		
T-CIWVT-111054	Technische Mechanik: Statik	Hochstein, Oelschlaeger, Willenbacher

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Vermittlung von Basiswissen der Mechanik (Statik), Grundlagen der Modellbildung, Theoretisches Durchdringen und Lösen einfacher (2-dimensionaler), praxisnaher Ingenieurprobleme aus der Statik.

Inhalt

- Kräfte und Momente
- · Gleichgewichtsbedingungen in der Ebene
- Lager
- Fachwerke
- Schwerpunkt
- Schnittgrößen an geraden Balken
- · Reibung,

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 Stunden, Selbststudium: 60 Stunden, Prüfungsvorbereitung: 30 Stunden

- Gross/Hauger/Schnell/Schröder: Technische Mechanik Bd. 1: Statik, Springer 2004, 8. Auflage
- · Hibbeler: Technische Mechanik 1- Statik, Pearson 2005, 10. Auflage
- Kühhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
- Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner 2006
- Müller/Ferber: Technische Mechanik für Ingenieure (mit CD-Rom), Fachbuchverlag Leipzig 2005

4.54 Modul: Technische Thermodynamik I [M-CIWVT-101129]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
7 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-CIWVT-101878	Technische Thermodynamik I, Vorleistung	0 LP	Enders	
T-CIWVT-101879	Technische Thermodynamik I, Klausur	7 LP	Enders	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen

- 1. schriftliche Prüfung im Umfang von 120 min
- Prüfungsvorleistung: unbenotete Studienleistung; die Studienleistung ist bestanden, wenn 2 von 3 Pflichtübungsblättern anerkannt wurden.

Voraussetzungen

Für die Teilnahme an der Klausur muss die Vorleistung bestanden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, Energiewandlungsprozesse unter Verwendung des ersten und zweiten Hauptsatzes der Thermodynamik zu analysieren und zu berechnen. Sie verstehen das Verhalten realer Einstoffsysteme und können thermodynamische Prozesse mit und ohne Phasenwechsel mit Hilfe von Zustandsdiagrammen und Prozessschemata erklären.

Inhalt

Thermodynamische Grundbegriffe; thermisches Gleichgewicht und empirische Temperatur; Zustandsgrößen und Zustandsgleichung des idealen Gases; Energie und erster Hauptsatz für geschlossene Systeme; Erhaltungssätze für offene Systeme; Entropie und thermodynamische Potentiale; Zweiter Hauptsatz; kalorische Zustandsgleichungen für Einstoffsysteme; Phasenwechselvorgänge von Einstoffsystemen und Phasendiagramme; Kreisprozesse für Wärmekraftmaschinen, Kältemaschinen und Wärmepumpen; Exergie.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 70 h Selbststudium: 80 h Klausurvorbereitung: 60 h

Empfehlungen

Module des 1. und 2. Semesters

- Schaber, K.: Skriptum Thermodynamik I (www.ttk.uni-karlsruhe.de)
- Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 1 Einstoffsysteme, 18. Aufl., Springer, 2009
- · Baehr, H. D.: Thermodynamik, 11. Aufl., Springer, 2002
- Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006

4.55 Modul: Technische Thermodynamik II [M-CIWVT-101130]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	2

Pflichtbestandteile			
T-CIWVT-101880	Technische Thermodynamik II, Vorleistung	0 LP	Enders
T-CIWVT-101881	Technische Thermodynamik II, Klausur	7 LP	Enders

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen

- 1. schriftliche Prüfung im Umfang von 120 min
- Prüfungsvorleistung: unbenotete Studienleistung; die Studienleistung ist bestanden, wenn 2 von 3 Pflichtübungsblättern anerkannt wurden.

Voraussetzungen

Für die Teilnahme an der Klausur muss die Vorleistung bestanden sein.

Qualifikationsziele

Die Studierenden verstehen das Verhalten von realen Gasen, Gas-Dampf-Gemischen, einfachen realen Gemischen und chemischen Gleichgewichten idealer Gase. Sie können entsprechende thermodynamische Prozesse mit Hilfe von Zustandsdiagrammen und Prozessschemata erklären. Sie sind in der Lage, diese Prozesse auf der Basis von Bilanzen und Gleichgewichten zu analysieren und zu berechnen.

Inhalt

Reale Gase und Gasverflüssigung; Potentialfunktionen; Charakterisierung von Mischungen; Mischungen idealer Gase; Gas-Dampf-Gemische und Prozesse mit feuchter Luft; Phasengleichgewichte und Phasendiagramme, Gesetze von Raoult und Henry, Flüssig-Flüssig-Gleichgewichte, Enthalpie von Mischungen; Allgemeine Beschreibung von Mischphasen und das chemische Potential; Reaktionsgleichgewichte in idealen Gasen. Grundlagen der Verbrennung.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 70 h Selbststudium: 80 h Klausurvorbereitung: 60 h

Empfehlungen

Module des 1.-3. Semesters
Technische Thermodynamik I

- Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 2: Mehrstoffsysteme und chemische Reaktionen, 15. Aufl., Springer, 2010
- Baehr, H. D., Kabelac, S.: Thermodynamik, 14. Aufl., Springer, 2009
- Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006
- Gmehling, J., Kolbe, B.: Thermodynamik, 2. Auflage, VCH Verlag Weinheim, 1992

4.56 Modul: Technologie dünner Schichten [M-CIWVT-107495]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2025)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile			
T-CIWVT-114692	Technologie dünner Schichten - Projektarbeit	6 LP	Schabel, Scharfer
T-CIWVT-114693	Technologie dünner Schichten - Übungsaufgaben und Praktikum	6 LP	Schabel, Scharfer

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen

- 1. Prüfungsleistung anderer Art: Übungsaufgaben und Praktikum (Wintersemester)
- 2. Prüfungsleistung anderer Art: Projektarbeit zu Scale-up Fragestellungen inkl. Präsentation (Sommersemester)

Voraussetzungen

Zum Beginn des Profilfachs im Winterseemster müssen mindestens 60 LP erbracht und ein Praktikum absolviert sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können

- grundlegende, zukunftsorientierte Prozesse der Technologie dünner Schichten erläutern
- Prozesskette einer wissenschaftlichen Fragestellung bis hin zu deren Beantwortung: Planung, Konzeptionierung, Realisierung, Durchführung und Auswertung von grundlegenden Versuchen, Aspekte zur Umsetzung in einen technischen Maßstab (Scale-Up) beschreiben
- wissenschaftlich unter Verwendung von Standardtools arbeiten
- wissenschaftliche Ergebnisse präsentieren
- eigenständig Fachwissen erarbeiten
- Fachwissen vermitteln und darstellen

Inhalt

Im Rahmen dieses Moduls erhalten Studierende verfahrenstechnische Einblicke in die aktuelle Forschung der Arbeitsgruppe Thin Film Technology (TFT), die sich u. a. mit innovativen Themen rund um Beschichtungs- und Trocknungsprozesse dünner Schichten befasst. Der Forschungsschwerpunkt liegt derzeit insbesondere auf Anwendungen der Dünnschichttechnik im Bereich der Energieforschung an neuen Batterietechnologien ergänzt durch Entwicklungen im Bereich der Wasserstofftechnologie, etwa bei Brennstoffzellen und Elektrolyseuren. Ziel des Profilfachs ist es, über diese zukunftsrelevanten Themen ingenieurwissenschaftliche Schlüsselkompetenzen zu vermitteln und einzuüben. Im Wintersemester werden dafür kompakte Vorlesungseinheiten angeboten, in denen sowohl technische als auch methodische Grundlagen erarbeitet werden. Dazu zählen unter anderem die Erstellung wissenschaftlicher Berichte und Präsentationen sowie der Umgang mit speziellen Excel-Werkzeugen wie Solver oder Makros. Ergänzend erfolgt eine Einführung in moderne Messtechnik – beispielsweise durch den Einsatz von Einplatinencomputern wie Arduino zur Temperaturmessung – sowie in die Datenverarbeitung mittels LabVIEW.

Das erlernte Wissen wird in praxisnahen Workshops vertieft. Im Anschluss führen die Studierenden im Labor zwei ausgewählte Experimente zu aktuellen Forschungsthemen durch. Die Auswertung basiert auf den im theoretischen Teil vermittelten Kenntnissen und erfolgt auch mithilfe dafür relevanter Kapitel aus dem VDI-Wärmeatlas. Die Resultate werden in Form einer wissenschaftlichen Ausarbeitung dokumentiert.

Im Sommersemester schließt sich daran eine projektbasierte Gruppenarbeit in kleineren Teams an, bei der das erlernte Wissen auf eine praxisnahe Aufgabenstellung übertragen und auch im größeren Maßstab (Scale-up) angewendet wird. Die Projektergebnisse werden am Ende des Semesters im Rahmen eines wissenschaftlichen Seminars präsentiert.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Anmerkungen

Im Rahmen des Moduls wird eine Exkursion angeboten, die den Bezug zwischen wissenschaftlicher Theorie und industrieller Praxis anschaulich macht. (Beispielsweise zur BASF nach Ludwigshafen, zu DAIMLER Truck nach Mannheim, VARTA nach Ellwangen, EVONIK nach Rheinstetten, ROCHE nach Mannheim, BOSCH nach Stuttgart oder zu Leclanché in Willstätt).

Arbeitsaufwand

Präsenzzeit: 100 hSelbststudium: 160 h

· Praktikum (inkl. Auswertung) 100 h

Literatur

VDI-Wärmeatlas, Springer 2013

eigene Skripte

4.57 Modul: Thermische Verfahrenstechnik [M-CIWVT-101134]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen (Verfahrenstechnische Grundoperationen)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

 Pflichtbestandteile

 T-CIWVT-101885
 Thermische Verfahrenstechnik
 6 LP Zeiner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 SPO. Änderung ab dem WS 21/22: Umfang 180 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Fachwissen zu den Grundlagen der Thermischen Trennverfahren erläutern. Dabei wird zwischen dem methodischen Werkzeug und dessen Anwendung auf ausgewählte Grundoperationen unterschieden. Sie sind in der Lage, standardisierte Aufgabenstellungen auf dem Gebiet der Thermischen Verfahrenstechnik zu bearbeiten, rechnerisch zu lösen und die hierfür notwendigen methodischen Hilfsmittel angemessen zu gebrauchen. Ferner können die Studierenden das erlernte Fachwissen und methodischen Werkzeuge auf für sie neue Prozesse und Fragestellungen qualifiziert anwenden.

Inhalt

Die vermittelten methodischen Werkzeuge sind vorrangig die Bilanzierung von Erhaltungsgrößen, das thermodynamische Gleichgewicht und deren Anwendung auf ein- und mehrstufige Prozesse. Im Rahmen dieses Moduls werden die folgenden verfahrenstechnischen Grundoperationen behandelt: Destillation, Rektifikation, Absorption, Extraktion, Verdampfung, Kristallisation, Trocknung, Adsorption/Chromatographie.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit (Vorlesung und Übung): 56 h

Selbststudium:44 h Klausurvorbereitung: 80 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

Umdrucke, Fachbücher

4.58 Modul: Weitere Leistungen [M-CIWVT-102017]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Zusatzleistungen

Leistungspunkte 30 LP Notenskala best./nicht best.

Turnus Jedes Semester **Dauer** 1 Semester Sprache Deutsch Level 3 Version

Voraussetzungen

4.59 Modul: Wissenschaftliches Schreiben mit LaTeX [M-HOC-106502]

Einrichtung: Zentrale Einrichtungen/House of Competence (HoC)

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte
2 LPNotenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-HOC-113121	Wissenschaftliches Schreiben mit LaTeX	2 LP	Hirsch-Weber

5 Teilleistungen

5.1 Teilleistung: Allgemeine Chemie und Chemie in wässrigen Lösungen [T-CIWVT-101892]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106431 - Allgemeine Chemie und Chemie in wässrigen Lösungen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen					
WS 25/26	2233050	Allgemeine Chemie und Chemie in wässrigen Lösungen	3 SWS	Vorlesung (V) / 🗣	Horn	
WS 25/26	2233051	Übungen zu 2233050 Allgemeine Chemie und Chemie in wässrigen Lösungen	2 SWS	Übung (Ü) / ⊈	Horn, Guthausen, Wagner	
WS 25/26	2233052	Tutorium A zu 2233050 Allgemeine Chemie und Chemie in wässrigen Lösungen	2 SWS	Tutorium (Tu) / 🗣	Guthausen, Wagner	
WS 25/26	2233053	Tutorium B zu 2233050 Allgemeine Chemie und Chemie in wässrigen Lösungen	2 SWS	Tutorium (Tu) / 🗣	Guthausen, Wagner	
Prüfungsv	eranstaltungen					
WS 25/26	7232667	Allgemeine Chemie und Chemie in wässrigen Lösungen			Horn, Guthausen	
WS 25/26	7232668	Allgemeine Chemie und Chemie in wässrigen Lösungen			Horn, Guthausen	

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 150 Minuten zu Lehrveranstaltung "Allgemeine Chemie und Chemie in wässrigen Lösungen" (Vorlesung 3 SWS und Übung 2 SWS).

Voraussetzungen

Keine

Arbeitsaufwand

180 Std.

5.2 Teilleistung: Angewandte Thermische Verfahrenstechnik - Projektarbeit [T-CIWVT-109120]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104458 - Angewandte Thermische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Sommersemester2

Lehrveran	Lehrveranstaltungen						
SS 2025	2260310	Grundlagen der Angewandten Thermischen Verfahrenstechnik (Profilfach)	2 SWS	Vorlesung (V) / x	Dietrich		
SS 2025	2260311	Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik (Profilfach)	2 SWS	Seminar (S) / x	Dietrich		
SS 2025	2260312	Praktikum zu Angewandte Thermische Verfahrenstechnik (Profilfach)	2 SWS	Praktikum (P) / x	Dietrich, und Mitarbeitende		
Prüfungsv	veranstaltungen		•	•	•		
SS 2025	7280004	Thermische Verfahrenstechnik - P	Thermische Verfahrenstechnik - Praktischer Anteil				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art.

Voraussetzungen

5.3 Teilleistung: Angewandte Thermische Verfahrenstechnik - Übungsaufgaben und Praktikum [T-CIWVT-110803]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-104458 - Angewandte Thermische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Wintersemester2

Lehrverans	Lehrveranstaltungen						
WS 25/26	2260310	Grundlagen der Angewandten Thermischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Dietrich, Wetzel, Zeiner		
WS 25/26	2260311	Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik	2 SWS	Seminar (S) / ⊈	Dietrich, Wetzel, Zeiner, und Mitarbeitende		
WS 25/26	2260312	Praktikum zu Angewandte Thermische Verfahrenstechnik (Projektarbeit)	2 SWS	Praktikum (P) / 🗣	Dietrich, Wetzel, Zeiner, und Mitarbeitende		
Prüfungsve	eranstaltungen			•			
WS 25/26	7280003	Angewandte Thermische Verfahrenstechnik - Übungsaufgaben und Praktikum			Dietrich		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bewertet werden die Übungsblätter (maximal 10 Punkte) und zwei Praktikumsversuche (maximal 20 Punkte). Die Teilleistung ist bestanden, wenn mindestens 15 Punkte erreicht wurden. Notenschlüssel auf Anfrage.

Voraussetzungen

5.4 Teilleistung: Angewandter Apparatebau Klausur [T-CIWVT-106562]

Verantwortung: Dr. Martin Neuberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103297 - Angewandter Apparatebau

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025 2245830 Angewandter Apparatebau 4 SWS Vorlesung (V) / • Neuberger						
Prüfungsveranstaltungen						
SS 2025 7291956 Angewandter Apparatebau Ne					Neuberger	
WS 25/26 7291956 Angewandter Apparatebau Klausur					Neuberger	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

5.5 Teilleistung: Anmeldung zur Zertifikatsausstellung - Begleitstudium Wissenschaft, Technologie und Gesellschaft [T-FORUM-113587]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Studienleistung Leistungspunkte 0 LP Notenskala best./nicht best.

Turnus Jedes Semester Version 1

Voraussetzungen

Für die Anmeldung ist es verpflichtend, dass die Grundlageneinheit und die Vertiefungseinheit vollständig absolviert wurden und die Benotungen der Teilleistungen in der Vertiefungseinheit vorliegen.

Die Anmeldung als Teilleistung bedeutet konkret die Ausstellung von Zeugnis und Zertifikat.

5.6 Teilleistung: Automatisierungs- und Regelungstechnik - Projektarbeit [T-CIWVT-113089]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106477 - Automatisierungs- und Regelungstechnik

TeilleistungsartPrüfungsleistung anderer Art

Leistungspunkte 6 LP **Notenskala** Drittelnoten Version 1

Lehrveran	staltungen				
SS 2025	2243022	Projektarbeit im Profilfach Automatisierungs- und Regelungstechnik	3 SWS	Projekt (PRO) / 🗣	Meurer
WS 25/26	2243020	Fortgeschrittene Methoden der linearen Regelungstechnik	3 SWS	Vorlesung / Übung (VÜ) / ⊈	Meurer
WS 25/26	2243021	Exkursion im Profilfach Automatisierungs- und Regelungstechnik	1 SWS	Exkursion (EXK) / 🗣	Meurer
Prüfungsv	eranstaltungen				
WS 25/26	7243022	Automatisierungs- und Regelungstechnik - Projektarbeit			Meurer, Jerono

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.7 Teilleistung: Automatisierungs- und Regelungstechnik - Prüfung [T-CIWVT-113088]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106477 - Automatisierungs- und Regelungstechnik

M-CIWVT-106880 - Fortgeschrittene Methoden der linearen Regelungstechnik

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 6 LP **Notenskala** Drittelnoten Version 1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2243020	Fortgeschrittene Methoden der linearen Regelungstechnik	3 SWS	Vorlesung / Übung (VÜ) / ⊈	Meurer		
WS 25/26	2243021	Exkursion im Profilfach Automatisierungs- und Regelungstechnik	1 SWS	Exkursion (EXK) / 🗣	Meurer		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7243020	Automatisierungs- und Regelungstechnik - Prüfung			Meurer, Jerono		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.8 Teilleistung: Bachelorarbeit [T-CIWVT-113255]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106580 - Modul Bachelorarbeit

Teilleistungsart
AbschlussarbeitLeistungspunkte
12 LPNotenskala
DrittelnotenVersion
1

Voraussetzungen

§ 14 Abs. 1 SPO Bachelor Bioingenieurwesen 2023

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Ahschlussarheit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 4 Monate

Maximale Verlängerungsfrist 1 Monate

Korrekturfrist 6 Wochen

Bioingenieurwesen Bachelor 2023 (Bachelor of Science (B.Sc.)) Modulhandbuch mit Stand vom 03.09.2025

5.9 Teilleistung: Berufspraktikum [T-CIWVT-106036]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart Studienleistung **Leistungspunkte** 14 LP Notenskala best./nicht best. Version 1

Prüfungsveranstaltungen			
WS 25/26	7200000	Berufspraktikum	Bajohr

Voraussetzungen

keine

5.10 Teilleistung: Biochemie [T-CIWVT-112997]

Verantwortung: PD Dr. Jens Rudat

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106414 - Biologie im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich2,5 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2212110	Biologie im Ingenieurwesen - Biochemie	2 SWS	Vorlesung (V) / 🗣	Rudat		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7212110-V-BC	BING - Biochemie	BING - Biochemie				
WS 25/26	7212110-V-BC	BING Biochemie			Rudat		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

5.11 Teilleistung: Biopharmazeutische Aufarbeitungsverfahren [T-CIWVT-106029]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen							
WS 25/26	2214010	Biopharmazeutische Aufarbeitungsverfahren	3 SWS	Vorlesung (V) / 🗣	Hubbuch, Franzreb		
WS 25/26	2214011	Übung zu 2214010 Biopharmazeutische Aufarbeitungsverfahren	1 SWS	Übung (Ü) / €	Hubbuch, Franzreb		
Prüfungsv	eranstaltungen						
SS 2025	7223011	Biopharmazeutische Aufarbeitungsverfahren			Hubbuch		
WS 25/26	7214010	Biopharmazeutische Aufarbeitungsv	erfahren		Hubbuch		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von ca. 120 Minuten (Gesamtprüfung im nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

5.12 Teilleistung: Biopharmazeutische Verfahrenstechnik [T-CIWVT-113023]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106437 - Biopharmazeutische Verfahrenstechnik

M-CIWVT-106475 - Biopharmazeutische Verfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrveran	staltungen				
SS 2025	2214040	Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)	3 SWS	Vorlesung (V) / 🗣	Hubbuch
SS 2025	2214041	Übungen zu 2241040 Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)	1 SWS	Übung (Ü) / 🗣	Hubbuch, und Mitarbeiter
Prüfungsv	eranstaltungen			•	
SS 2025	7223001	Biopharmazeutische Verfahrenstech Trennverfahren)	Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)		
WS 25/26	7214040	Biopharmazeutische Verfahrenstech Trennverfahren)	Hubbuch		

Legende: ☐ Online, ເ♣ Präsenz/Online gemischt, ♠ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Arbeitsaufwand

180 Std.

5.13 Teilleistung: Biotechnologie - Projektarbeit [T-CIWVT-103669]

Verantwortung: Dr.-Ing. Iris Perner-Nochta

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101143 - Biotechnologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art9 LPDrittelnoten2

Lehrverans	staltungen						
WS 25/26	2214210	Profilfach Biotechnologie - Management wissenschaftlicher Projekte	3 SWS	Vorlesung / Übung (VÜ) / ● :	Perner-Nochta, Grünberger, und Mitarbeitende		
WS 25/26	2214211	Praktische Übungen zu 2214210 Profilfach Biotechnologie	6 SWS	Praktikum (P) / 🗣	Perner-Nochta, Grünberger, und Mitarbeitende		
WS 25/26	2214212	Projektarbeit zu 2214210 Profilfach Biotechnologie	1 SWS	Übung (Ü) / 🗣	Perner-Nochta, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
WS 25/26	7223002	Profilfach Biotechnologie - Managen (Projektarbeit)	Perner-Nochta, Hubbuch				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist ein praktischer Anteil, Prüfungsleistung anderer Art.

Hier gehen folgende Leistungen ein:

- (0 20 Punkte) Projektplan
- (0 20 Punkte) die praktische Arbeit
- (0 20 Punkte) eine Präsentation) der Ergebnisse (Poster und Kurzvortrag)
- (0 20 Punkte) die schriftliche Ausarbeitung ein.

Notenschlüssel auf Anfrage. Die Teilleistung ist bestanden, wenn mindestens 40 Punkte erreicht wurden.

Voraussetzungen

5.14 Teilleistung: Biotechnologie - Prüfung [T-CIWVT-103668]

Verantwortung: Dr. Nadja Alina Henke

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101143 - Biotechnologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3 LP	Drittelnoten	Jedes Semester	2

Lehrveranstaltungen							
WS 25/26	2214215	Bioanalytik	2 SWS	Vorlesung (V) / €	Henke, Bleher		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7214215	Bioanalytik -Nachprüfung	Bioanalytik -Nachprüfung				
SS 2025	7223003	Biotechnologie - Prüfung Instrument	Biotechnologie - Prüfung Instrumentelle Bioanalytik (Profilfach)				
WS 25/26	7214215	Bioanalytik - Prüfung			Henke, Bleher		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)Erfolgskontrolle ist eine schriftlichen Prüfung im Umfang von 90 Minuten zu den Lehrinhalten der Vorlesung Bioanalytik.

Voraussetzungen

5.15 Teilleistung: Bioverfahrensentwicklung [T-CIWVT-114538]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107403 - Bioverfahrensentwicklung M-CIWVT-107406 - Bioverfahrensentwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2213050	Bioverfahrensentwicklung	2 SWS	Vorlesung (V) / 🗣	Grünberger	
WS 25/26	2213051	Übungen zu 2213050 Bioverfahrensentwicklung	2 SWS	Übung (Ü) / 🗣	Grünberger	
Prüfungsveranstaltungen						
WS 25/26	7222001	Bioprocess Development			Grünberger	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.16 Teilleistung: Bioverfahrenstechnik [T-CIWVT-113019]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106434 - Bioverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen							
WS 25/26	2213010	Bioverfahrenstechnik	4 SWS	Vorlesung (V) / ●	Grünberger, Hubbuch		
WS 25/26	2213011	Repetitorium Bioverfahrenstechnik	1 SWS	Übung (Ü) / 💢	Grünberger		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	722122-VBP-947	Bioverfahrenstechnik			Grünberger, Hubbuch		
WS 25/26	722122-VBP-947	Bioverfahrenstechnik			Grünberger, Hubbuch		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

5.17 Teilleistung: Chemische Reaktionstechnik - Projektarbeit [T-CIWVT-113696]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106825 - Chemische Reaktionstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2220023	Projektarbeit im Profilfach Chemische Reaktionstechnik	3 SWS	Projekt (PRO) / 🗣	Wehinger	
WS 25/26	2220022	Exkursion im Profilfach Chemische Reaktionstechnik	1 SWS	Exkursion (EXK) / 🗣	Wehinger	
Prüfungsveranstaltungen						
SS 2025	7220023	Chemische Reaktionstechnik - Projektarbeit			Wehinger	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.18 Teilleistung: Chemische Reaktionstechnik - Prüfung [T-CIWVT-113695]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106825 - Chemische Reaktionstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2220020	Chemische Verfahrenstechnik II	2 SWS	Vorlesung (V) / 🗣	Wehinger	
WS 25/26	2220021	Übung zu 2220020 Chemische Verfahrenstechnik II	1 SWS	Übung (Ü) / 🗣	Wehinger	
Prüfungsveranstaltungen						
SS 2025	7220021	Chemische Reaktionstechnik - Prüfung			Wehinger	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

5.19 Teilleistung: Chemische Verfahrenstechnik [T-CIWVT-101884]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101133 - Chemische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrverans	staltungen				
SS 2025	2220012	Repetitorium zur Klausur Chemische Verfahrenstechnik	2 SWS	Übung (Ü) /	Wehinger, und Mitarbeitende
WS 25/26	2220010	Chemische Verfahrenstechnik	2 SWS	Vorlesung (V) / €	Wehinger
WS 25/26	2220011	Übung zu 2220010 Chemische Verfahrenstechnik	2 SWS	Übung (Ü) / ♀	Wehinger, und Mitarbeitende
WS 25/26	2220012	Repetitorium zur Klausur Chemische Verfahrenstechnik	2 SWS	Übung (Ü) /	Wehinger, und Mitarbeitende
Prüfungsv	eranstaltungen				
SS 2025	7210101	Chemische Verfahrenstechnik		Wehinger	
WS 25/26	7210101	Chemische Verfahrenstechnik			Wehinger

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

5.20 Teilleistung: Datenanalyse [T-CIWVT-113039]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106432 - Datenanalyse

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2245140	Datenanalyse	2 SWS	Vorlesung (V) / 🗣	Guthausen	
Prüfungsveranstaltungen						
WS 25/26	7291140	Datenanalyse			Guthausen	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

5.21 Teilleistung: Einführung in das Bioingenieurwesen [T-CIWVT-113018]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann Prof. Dr. Jürgen Hubbuch Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106433 - Einführung in das Bioingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5 LPDrittelnoten1

Lehrverar	staltungen				
SS 2025	2210010	Einführung in das Bioingenieurwesen	4 SWS	Vorlesung (V) / 🗣	Grünberger, Holtmann, Hubbuch, van der Schaaf
Prüfungs	veranstaltunger	1	•	•	
SS 2025	7210010	Einführung in das Bioingeni	Einführung in das Bioingenieurwesen		Grünberger, Holtmann, Hubbuch, van der Schaaf
WS 25/26	7210010	Einführung in das Bioingenieurwesen		Grünberger, Holtmann, Hubbuch, van der Schaaf	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

5.22 Teilleistung: Electrochemical Energy Technologies [T-ETIT-111352]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105690 - Electrochemical Energy Technologies

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Wintersemester	1

Lehrverans	staltungen				
WS 25/26	2304236	Electrochemical Energy Technologies	2 SWS	Vorlesung (V) / 🗣	Krewer
WS 25/26	2304237	Exercise for 2304236 Electrochemical Energy Technologies	1 SWS	Übung (Ü) / ♀ ⁵	Pauer
Prüfungsv	eranstaltungen				
SS 2025	7300009	Electrochemical Energy Technologies			Krewer
WS 25/26	7300002	Electrochemical Energy Technologies			Krewer

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Type of Examination: Written exam

Duration of Examination: approx. 120 minutes

Voraussetzungen

none

5.23 Teilleistung: Energie- und Umwelttechnik [T-CIWVT-108254]

Verantwortung: Prof. Dr. Reinhard Rauch

Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101145 - Energie- und Umwelttechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich8 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2231150	Verfahren zur Erzeugung chemischer Energieträger	2 SWS	Vorlesung (V) / 🗣	Rauch	
WS 25/26	2232050	Grundlagen der Hochtemperatur- Energieumwandlung	2 SWS	Vorlesung (V) / 🗣	Trimis	
Prüfungsv	eranstaltungen					
SS 2025	7230500	Energie- und Umwelttechnik		Trimis, Rauch		
WS 25/26	7230500-1	Energie- und Umwelttechnik			Rauch, Trimis	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Empfehlungen

Module des 1. - 4. Semesters

5.24 Teilleistung: Energie- und Umwelttechnik Projektarbeit [T-CIWVT-103527]

Verantwortung: Prof. Dr. Reinhard Rauch

Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101145 - Energie- und Umwelttechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art4 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2231151	Projektarbeit im Profilfach Energie- und Umwelttechnik	3 SWS	Projekt (PRO) / 🗣	Rauch, Trimis, Scheiff	
Prüfungsve	Prüfungsveranstaltungen					
WS 25/26	7230501	Energie- und Umwelttechnik Projektarbeit		Rauch, Trimis		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Projektarbeit (Prüfungsleistung anderer Art).

Voraussetzungen

5.25 Teilleistung: Energieverfahrenstechnik [T-CIWVT-101889]

Verantwortung: Dr. Frederik Scheiff

Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101136 - Energieverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
WS 25/26	2232110	Energieverfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Stein, Scheiff
WS 25/26	2232111	Übung zu 2232110 Energieverfahrenstechnik	1 SWS	Übung (Ü) / ♀	Stein, Scheiff, und Mitarbeitende
Prüfungsve	eranstaltungen				
SS 2025	7232110	Energieverfahrenstechnik		Scheiff, Stein	
WS 25/26	7232110	Energieverfahrenstechnik	•	_	Stein, Scheiff

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 150 Minuten.

Voraussetzungen

Keine

Empfehlungen

Inhalte aus den Module Thermodynamik I und II werden vorausgesetzt.

5.26 Teilleistung: Excercises: Membrane Technologies [T-CIWVT-113235]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1 LP	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2233011	Membrane Technologies in Water Treatment - Excercises	1 SWS	Übung (Ü) / 🕃	Horn, Saravia, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	7233011	Excercises for Membrane Technologies		Horn, Saravia		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung: Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

5.27 Teilleistung: Fluiddynamik, Klausur [T-CIWVT-101882]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101131 - Fluiddynamik

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	1

Lehrveranstaltungen						
SS 2025	2245010	Fluiddynamik	2 SWS	Vorlesung (V) / 🗣	Nirschl	
SS 2025	2245011	Übungen zu 2245010 Fluiddynamik in kleinen Gruppen	2 SWS	Übung (Ü) / 🗣	Nirschl	
Prüfungsv	eranstaltungen					
SS 2025	7291944	Fluiddynamik			Nirschl	
WS 25/26	7291944	Fluiddynamik			Nirschl	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Als Vorleistung sind vier von fünf Hausarbeiten zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-101904 - Fluiddynamik, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.28 Teilleistung: Fluiddynamik, Vorleistung [T-CIWVT-101904]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101131 - Fluiddynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0 LP	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2245010	Fluiddynamik	2 SWS	Vorlesung (V) / €	Nirschl		
SS 2025	2245011	Übungen zu 2245010 Fluiddynamik in kleinen Gruppen	2 SWS	Übung (Ü) / 🗣	Nirschl		
Prüfungsve	eranstaltungen						
SS 2025	7291943 Fluiddynamik, Vorleistung				Nirschl		
WS 25/26	7291943	Fluiddynamik, Vorleistung			Nirschl		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung:

Als Vorleistung für die schriftliche Klausur sind vier von fünf Hausarbeiten zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

Voraussetzungen

keine

5.29 Teilleistung: Formulierung und Charakterisierung von Energiematerialien - Projektarbeit [T-CIWVT-113479]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106700 - Formulierung und Charakterisierung von Energiematerialien

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 4 LP Notenskala Drittelnoten

Turnus Jedes Sommersemester Version 1

Prüfungsve	Prüfungsveranstaltungen					
SS 2025	7242026	Formulierung und Charakterisierung von Energiematerialien - Projektarbeit	Oelschlaeger			

Voraussetzungen

Die Teilnahme an der Projektarbeit ist nur möglich, wenn die mündliche Prüfung bestanden ist.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-113478 - Formulierung und Charakterisierung von Energiematerialien - Prüfung muss erfolgreich abgeschlossen worden sein.

5.30 Teilleistung: Formulierung und Charakterisierung von Energiematerialien - Prüfung [T-CIWVT-113478]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106700 - Formulierung und Charakterisierung von Energiematerialien

Teilleistungsart I Prüfungsleistung mündlich

Leistungspunkte 8 LP Notenskala Drittelnoten Version 1

Lehrveran	staltungen			_	_
WS 25/26	2242025	Herstellung und rheologische Charakterisierung von Energiematerialien	3 SWS	Vorlesung (V) / 🗣	Willenbacher, Hochstein, Oelschlaeger
WS 25/26	2242026	Übungen zu 2242025 Herstellung und rheologische Charakterisierung von Energiematerialien	1 SWS	Übung (Ü) / 🗣	Willenbacher, Oelschlaeger, und Mitarbeitende
Prüfungsv	eranstaltungen				
SS 2025	7242025	Formulierung und Charakterisierung von Energiematerialien - Prüfung			Oelschlaeger

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

5.31 Teilleistung: Genetik [T-CIWVT-111063]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106414 - Biologie im Ingenieurwesen M-CIWVT-106447 - Orientierungsprüfung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	2 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2212111	Biologie im Ingenieurwesen - Genetik	2 SWS	Vorlesung (V) / ♀	Neumann	
Prüfungsve	eranstaltungen					
SS 2025	7212114-V-GEN	BING - Genetik			Neumann	
WS 25/26	7212114-V-GEN	BING Genetik			Neumann	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Es wird empfohlen, zunächst die Teilleistung Zellbiologie zu absolvieren.

5.32 Teilleistung: Grundlagen der Kältetechnik Projektarbeit [T-CIWVT-109118]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104457 - Grundlagen der Kältetechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art6 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2250112	Projektarbeit zum Profilfach Grundlagen der Kältetechnik	2 SWS	Übung (Ü) / 🗣	Grohmann	
Prüfungsveranstaltungen						
SS 2025	7250112	Grundlagen der Kältetechnik Projekt	Grundlagen der Kältetechnik Projektarbeit			
WS 25/26	7250112	Grundlagen der Kältetechnik Projektarbeit			Grohmann	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle des Moduls ist eine Prüfungsleistung anderer Art: Gruppenpräsentation der Projektarbeit.

Voraussetzungen

5.33 Teilleistung: Grundlagen der Kältetechnik Prüfung [T-CIWVT-109117]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104457 - Grundlagen der Kältetechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Sommersemester	3

Lehrverans	Lehrveranstaltungen						
WS 25/26	2250110	Kältetechnik A	2 SWS	Vorlesung (V) /	Grohmann		
WS 25/26	2250111	Übung zu 2250110 Kältetechnik A	1 SWS	Übung (Ü) / 🗣	Grohmann, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7250110	Grundlagen der Kältetechnik Prüfung			Grohmann		
WS 25/26	7250110	Grundlagen der Kältetechnik Prüfung			Grohmann		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung Grundlagen der Kältetechnik.

Voraussetzungen

Projektarbeit

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-109118 - Grundlagen der Kältetechnik Projektarbeit muss begonnen worden sein.

5.34 Teilleistung: Grundlagen der Wärme- und Stoffübertragung [T-CIWVT-101883]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-101132 - Grundlagen der Wärme- und Stoffübertragung

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 7 LP **Notenskala** Drittelnoten

Turnus Jedes Semester Version 1

Lehrverans	Lehrveranstaltungen						
SS 2025	2260030	Wärme- und Stoffübertragung	3 SWS	Vorlesung (V) / 🗣	Wetzel, Dietrich		
SS 2025	2260031	Übungen zu 2260030 Wärme- und Stoffübertragung	2 SWS	Übung (Ü) / 🗣	Wetzel, Dietrich, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7280001	Grundlagen der Wärme- und Stoffübertragung			Wetzel, Dietrich		
WS 25/26	7280001	Grundlagen der Wärme- und Stoffübertragung			Wetzel, Dietrich		

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 180 Minuten.

Voraussetzungen

5.35 Teilleistung: Grundlagenseminar Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung [T-FORUM-113579]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Studienleistung Leistungspunkte 2 LP Notenskala best./nicht best.

Turnus Jedes Sommersemester Dauer 1 Sem. Version 1

Erfolgskontrolle(n)

Studienleistung in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Es wird empfohlen, das Grundlagenseminar im gleichen Semester wie die Ringvorlesung "Wissenschaft in der Gesellschaft" zu absolvieren.

Falls ein Besuch von Ringvorlesung und Grundlagenseminar im gleichen Semester nicht möglich ist, kann das Grundlagenseminar auch in Semestern vor der Ringvorlesung besucht werden.

Der Besuch von Veranstaltungen in der Vertiefungseinheit vor dem Besuch des Grundlagenseminars sollte jedoch vermieden werden.

5.36 Teilleistung: Höhere Mathematik I [T-MATH-100275]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-CIWVT-106447 - Orientierungsprüfung M-MATH-100280 - Höhere Mathematik I

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich7 LPDrittelnotenJedes Semester3

Lehrveran	staltungen				
WS 25/26	0131000	Höhere Mathematik I für die Fachrichtungen Maschinenbau, Geodäsie und Geoinformatik, Materialwissenschaft und Werkstofftechnik, und Ingenieurpädagogik	4 SWS	Vorlesung (V)	Arens
WS 25/26	0131200	Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen und Verfahrenstechnik, Bioingenieurwesen, und Mechatronik und Informationstechnik	4 SWS	Vorlesung (V)	Arens
Prüfungsv	eranstaltunger	1			
SS 2025	6700025	Höhere Mathematik I			Arens, Griesmaier, Hettlich
WS 25/26	6700007	Höhere Mathematik I			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 1-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 1.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100525 - Übungen zu Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.

5.37 Teilleistung: Höhere Mathematik II [T-MATH-100276]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	Jedes Semester	2

Lehrveran	staltungen				
SS 2025	0180800	Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie und Geoinformatik, Materialwissenschaft und Werkstofftechnik, und Ingenieurpädagogik	4 SWS	Vorlesung (V)	Arens
SS 2025	0181000	Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen und Verfahrenstechnik, Bioingenieurwesen, und Mechatronik und Informationstechnik	4 SWS	Vorlesung (V)	Arens
Prüfungsv	eranstaltunger	1			
SS 2025	6700001	Höhere Mathematik II	Höhere Mathematik II		
WS 25/26	6700008	Höhere Mathematik II			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 2-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 2.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100526 - Übungen zu Höhere Mathematik II muss erfolgreich abgeschlossen worden sein.

5.38 Teilleistung: Höhere Mathematik III [T-MATH-100277]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100282 - Höhere Mathematik III

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	Jedes Semester	2

Lehrveran	staltungen				
WS 25/26	0131400	Höhere Mathematik III für die Fachrichtungen Maschinenbau, Materialwissenschaft und Werkstofftechnik, Chemieingenieurwesen und Verfahrenstechnik, Bioingenieurwesen, und Mechatronik und Informationstechnik	4 SWS	Vorlesung (V)	Hettlich
Prüfungsv	eranstaltunger	ı			
SS 2025	6700002	Höhere Mathematik III	Höhere Mathematik III		
WS 25/26	6700009	Höhere Mathematik III			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 3-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 3.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100527 - Übungen zu Höhere Mathematik III muss erfolgreich abgeschlossen worden sein.

5.39 Teilleistung: Intensivierung von Bioprozessen - Klausur [T-CIWVT-112998]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106416 - Intensivierung von Bioprozessen M-CIWVT-106444 - Intensivierung von Bioprozessen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen					
SS 2025	2212050	Intensivierung von Bioprozessen	2 SWS	Vorlesung (V) / 🗣	Holtmann
SS 2025	2212051	Übungen zu 2212050 Intensivierung von Bioprozessen	2 SWS	Übung (Ü) / 🗣	Holtmann, und Mitarbeitende
Prüfungsve	eranstaltungen				
SS 2025	7212050-WP-IBP	Intensivierung von Bioprozessen - Klausur			Holtmann
WS 25/26	7212050-WP-IBP	Intensivierung von Bioprozessen - Klausur			Holtmann

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.40 Teilleistung: Intensivierung von Bioprozessen - Praktikum [T-CIWVT-112999]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106416 - Intensivierung von Bioprozessen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art3 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2212052	Praktikum zu 2212050 Intensivierung von Bioprozessen	2 SWS	Praktikum (P) / 🗣	Neumann, Holtmann, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	7212052-P-IBP	Intensivierung von Bioprozessen - Praktikum			Neumann	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.41 Teilleistung: Kinetik und Katalyse [T-CIWVT-106032]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
SS 2025	2220030	Kinetik und Katalyse	2 SWS	Vorlesung (V) / 🗣	Wehinger
SS 2025	2220031	Übungen zu 2220030 Kinetik und Katalyse	1 SWS	Übung (Ü) / ♀ ⁴	Wehinger, und Mitarbeitende
Prüfungsve	eranstaltungen				•
SS 2025	7210102	Kinetik und Katalyse			Wehinger
WS 25/26	7210102	Kinetik und Katalyse			Wehinger

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen

5.42 Teilleistung: Konstruktiver Apparatebau, Klausur [T-CIWVT-103642]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101941 - Konstruktiver Apparatebau

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
SS 2025	2245210	Konstruktionslehre und Apparatebau für BIW	3 SWS	Vorlesung (V) /	Gleiß	
Prüfungsveranstaltungen						
SS 2025	7291957	Konstruktiver Apparatebau			Gleiß	
WS 25/26	7291957	Konstruktiver Apparatebau Klausur			Gleiß	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Schriftlichen Prüfung mit einem Umfang von 120 Minuten.

Die Prüfung besteht aus einem Kurzfragen- (30 min) und einem Berechnungsteil (90min). Für den Berechnungsteil der Prüfung ist das Vorlesungsskriptum sowie ein Taschenrechner zugelassen.

Voraussetzungen

Vorleistung

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-103641 - Konstruktiver Apparatebau, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.43 Teilleistung: Konstruktiver Apparatebau, Vorleistung [T-CIWVT-103641]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101941 - Konstruktiver Apparatebau

Teilleistungsart	Leistungspunkte	Notenskala	Version
Studienleistung	0 LP	best./nicht best.	1

Lehrveranstaltungen						
SS 2025	2245210	Konstruktionslehre und Apparatebau für BIW	3 SWS	Vorlesung (V) / Q ⁴	Gleiß	
Prüfungsveranstaltungen						
SS 2025	7291959	Konstruktiver Apparatebau Vorleistung			Gleiß	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung:

Vier von fünf Hausarbeiten müssen bestanden sein. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

Voraussetzungen

5.44 Teilleistung: Kreislaufwirtschaft - mündliche Prüfung [T-CIWVT-112172]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105995 - Kreislaufwirtschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich8 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen								
WS 25/26	2232220	Kreislaufwirtschaft	2 SWS	Vorlesung (V) / 🗣	Stapf			
WS 25/26	2232221	Übungen zu 2232220 Kreislaufwirtschaft	1 SWS	Übung (Ü) / 🗣	Stapf			
Prüfungsveranstaltungen								
SS 2025	7232220	Kreislaufwirtschaft - mündliche Prüfung			Stapf			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung über die Inhalte von Vorlesung, Übung und Fallstudien mit einer Dauer von ca. 30 Minuten.

Voraussetzungen

5.45 Teilleistung: Kreislaufwirtschaft - Projektarbeit [T-CIWVT-112173]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105995 - Kreislaufwirtschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen								
SS 2025	2232222	Projektarbeit Profilfach Kreislaufwirtschaft	2 SWS	Projekt (PRO) / 🗣	Stapf, und Mitarbeitende			
Prüfungsveranstaltungen								
WS 25/26	7231004	Kreislaufwirtschaft - Projektarbeit			Stapf			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art/ Projektarbeit; bewertet werden die schriftliche Ausarbeitung sowie die Präsentation der Ergebnisse.

Voraussetzungen

5.46 Teilleistung: Lebensmittelbioverfahrenstechnik [T-CIWVT-113021]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106436 - Lebensmittelbioverfahrenstechnik M-CIWVT-106476 - Lebensmittelbioverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2211020	Lebensmittelbioverfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Leister		
WS 25/26	2211021	Übung zu 2211020 Lebensmittelbioverfahrenstechnik	2 SWS	Übung (Ü) / ♀	Leister		
Prüfungsve	eranstaltungen						
SS 2025	7220006	Lebensmittelbiotechnologie			Leister		
WS 25/26	7211020	Lebensmittelbioverfahrenstechnik			Leister		
WS 25/26	7220006	Lebensmittelbiotechnologie	•		Leister		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine.

Arbeitsaufwand

180 Std.

5.47 Teilleistung: Lebensmittelbioverfahrenstechnik Praktikum [T-CIWVT-113022]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106436 - Lebensmittelbioverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen						
WS 25/26	2211022	Praktikum zu 2211020 Lebensmittelbioverfahrenstechnik	2 SWS	Praktikum (P) / 🗣	Leister	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Voraussetzungen

5.48 Teilleistung: Lebensmitteltechnologie [T-CIWVT-103528]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101148 - Lebensmitteltechnologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	5 LP	Drittelnoten	Jedes Sommersemester	3

Lehrverans	staltungen				
SS 2025	2211043	Exkursion im Profilfach Lebensmitteltechnologie	1 SWS	Exkursion (EXK) / 🗣	Leister, und Mitarbeitende
WS 25/26	2211040	Einführung in das Profilfach Lebensmitteltechnologie	2 SWS	Vorlesung (V) / 🗣	Leister, und Mitarbeitende
WS 25/26	2211041	Projektarbeit im Profilfach Lebensmitteltechnologie	1 SWS	Projekt (PRO) / 🗣	Leister, und Mitarbeitende
Prüfungsveranstaltungen					
WS 25/26	7220010	Lebensmitteltechnologie			Leister

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Gruppenprüfung im Umfang von ca. 45 Minuten zu den Inhalten der Lehrveranstaltungen.

Voraussetzungen

Keine.

Empfehlungen

Module des 1. - 4. Semesters.

5.49 Teilleistung: Lebensmitteltechnologie Projektarbeit [T-CIWVT-103529]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101148 - Lebensmitteltechnologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art7 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2211041	Projektarbeit im Profilfach Lebensmitteltechnologie	4 SWS	Projekt (PRO) / 🗣	Leister, und Mitarbeitende	
WS 25/26	2211041	Projektarbeit im Profilfach Lebensmitteltechnologie	1 SWS	Projekt (PRO) / 🗣	Leister, und Mitarbeitende	
Prüfungsveranstaltungen						
WS 25/26	7220011	Lebensmitteltechnologie Projektarbeit			Leister	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art.

Hier gehen die Abschlusspräsentation, Abschlussbericht, wissenschaftliches Arbeiten und Soft Skills in die Bewertung mit ein.

Voraussetzungen

Keine

Empfehlungen

Module des 1. - 4. Semesters.

5.50 Teilleistung: Luftreinhaltung [T-CIWVT-113046]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106448 - Luftreinhaltung

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich7 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
WS 25/26	2244020	Gas-Partikel-Messtechnik	2 SWS	Vorlesung (V) / 🗣	Dittler	
WS 25/26	2244021	Übungen in kleinen Gruppen zu 2244020 Gas-Partikel-Messtechnik	1 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende	
Prüfungsveranstaltungen						
WS 25/26	7244021	Luftreinhaltung (Profilfach)			Dittler	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

5.51 Teilleistung: Luftreinhaltung - Projektarbeit [T-CIWVT-113047]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106448 - Luftreinhaltung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art5 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen						
SS 2025	2244022	Projektarbeit im Profilfach Luftreinhaltung	2 SWS	Projekt (PRO) / 🗙	Dittler, und Mitarbeitende		
WS 25/26	2244023	Exkursion zum Profilfach Luftreinhaltung	2 SWS	Exkursion (EXK) / 🗣	Dittler, und Mitarbeitende		
Prüfungsveranstaltungen							
WS 25/26	7244022	Luftreinhaltung - Projektarbeit			Dittler		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art; Projektarbeit.

Voraussetzungen

5.52 Teilleistung: Mathematische Modellbildung für Bioverfahrenstechnik [T-MATH-113040]

Verantwortung: PD Dr. Gudrun Thäter **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-106443 - Mathematische Modellbildung für Bioverfahrenstechnik

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 4 LP **Notenskala** Drittelnoten Version 1

Prüfungsveranstaltungen					
SS 2025	7700145	Mathematische Modellbildung für Bioverfahrenstechnik	Thäter		

Voraussetzungen

5.53 Teilleistung: Mechanische Separationstechnik Projektarbeit [T-CIWVT-103452]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101147 - Mechanische Separationstechnik

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 4 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen							
SS 2025	2245232	Projektarbeit im Profilfach Mechanische Separationstechnik (2245230)	1 SWS	Übung (Ü) / 🗣	Gleiß, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
WS 25/26	7291300	Mechanische Separationstechnik P	Mechanische Separationstechnik Projektarbeit				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Projektarbeit. Es werden die praktische Mitarbeit, der schriftliche Bericht sowie die mündliche Präsentation der Ergebnisse individuell bewertet

Voraussetzungen

keine

Empfehlungen

Module des 1. -4. Semesters

5.54 Teilleistung: Mechanische Separationstechnik Prüfung [T-CIWVT-103448]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101147 - Mechanische Separationstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	8 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
WS 25/26	2245230	Mechanische Separationstechnik	3 SWS	Vorlesung (V) / 🗣	Gleiß	
WS 25/26	2245231	Übung zu 2245230 Mechanische Separationstechnik	1 SWS	Übung (Ü) / 🗣	Gleiß	
Prüfungsveranstaltungen						
WS 25/26	7291231	Mechanische Separationstechnik Prüfung			Gleiß	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung "22987 Mechanische Separationstechnik" und "22988 Übung zu 22987" .

Voraussetzungen

Keine

Empfehlungen

Module des 1. -4. Semesters

5.55 Teilleistung: Mechanische Verfahrenstechnik [T-CIWVT-101886]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101135 - Mechanische Verfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
WS 25/26	2244010	Grundlagen der Mechanischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Dittler	
WS 25/26	2244011	Übung zu 2244010 Grundlagen der Mechanischen Verfahrenstechnik	2 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende	
Prüfungsv	eranstaltungen					
SS 2025	7244010	Mechanische Verfahrenstechnik			Dittler	
WS 25/26	7244010	Mechanische Verfahrenstechnik			Dittler	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Empfehlungen

Module des 1.-4. Semesters.

5.56 Teilleistung: Medical Imaging Technology [T-ETIT-113625]

Verantwortung: Prof. Dr.-Ing. Maria Francesca Spadea

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-106778 - Medical Imaging Technology

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2305263	Medical Imaging Technology	4 SWS	Vorlesung / Übung (VÜ) / ⊈	Spadea, Arndt	
Prüfungsv	eranstaltungen					
SS 2025	7305260	Medical Imaging Technology			Spadea, Arndt	
WS 25/26	7305260	Medical Imaging Technology			Spadea	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

The examination takes place in form of a written examination lasting 120 minutes. The course grade is the grade of the written exam.

Voraussetzungen

none

5.57 Teilleistung: Membrane Technologies in Water Treatment [T-CIWVT-113236]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2233010	Membrane Technologies in Water Treatment	2 SWS	Vorlesung (V) / ●	Horn, Saravia		
SS 2025	2233011	Membrane Technologies in Water Treatment - Excercises	1 SWS	Übung (Ü) / 🕃	Horn, Saravia, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7233010	Membrane Technologies in Water Treatment			Horn, Saravia		
WS 25/26	7232605	Membrane Technologies in Water Tr	Horn, Saravia				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 90 Minuten.

Voraussetzungen

Prüfungsvorleistung: Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113235 - Excercises: Membrane Technologies muss erfolgreich abgeschlossen worden sein.

5.58 Teilleistung: Mikrobiologie [T-CIWVT-113038]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106414 - Biologie im Ingenieurwesen

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
2,5 LPNotenskala
DrittelnotenTurnus
Jedes SommersemesterVersion
1

Lehrveranstaltungen						
SS 2025	2212112	Biologie im Ingenieurwesen - Mikrobiologie	2 SWS	Vorlesung (V) / 🗣	Neumann	
Prüfungsve	eranstaltungen					
SS 2025	7212112-V-MIBI	BING - Mikrobiologie			Neumann	
WS 25/26	7212112-V-MIBI	BING Mikrobiologie			Neumann	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

5.59 Teilleistung: Mikroverfahrenstechnik Projektarbeit [T-CIWVT-103667]

Verantwortung: Prof. Dr.-Ing. Roland Dittmeyer

Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101154 - Mikroverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art5 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025		Projektarbeit im Profilfach Mikroverfahrenstechnik	2 SWS	Übung (Ü) / 🗣	Dittmeyer, Pfeifer, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	7220221	Mikroverfahrenstechnik Projektarbeit			Pfeifer	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

5.60 Teilleistung: Mikroverfahrenstechnik Prüfung [T-CIWVT-103666]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101154 - Mikroverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich7 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
WS 25/26	2220220	Auslegung von Mikroreaktoren	3 SWS	Vorlesung / Übung (VÜ) / ⊈ ∗	Pfeifer	
Prüfungsveranstaltungen						
SS 2025	7220222	Mikroverfahrenstechnik Prüfung			Pfeifer	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

5.61 Teilleistung: Numerische Strömungssimulation [T-CIWVT-106035]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen					
WS 25/26	2245020	Numerische Strömungssimulation	2 SWS	Vorlesung (V) / 🗣	Nirschl, und Mitarbeitende	
WS 25/26	2245021	Übungen zu 2245020 Numerische Strömungssimulation (in kleinen Gruppen)	1 SWS	Übung (Ü) / 🗣	Nirschl, und Mitarbeitende	
Prüfungsv	eranstaltungen				•	
SS 2025	7291932	Numerische Strömungssimulation			Nirschl	
WS 25/26	7291020	Numerische Strömungssimulation	•			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

5.62 Teilleistung: Organisch-Chemische Prozesskunde (OCP) [T-CIWVT-101890]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101137 - Organisch-chemische Prozesskunde

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen				
WS 25/26	2231140	Organisch-Chemische Prozesskunde	3 SWS	Vorlesung (V) / 🗣	Rauch
WS 25/26	2231141	Übung zu 2231140 Organisch- Chemische Prozesskunde	1 SWS	Übung (Ü) / 🗣	Rauch
Prüfungsv	eranstaltungen	1			
SS 2025	7223703	Organisch-Chemische Prozessku	Organisch-Chemische Prozesskunde (OCP)		
WS 25/26	7223703	Organisch-Chemische Prozessku	Organisch-Chemische Prozesskunde (OCP)		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CHEMBIO-101115 - Organische Chemie für Ingenieure muss begonnen worden sein.

5.63 Teilleistung: Organische Chemie für Ingenieure [T-CHEMBIO-101865]

Verantwortung: Prof. Dr. Michael Meier

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101115 - Organische Chemie für Ingenieure

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5 LPDrittelnoten2

Lehrveran	Lehrveranstaltungen							
SS 2025	5142	Organische Chemie für CIW/VT und BIW	2 SWS	Vorlesung (V) / 🗣	Levkin			
SS 2025	5143	Übungen zu Organische Chemie für CIW/VT und BIW	2 SWS	Übung (Ü) / 🗣	Levkin			
Prüfungsv	eranstaltungen			•	•			
SS 2025	7100017	Organische Chemie für CIW, BIW,	Organische Chemie für CIW, BIW, VT und MWT		Levkin, Podlech			
SS 2025	7100029	Organische Chemie für CIW, BIW, VT und MWT. 2. Klausur			Levkin, Podlech			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

gem. Modulbeschreibung

5.64 Teilleistung: Partikeltechnik Klausur [T-CIWVT-106028]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart Leistungspunkte Prüfungsleistung schriftlich 6 LP Notenskala Drittelnoten 1

Lehrveranstaltungen							
SS 2025	2244030	Partikeltechnik	2 SWS	Vorlesung (V) /	Dittler		
SS 2025	2244031	Übungen in kleinen Gruppen zu 2244030 Partikeltechnik	1 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende		
Prüfungsv	eranstaltungen						
SS 2025	7244030	Partikeltechnik Klausur	Partikeltechnik Klausur				
WS 25/26	7244030	Partikeltechnik Klausur			Dittler		

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

5.65 Teilleistung: Physiologie und Anatomie für die Medizintechnik [T-ETIT-111815]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105874 - Physiologie und Anatomie für die Medizintechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
SS 2025	2305282	Physiologie und Anatomie II	2 SWS	Vorlesung (V) / 🗣	Nahm	
WS 25/26	2305281	Physiologie und Anatomie I	2 SWS	Vorlesung (V) / 🗣	Nahm	
Prüfungsve	eranstaltungen					
SS 2025	7305283	Physiologie und Anatomie für die Me	Physiologie und Anatomie für die Medizintechnik			
WS 25/26 7305283 Physiologie und Anatomie für die Medizintechnik			Nahm			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Die Erfolgskontrolle umfasst den Inhalt von Physiologie und Anatomie I (jedes Wintersemester) and Physiologie und Anatomie II (jedes Sommersemester).

Voraussetzungen

Die Teilleistungen "T-ETIT-101932 - Physiologie und Anatomie I" und "T-ETIT-101933 - Physiologie und Anatomie II" dürfen nicht begonnen sein.

Anmerkungen

Winter-/Sommersemester:

WiSe: Physiologie und Anatomie I SoSe: Physiologie und Anatomie II

5.66 Teilleistung: Praktikum Allgemeine Chemie [T-CIWVT-113015]

Verantwortung: Prof. Dr. Harald Horn

Stephanie West

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106427 - Naturwissenschaftliches Grundpraktikum

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung praktisch2 LPbest./nicht best.Jedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2200350	Sicherheitsunterweisung und Einführung Praktika 1. Semester BIW und CIW	1 SWS	Vorlesung (V) / 🗣	Dietrich, Sinanis, West, und Mitarbeitende		
WS 25/26	2233054	Naturwissenschaftliches Grundpraktikum - Teil I: Allgemeine Chemie	2 SWS	Praktikum (P) / 🗣	Horn, West		
Prüfungsv	eranstaltungen						
WS 25/26	7233054	Praktikum Allgemeine Chemie (BIW))		Horn		

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Studienleistung.

Unter folgenden Voraussetzungen ist das Praktikum bestanden:

Teilnahme an allen Versuchen, Abgabe und Bestehen der Versuchsprotokolle.

Vor jedem Versuch ist ein schriftliches Antestat (15 min) zu bestehen;

bei nicht bestandenem Antestat besteht die Möglichkeit, den Versuch an einem anderen Versuchtag (falls organisatorisch möglich) oder im Folgemester zu wiederholen.

Unentschuldigtes Fehlen an einem Versuchstag führt zur Wiederholung des gesamten Praktikums.

Voraussetzungen

Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Bitte beachten Sie, dass die Sicherheitsunterweisung im selben Prüfungszeitraum wie das Praktikum zu absolvieren ist.

Klausur allgemeine Chemie und Chemie in wässrigen Lösungen muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-101892 - Allgemeine Chemie und Chemie in wässrigen Lösungen muss erfolgreich abgeschlossen worden sein.

Arbeitsaufwand

120 Std.

5.67 Teilleistung: Praktikum Aufarbeitungstechnik [T-CIWVT-113024]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106437 - Biopharmazeutische Verfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung anderer Art	3 LP	Drittelnoten	1

Lehrveranstaltungen						
SS 2025	2214060	Praktikum Aufarbeitungstechnik	2 SWS	Praktikum (P) / 🗣	Hubbuch, und Mitarbeiter	
Prüfungsveranstaltungen						
SS 2025	7223004	Praktikum Aufarbeitungstechnik			Hubbuch	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art.

Bewertet werden das Eingangsolloquium, die praktische Arbeit, die Praktikumsprotokolle und Nachkolloquien.

Voraussetzungen

Keine

Anmerkungen

Die am ersten Praktikumstag stattfindende Sicherheitsbelehrung ist für alle Teilnehmer obligatorisch. Aus arbeitsschutzrechtlichen Gründen müssen lange Hosen und geschlossene Schuhe während des Praktikums getragen werden

5.68 Teilleistung: Praktikum Bioverfahrensentwicklung [T-CIWVT-114542]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107406 - Bioverfahrensentwicklung

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen					
WS 25/26	2213052	Praktikum zu 2213050 Bioverfahrensentwicklung	2 SWS	Praktikum (P) / 🗣	Grünberger, und Mitarbeitende

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.69 Teilleistung: Praktikum Elektrochemische Energietechnologien [T-ETIT-111376]

Verantwortung: Dr. Philipp Röse

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105703 - Praktikum Elektrochemische Energietechnologien

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art5 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2304303	Laboratory Electrochemical Energy Technologies	3 SWS	Praktikum (P) / 🗣	Röse	
Prüfungsveranstaltungen						
SS 2025	7300022	Praktikum Elektrochemische Energietechnologien			Röse	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen, bewertet wird jeweils das schriftliche Versuchsprotokoll. Die Modulnote wird aus dem Gesamteindruck gebildet.

Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen eine Prüfungseinheit. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Voraussetzungen

- Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 Electrochemical Energy Technologies" erfolgreich abgelegt haben.
- Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

5.70 Teilleistung: Praktikum Mikrobiologie [T-CIWVT-113014]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106427 - Naturwissenschaftliches Grundpraktikum

Teilleistungsart
Studienleistung praktisch

Leistungspunkte
2 LP

Notenskala
best./nicht best.

Turnus
Jedes Wintersemester
1

Lehrveranstaltungen							
WS 25/26	2212150	Naturwissenschaftliches Grundpraktikum - Teil II: Mikrobiologie	2 SWS	Praktikum (P) / 🗣	Neumann		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7212150-GP2-MIBI	Naturwissenschaftliches Grundpra	aturwissenschaftliches Grundpraktikum - Teil II: Mikrobiologie Neur				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Studienleistung: Praktikum Mikrobiologie im Umfang von 1 Woche. Unter folgenden Voraussetzungen ist das Praktikum bestanden:

- a) Bestandendes Eingangskolloquium
- b) Teilnahme an allen Versuchen
- c) Bestehen der Praktikumsprotokolle

Voraussetzungen

- Die Klausur Allgemeine Chemie und Chemie in wässrigen Lösungen muss bestanden sein.
- Es wird empfohlen, zunächst den Praktikumsteil Allgemeine Chemie zu absolvieren, dies ist aber keine Voraussetzung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-101892 - Allgemeine Chemie und Chemie in wässrigen Lösungen muss erfolgreich abgeschlossen worden sein.

5.71 Teilleistung: Programmierung und numerische Simulation [T-CIWVT-113025]

Verantwortung: Dr.-Ing. Pascal Jerono

Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106438 - Programmierung und numerische Simulation

Lehrveranstaltungen						
SS 2025	2243080	Programmierung und numerische Simulation mit MATLAB	2 SWS	Vorlesung (V) / ♀	Meurer, Jerono	
Prüfungsv	eranstaltungen					
SS 2025	7243080	Programmierung und numerische S	imulation -	Prüfung	Meurer, Jerono	
WS 25/26	7243080	Programmierung und numerische Simulation - Prüfung			Meurer, Jerono	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung: Unbenotete schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen

Vorleistung: Mindestens 70 % der vorlesungsbegleitenden Übungsaufgaben und ein Abschlussprojekt müssen bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113074 - Programmierung und numerische Simulation mit MATLAB - Übungen muss erfolgreich abgeschlossen worden sein.

5.72 Teilleistung: Programmierung und numerische Simulation mit MATLAB - Übungen [T-CIWVT-113074]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106438 - Programmierung und numerische Simulation

Teilleistungsart Studienleistung Leistungspunkte 2 LP Notenskala best./nicht best.

Version 1

Lehrveranstaltungen						
SS 2025	2243080	Programmierung und numerische Simulation mit MATLAB	2 SWS	Vorlesung (V) / 🗣	Meurer, Jerono	
Prüfungsveranstaltungen						
SS 2025	7243081	Programmierung und numerische Simulation - Vorleistung			Meurer, Jerono	

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

5.73 Teilleistung: Prozessentwicklung und Scale-up [T-CIWVT-103530]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101153 - Prozessentwicklung und Scale-up

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	8 LP	Drittelnoten	Jedes Sommersemester	2

Lehrverans	Lehrveranstaltungen					
WS 25/26	2231310	Prozessentwicklung und Scale-up	2 SWS	Vorlesung (V) / 🗣	Sauer	
WS 25/26	2231311	Übung zu 2231310 Prozessentwicklung und Scale-up	2 SWS	Übung (Ü) / ♀	Sauer, und Mitarbeitende	
Prüfungsve	Prüfungsveranstaltungen					
SS 2025	7231310	Prozessentwicklung und Scale-up	·		Sauer	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten zu Vorlesung und Übung.

Voraussetzungen

Vorleistung: 4 von 5 der online Quick-Tests müssen bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-111005 - Vorleistung Prozessentwicklung und Scale-up muss erfolgreich abgeschlossen worden sein.

5.74 Teilleistung: Prozessentwicklung und Scale-up Projektarbeit [T-CIWVT-103556]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101153 - Prozessentwicklung und Scale-up

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen					
SS 2025	2231312	Projektarbeit im Profilfach "Prozessentwicklung und Scale-up"	2 SWS	Projekt (PRO) / 🗣	Sauer, und Mitarbeitende	
SS 2025	2231313	Vorstellung Profilfach "Prozessentwicklung und Scale-up"		Sonstige (sonst.) /	Sauer	
Prüfungsve	Prüfungsveranstaltungen					
SS 2025	7231312	Prozessentwicklung und Scale-up Projektarbeit			Sauer	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Erfolgskontrolle anderer Art: Projektarbeit, bewertet werden Gruppenvortrag und Bericht über die Projektarbeit.

Voraussetzungen

5.75 Teilleistung: Regelungstechnik und Systemdynamik [T-CIWVT-112787]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106308 - Regelungstechnik und Systemdynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2243010	Regelungstechnik und Systemdynamik	2 SWS	Vorlesung (V) / ♥	Meurer		
SS 2025	2243011	Übungen zu Regelungstechnik und Systemdynamik	1 SWS	Übung (Ü) / ♀ ⁴	Meurer, und Mitarbeiter		
SS 2025	2243012	Tutorium zu Regelungstechnik und Systemdynamik	1 SWS	Tutorium (Tu) / 🗣	Meurer, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025 7243010 Regelungstechnik und Systemdynamik				Meurer			
WS 25/26	7294000	Regelungstechnik und Systemdynamik			Meurer		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

5.76 Teilleistung: Ringvorlesung Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung [T-FORUM-113578]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Studienleistung Leistungspunkte 2 LP Notenskala best./nicht best. **Turnus** Jedes Sommersemester Dauer 1 Sem. Version

Erfolgskontrolle(n)

Aktive Teilnahme, ggfs. Lernprotokolle

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Empfohlen wird das Absolvieren der Ringvorlesung "Wissenschaft in der Gesellschaft" vor dem Besuch von Veranstaltungen im Vertiefungsmodul und parallel zum Besuch des Grundlagenseminars.

Falls ein Besuch von Ringvorlesung und Grundlagenseminar im gleichen Semester nicht möglich ist, kann die Ringvorlesung auch nach dem Besuch des Grundlagenseminars besucht werden.

Der Besuch von Veranstaltungen in der Vertiefungseinheit vor dem Besuch der Ringvorlesung sollte jedoch vermieden werden.

Anmerkungen

Die Grundlageneinheit besteht aus der Ringvorlesung "Wissenschaft in der Gesellschaft" und dem Grundlagenseminar.

Die Ringvorlesung wird jeweils nur im Sommersemester angeboten.

Das Grundlagenseminar kann im Sommer- oder im Wintersemester besucht werden.

5.77 Teilleistung: Schriftliche Prüfung Prozess- und Anlagendesign in der Biotechnologie [T-CIWVT-114499]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2212020	Prozess- und Anlagendesign in der Biotechnologie	2 SWS	Vorlesung (V) / 🗣	Holtmann		
WS 25/26	2212021	Übung zu 2212020 Prozess- und Anlagendesign in der Biotechnologie	1 SWS	Seminar (S) / 🗣	Holtmann		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7212020-V-PAD	Prozess- und Anlagendesign in der Biotechnologie			Holtmann		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

Teilnahme am Seminar.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-114498 - Seminar Prozess- und Anlagendesign in der Biotechnologie muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Kenntnisse in Biochemie, Genetik, Zellbiologie, Mikrobiologie und Bioverfahrenstechnik werden vorausgesetzt.

5.78 Teilleistung: Seminar Prozess- und Anlagendesign in der Biotechnologie [T-CIWVT-114498]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art2 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen					
WS 25/26	2212020	Prozess- und Anlagendesign in der Biotechnologie	2 SWS	Vorlesung (V) / 🗣	Holtmann	
WS 25/26	2212021	Übung zu 2212020 Prozess- und Anlagendesign in der Biotechnologie	1 SWS	Seminar (S) / 🗣	Holtmann	
Prüfungsve	Prüfungsveranstaltungen					
WS 25/26	7212021-Ü-PAD	Seminar Prozess- und Anlagendesig	Holtmann			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art, aktive Teilnahme am Seminar, Anwesenheitspflicht bei mindestens 80 % der Termine, benoteter Seminarvortrag mit einer Dauer von ca. 10 Minuten.

Voraussetzungen

5.79 Teilleistung: Technische Mechanik: Dynamik, Klausur [T-CIWVT-101877]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101128 - Technische Mechanik: Dynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Semester	2

Lehrverans	staltungen				
WS 25/26	2241010	Technische Mechanik: Dynamik	2 SWS	Vorlesung (V) / 🗣	Klahn
WS 25/26	2241011	Übungen zu 2241010 Technische Mechanik: Dynamik	2 SWS	Übung (Ü) / 🗣	Klahn, Rentschler
WS 25/26	2241012	Tutorium zu 2241010 Technische Mechanik: Dynamik	1 SWS	Tutorium (Tu) / 🗣	Klahn
Prüfungsve	eranstaltungen				
SS 2025	SS 2025 7210200 Technische Mechanik: Dynamik, Nachklausur			Klahn	
WS 25/26	7210200	Technische Mechanik: Dynamik, Klausur			Klahn

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Prüfungsvorleistung: 3 von 4 Hausaufgabenblättern müssen bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-106290 - Technische Mechanik: Dynamik, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.80 Teilleistung: Technische Mechanik: Dynamik, Vorleistung [T-CIWVT-106290]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101128 - Technische Mechanik: Dynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0 LP	best./nicht best.	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2241010	Technische Mechanik: Dynamik	2 SWS	Vorlesung (V) / 🗣	Klahn		
WS 25/26	2241011	Übungen zu 2241010 Technische Mechanik: Dynamik	2 SWS	Übung (Ü) / 🗣	Klahn, Rentschler		
WS 25/26	2241012	Tutorium zu 2241010 Technische Mechanik: Dynamik	1 SWS	Tutorium (Tu) / 🗣	Klahn		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7210201	Technische Mechanik: Dynamik, Vo	Klahn				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung:

Mindestens 3 von insgesamt 4 Hausaufgabenblättern müssen erfolgreich bearbeitet sein.

Voraussetzungen

keine

5.81 Teilleistung: Technische Mechanik: Statik [T-CIWVT-111054]

Verantwortung: Dr.-Ing. Bernhard Hochstein

Dr.-Ing. Claude Oelschlaeger Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105846 - Technische Mechanik: Statik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich5 LPDrittelnotenJedes Wintersemester1

Lehrverans	staltungen				
WS 25/26	2242210	Technische Mechanik: Statik	2 SWS	Vorlesung (V) / 🗣	Willenbacher, Oelschlaeger
WS 25/26	2242211	Übungen zu 2242210 Technische Mechanik: Statik	2 SWS	Übung (Ü) / 🗣	Oelschlaeger, und Mitarbeitende
Prüfungsv	eranstaltungen				
SS 2025	7290003	7290003 Technische Mechanik: Statik			
WS 25/26	7290003	Technische Mechanik: Statik			Oelschlaeger, Hochstein

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 60 Minuten.

Voraussetzungen

5.82 Teilleistung: Technische Thermodynamik I, Klausur [T-CIWVT-101879]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101129 - Technische Thermodynamik I

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	1

Lehrverans	Lehrveranstaltungen					
WS 25/26	2250010	Technische Thermodynamik I	3 SWS	Vorlesung (V) / 🗣	Enders	
WS 25/26	2250011	Übungen zu 2250010 Technische Thermodynamik I	2 SWS	Übung (Ü) / ♀ ⁴	Enders, und Mitarbeitende	
WS 25/26	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende	
Prüfungsve	eranstaltungen				•	
SS 2025	7250010	Technische Thermodynamik I, Klausur			Enders	
WS 25/26	7250010	Technische Thermodynamik I, Klaus	Technische Thermodynamik I, Klausur			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Klausur im Umfang von 120 min.

Voraussetzungen

Prüfungsvorleistung muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-101878 - Technische Thermodynamik I, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.83 Teilleistung: Technische Thermodynamik I, Vorleistung [T-CIWVT-101878]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101129 - Technische Thermodynamik I

Teilleistungsart
StudienleistungLeistungspunkte
0 LPNotenskala
best./nicht best.Version
1

Lehrverans	staltungen				
WS 25/26	2250010	Technische Thermodynamik I	3 SWS	Vorlesung (V) / 🗣	Enders
WS 25/26	2250011	Übungen zu 2250010 Technische Thermodynamik l	2 SWS	Übung (Ü) / €	Enders, und Mitarbeitende
WS 25/26	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende
Prüfungsveranstaltungen					
WS 25/26	7250011	Technische Thermodynamik I, Vorleistung			Enders

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine vorlesungsbegleitende Studienleistung. Mindestens 2 von 3 Übungsblättern müssen anerkannt sein.

Voraussetzungen

keine

5.84 Teilleistung: Technische Thermodynamik II, Klausur [T-CIWVT-101881]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101130 - Technische Thermodynamik II

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	1

Lehrverans	Lehrveranstaltungen					
SS 2025	2250020	Technische Thermodynamik II	3 SWS	Vorlesung (V) / 🗣	Enders	
SS 2025	2250021	Übungen zu 2250020 Technische Thermodynamik II	2 SWS	Übung (Ü) / ♀ ⁵	Enders, und Mitarbeitende	
SS 2025	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende	
Prüfungsv	eranstaltungen					
SS 2025	7250020	Technische Thermodynamik II, Klausur			Enders	
WS 25/26	7250020	Technische Thermodynamik II, Klau	Technische Thermodynamik II, Klausur			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Prüfungsvorleistung: 2 von 3 Pflichtübungsblätter müssen anerkannt sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-101880 - Technische Thermodynamik II, Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Technische Thermodynamik I

5.85 Teilleistung: Technische Thermodynamik II, Vorleistung [T-CIWVT-101880]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101130 - Technische Thermodynamik II

Teilleistungsart	Leistungspunkte	Notenskala	Version
Studienleistung	0 LP	best./nicht best.	1

Lehrveran	staltungen					
SS 2025	2250020	Technische Thermodynamik II	3 SWS	Vorlesung (V) / 🗣	Enders	
SS 2025	2250021	Übungen zu 2250020 Technische Thermodynamik II	2 SWS	Übung (Ü) / 🗣	Enders, und Mitarbeitende	
SS 2025	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende	
Prüfungsv	Prüfungsveranstaltungen					
SS 2025	7250021	Technische Thermodynamik II, Vorleistung			Enders	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung;

Prüfungsvorleistung: 2 von 3 Pflichtübungsblätter müssen anerkannt sein

Voraussetzungen

5.86 Teilleistung: Technologie dünner Schichten - Projektarbeit [T-CIWVT-114692]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107495 - Technologie dünner Schichten

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
WS 25/26	2260242	Praktikum zu Technologie dünner Schichten	2 SWS	Praktikum (P) / 🗣	Scharfer, Schabel

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art.

Voraussetzungen

Siehe Voraussetzungen für das Modul.

5.87 Teilleistung: Technologie dünner Schichten - Übungsaufgaben und Praktikum [T-CIWVT-114693]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107495 - Technologie dünner Schichten

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 6 LP **Notenskala** Drittelnoten Version

Lehrveranstaltungen					
WS 25/26	2260240	Einführung in die Technologie dünner Schichten	2 SWS	Vorlesung (V) / 🗣	Scharfer, Schabel
WS 25/26	2260241	Ausgewählte Kapitel der Technologie dünner Schichten	2 SWS	Seminar (S) / ♀	Scharfer, Schabel
WS 25/26	2260242	Praktikum zu Technologie dünner Schichten	2 SWS	Praktikum (P) / 🗣	Scharfer, Schabel

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Bewertet werden die Übungsblätter (maximal 10 Punkte) und zwei Praktika (maximal 30 Punkte). Die Teilleistung ist bestanden,

wenn mindestens 13 Punkte erreicht wurden. Notenschlüssel auf Anfrage.

Voraussetzungen

Siehe Voraussetzungen für das Modul.

5.88 Teilleistung: Thermische Verfahrenstechnik [T-CIWVT-101885]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101134 - Thermische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2260110	Thermische Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Zeiner	
WS 25/26	2260111	Übung zu 2260110 Thermische Verfahrenstechnik	2 SWS	Übung (Ü) / €	Zeiner, und Mitarbeitende	
Prüfungsv	eranstaltungen					
SS 2025	7280002	Thermische Verfahrenstechnik			Zeiner	
WS 25/26	7280002	Thermische Verfahrenstechnik			Zeiner	

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

5.89 Teilleistung: Thermische Verfahrenstechnik II [T-CIWVT-114107]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen					
SS 2025	2260150	Thermische Verfahrenstechnik II	2 SWS	Vorlesung (V) / 🗣	Zeiner
SS 2025	2260151	Übungen zu 2260150 Thermische Verfahrenstechnik II	2 SWS	Übung (Ü) / 🗣	Zeiner, und Mitarbeitende
Prüfungsve	eranstaltungen				
SS 2025	7260150	Thermische Verfahrenstechnik II			Zeiner
WS 25/26	7260150	Thermische Verfahrenstechnik II			Zeiner

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

5.90 Teilleistung: Thermodynamik im Bioingenieurwesen [T-CIWVT-114497]

Verantwortung: Prof. Dr. Sabine Enders

Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101991 - Erfolgskontrollen

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte 6 LP **Notenskala** Drittelnoten **Turnus**Jedes Sommersemester

Version

Voraussetzungen

Keine.

Empfehlungen

Inhalte von Thermodynamik II werden empfohlen.

5.91 Teilleistung: Übungen zu Höhere Mathematik I [T-MATH-100525]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-CIWVT-106447 - Orientierungsprüfung M-MATH-100280 - Höhere Mathematik I

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung schriftlich0 LPbest./nicht best.Jedes Wintersemester2

Lehrveranstaltungen						
WS 25/26	0131100	Übungen zu 0131000	2 SWS	Übung (Ü)	Arens	
WS 25/26	0131300	Übungen zu 0131200	2 SWS	Übung (Ü)	Arens	
Prüfungsveranstaltungen						
SS 2025 7700166 Übungen zu Höhere Mathematik I					Arens	
WS 25/26	6700005	Übungen zu Höhere Mathematik I			Arens, Griesmaier, Hettlich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

5.92 Teilleistung: Übungen zu Höhere Mathematik II [T-MATH-100526]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung schriftlich	0 LP	best./nicht best.	Jedes Sommersemester	3

Lehrveranstaltungen						
SS 2025	0180900	Übungen zu 0180800	2 SWS	Übung (Ü)	Arens	
SS 2025	0181100	Übungen zu 0181000	2 SWS	Übung (Ü)	Arens	
Prüfungsveranstaltungen						
SS 2025 7700024 Übungen zu Höhere Mathematik II					Hettlich, Arens, Griesmaier	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

5.93 Teilleistung: Übungen zu Höhere Mathematik III [T-MATH-100527]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100282 - Höhere Mathematik III

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung schriftlich0 LPbest./nicht best.Jedes Wintersemester2

Lehrveranstaltungen						
WS 25/26 0131500 Übungen zu 0131400 2 SWS Übung (Ü) Hettlich						
Prüfungsveranstaltungen						
WS 25/26 6700006 Übungen zu Höhere Mathematik III Arens, Griesmai Hettlich					Arens, Griesmaier, Hettlich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

5.94 Teilleistung: Vorleistung Prozessentwicklung und Scale-up [T-CIWVT-111005]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101153 - Prozessentwicklung und Scale-up

Teilleistungsart Studienleistung **Leistungspunkte** 0 LP Notenskala best./nicht best.

Turnus Jedes Wintersemester Version 1

Prüfungsveranstaltungen			
WS 25/26	7200027	Vorleistung Prozessentwicklung und Scale-up	Sauer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung:

Teilnahme an Online-Quick-Tests begleitend zur Vorlesung. Die Vorleistung ist bestanden, wenn 4 von 5 der Tests bestanden sind.

5.95 Teilleistung: Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Über Wissen und Wissenschaft - Selbstverbuchung [T-FORUM-113580]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

TeilleistungsartLeistungspunkteNotenskalaPrüfungsleistung anderer Art3 LPDrittelnoten

Turnus Jedes Semester Version 1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 5 (3) in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Die Inhalte der Grundlageneinheit sind hilfreich.

Die Grundlageneinheit sollte abgeschlossen sein oder parallel besucht werden, jedoch nicht nach der Vertiefungseinheit. Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Gegenstandsbereich und Lehrveranstaltung festgelegt.

Anmerkungen

Dieser Platzhalter kann für alle Leistungen im Vertiefungsbereich des Begleitstudiums genutzt werden.

In der Vertiefungseinheit ist eine selbst gewählte individuelle Schwerpunktbildung möglich z. B. Nachhaltige Entwicklung, Data Literacy u. a. Der Schwerpunkte sollte mit der/dem Modulverantwortlichen am FORUM besprochen werden.

5.96 Teilleistung: Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in der Gesellschaft - Selbstverbuchung [T-FORUM-113581]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Prüfungsleistung anderer Art

Leistungspunkte 3 LP Notenskala Drittelnoten **Turnus** Jedes Semester Version 1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 5 (3) in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Die Inhalte der Grundlageneinheit sind hilfreich.

Die Grundlageneinheit sollte abgeschlossen sein oder parallel besucht werden, jedoch nicht nach der Vertiefungseinheit. Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Gegenstandsbereich und Lehrveranstaltung festgelegt.

Anmerkungen

Dieser Platzhalter kann für alle Leistungen im Vertiefungsbereich des Begleitstudiums genutzt werden.

5.97 Teilleistung: Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in gesellschaftlichen Debatten -Selbstverbuchung [T-FORUM-113582]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 LP **Notenskala** Drittelnoten

Turnus Jedes Semester Version 1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 5 (3) in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Die Inhalte der Grundlageneinheit sind hilfreich.

Die Grundlageneinheit sollte abgeschlossen sein oder parallel besucht werden, jedoch nicht nach der Vertiefungseinheit. Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Gegenstandsbereich und Lehrveranstaltung festgelegt.

Anmerkungen

Dieser Platzhalter kann für alle Leistungen im Vertiefungsbereich des Begleitstudiums genutzt werden.

5.98 Teilleistung: Wissenschaftliches Schreiben mit LaTeX [T-HOC-113121]

Verantwortung: Andreas Hirsch-Weber

Einrichtung: Zentrale Einrichtungen/House of Competence (HoC)

Bestandteil von: M-HOC-106502 - Wissenschaftliches Schreiben mit LaTeX

Teilleistungsart	Leistungspunkte	Notenskala	Version
Studienleistung	2 LP	best./nicht best.	1

Lehrverans	Lehrveranstaltungen					
SS 2025	9004902	Wissenschaftliches Schreiben mit LaTeX für BIW	Block (B) / 😘	Hirsch-Weber, Winandi, Sielaff		
WS 25/26	9004902	Wissenschaftliches Schreiben mit LaTeX für BIW	Block (B) / 😘	Hirsch-Weber, Winandi, Sielaff		
Prüfungsve	Prüfungsveranstaltungen					
WS 25/26	9900017	Wissenschaftliches Schreiben mit LaTeX				

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

5.99 Teilleistung: Zellbiologie [T-CIWVT-113037]

Verantwortung: apl. Prof. Dr. Hans-Eric Gottwald

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106414 - Biologie im Ingenieurwesen M-CIWVT-106447 - Orientierungsprüfung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	2 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 25/26	2212113	Biologie im Ingenieurwesen - Zellbiologie	2 SWS	Vorlesung (V) / ♀	Gottwald
Prüfungsveranstaltungen					
SS 2025 7212113-V-ZELL BING - Zellbiologie					Gottwald
WS 25/26	7212113-V-ZELL	BING Zellbiologie			Gottwald

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

6 Anhang

6.1 Begriffsdefinitionen

Grundsätzlich gliedert sich das Studium in **Fächer** (zum Beispiel Ingenieurwissenschaftliche Grundlagen). Jedes Fach wiederum ist in **Module** aufgeteilt. Jedes Modul beinhaltet eine oder mehrere **Teilleistungen**, die durch eine Erfolgskontrolle (Studienleistung oder Prüfungsleistung) abgeschlossen werden.

Der Umfang jedes Moduls ist durch **Leistungspunkte** gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls gutgeschrieben werden. Im Bachelorstudium sind die meisten Module Pflicht. Einzelne Module (Profilfächer) bieten individuelle Wahl- und Vertiefungsmöglichkeiten.

Das Modulhandbuch beschreibt die zum Studiengang gehörigen Module. Dabei geht es ein auf die Zusammensetzung der Module, die Größe der Module (in LP), die Abhängigkeiten der Module untereinander, die Qualifikationsziele der Module, die Art der Erfolgskontrolle und die Bildung der Note eines Moduls. Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z. B. Zeit und Ort der Lehrveranstaltung) informiert.