

Modulhandbuch Chemieingenieurwesen und Verfahrenstechnik Bachelor 2015 (Bachelor of Science (B.Sc.))

SPO 2015 Wintersemester 2025/26 Stand 03.09.2025

KIT-FAKULTÄT FÜR CHEMIEINGENIEURWESEN UND VERFAHRENSTECHNIK

Inhaltsverzeichnis

1.	Allgemeine Information	
	1.1. Studiengangdetails	
	1.2. Qualifikationsziele	
	1.3. Ansprechpersonen	
	1.4. Studien- und Prüfungsordnung	
	1.5. Organisatorisches	
2.	Studienplan	7
3.	Aufbau des Studiengangs	10
	3.1. Orientierungsprüfung	10
	3.2. Bachelorarbeit	11
	3.3. Mathematisch - Naturwissenschaftliche Grundlagen	11
	3.4. Ingenieurwissenschaftliche Grundlagen	11
	3.5. Thermodynamik und Transportprozesse	12
	3.6. Verfahrenstechnische Grundlagen	
	3.7. Wahlpflichtfächer	
	3.8. Praktika	
	3.9. Profilfach	
	3.10. Überfachliche Qualifikationen	
	3.11. Mastervorzug	
4.	Module	
	4.1. Allgemeine und Anorganische Chemie (AAC) - M-CHEMBIO-101117	
	4.2. Angewandte Thermische Verfahrenstechnik - M-CIWVT-104458	
	4.3. Angewandter Apparatebau - M-CIWVT-103297	
	4.4. Automatisierungs- und Regelungstechnik - M-CIWVT-106477	
	4.5. Biopharmazeutische Verfahrenstechnik - M-CIWVT-106475	
	4.6. Biotechnologie - M-CIWVT-101143	
	4.7. Bioverfahrensentwicklung - M-CIWVT-107403	
	4.8. Bioverfahrenstechnik - M-CIWVT-106434	
	4.9. Catalysts for the Energy Transition - M-CIWVT-106030	
	4.10. Chemische Reaktionstechnik - M-CIWVT-106825	
	4.11. Chemische Verfahrenstechnik - M-CIWVT-101133	
	4.12. Datengetriebene Modellierung mit Python - M-CIWVT-106534	
	4.13. Einführung in das Bioingenieurwesen - M-CIWVT-106433	
	4.15. Energie- und Umwelttechnik - M-CIWVT-101145	
	4.16. Energieverfahrenstechnik - M-CIWVT-101136	
	4.17. Erfolgskontrollen - M-CIWVT-101992	
	4.18. Ethik und Stoffkreisläufe - M-CIWVT-101149	
	4.19. Fluiddynamik - M-CIWVT-101131	
	4.20. Formulierung und Charakterisierung von Energiematerialien - M-CIWVT-106700	
	4.21. Fortgeschrittene Methoden der linearen Regelungstechnik - M-CIWVT-106880	
	4.22. Grundlagen der Kältetechnik - M-CIWVT-104457	
	4.23. Grundlagen der Wärme- und Stoffübertragung - M-CIWVT-101132	
	4.24. Grundpraktikum - M-CIWVT-106500	
	4.25. Höhere Mathematik I - M-MATH-100280	
	4.26. Höhere Mathematik II - M-MATH-100281	50
	4.27. Höhere Mathematik III - M-MATH-100282	51
	4.28. Industriebetriebswirtschaftslehre - M-WIWI-100528	52
	4.29. Intensivierung von Bioprozessen - M-CIWVT-106444	
	4.30. Kreislaufwirtschaft - M-CIWVT-105995	
	4.31. Lebensmittelbioverfahrenstechnik - M-CIWVT-106476	
	4.32. Lebensmitteltechnologie - M-CIWVT-101148	
	4.33. Luftreinhaltung - M-CIWVT-106448	
	4.34. Maschinenkonstruktionslehre A - M-MACH-106527	
	4.35. Maschinenkonstruktionslehre B-C - M-MACH-106528	
	4.36. Mechanische Separationstechnik - M-CIWVT-101147	
	4.37. Mechanische Verfahrenstechnik - M-CIWVT-101135	
	4.38. Mikroverfahrenstechnik - M-CIWVT-101154	
	4.39. Modul Bachelorarbeit - M-CIWVT-103204	66

	4.40. Organisch-chemische Prozesskunde - M-CIWVT-101137	67
	4.41. Organische Chemie für Ingenieure - M-CHEMBIO-101115	68
	4.42. Orientierungsprüfung - M-CIWVT-100874	69
	4.43. Physikalische Grundlagen - M-PHYS-100993	70
	4.44. Praktikum Elektrochemische Energietechnologien - M-ETIT-105703	
	4.45. Praktikum Organische Chemie - M-CHEMBIO-101116	73
	4.46. Programmieren und Numerische Methoden - M-CIWVT-101956	74
	4.47. Prozessentwicklung und Scale-up - M-CIWVT-101153	75
	4.48. Regelungstechnik und Systemdynamik - M-CIWVT-106308	
	4.49. SmartMentoring - M-CIWVT-105848	
	4.50. Technische Mechanik: Dynamik - M-CIWVT-101128	
	4.51. Technische Mechanik: Statik und Festigkeitslehre - M-CIWVT-104006	80
	4.52. Technische Thermodynamik I - M-CIWVT-101129	
	4.53. Technische Thermodynamik II - M-CIWVT-101130	
	4.54. Technologie dünner Schichten - M-CIWVT-107495	
	4.55. Thermische Verfahrenstechnik - M-CIWVT-101134	
	4.56. Verfahrenstechnische Maschinen - M-CIWVT-101139	
	4.57. Werkstoffkunde - M-MACH-102567	
5	Teilleistungen	
٠.	5.1. Allgemeine und Anorganische Chemie - T-CHEMBIO-101866	
	5.2. Angewandte Thermische Verfahrenstechnik - Projektarbeit - T-CIWVT-109120	
	5.3. Angewandte Thermische Verfahrenstechnik - Tojektarbeit - 1-0777 1-103120	
	5.4. Angewandter Apparatebau Klausur - T-CIWVT-106562	
	5.5. Automatisierungs- und Regelungstechnik - Projektarbeit - T-CIWVT-113089	
	5.6. Automatisierungs- und Regelungstechnik - Prüfung - T-CIWVT-113088	
	5.7. Bachelorarbeit - T-CIWVT-106365	
	5.8. Berufspraktikum - T-CIWVT-106036	
	5.9. Biopharmazeutische Aufarbeitungsverfahren - T-CIWVT-106029	
	5.10. Biopharmazeutische Verfahrenstechnik - T-CIWVT-113023	
	5.11. Biotechnologie - Projektarbeit - T-CIWVT-103669	
	5.12. Biotechnologie - Prüfung - T-CIWVT-103668	
	5.13. Bioverfahrensentwicklung - T-CIWVT-114538	
	5.14. Bioverfahrenstechnik - T-CIWVT-113019	
	5.15. Catalysts for the Energy Transition - T-CIWVT-112214	
	5.16. Chemische Reaktionstechnik - Projektarbeit - T-CIWVT-113696	
	5.17. Chemische Reaktionstechnik - Prüfung - T-CIWVT-113695	
	5.18. Chemische Verfahrenstechnik - T-CIWVT-101884	
	5.19. Datengetriebene Modellierung mit Python - T-CIWVT-113190	
	5.20. Einführung in das Bioingenieurwesen - T-CIWVT-113018	
	5.20. Einfuhrung in das Biolingenieurwesen - 1-Ciwv 1-113016	
	5.22. Einstieg in die Informatik und algorithmische Mathematik - Klausur - T-MATH-102250	
	5.23. Electrochemical Energy Technologies - T-ETIT-111352	
	5.24. Energie- und Umwelttechnik - T-CIWVT-108254	
	5.25. Energie- und Umwelttechnik - 1-C/WV1-106234	
	5.26. Energieverfahrenstechnik - T-CIWVT-101889	
	· · · · · · · · · · · · · · · · · · ·	
	5.27. Ethik - T-CIWVT-112373	
	5.29. Fluiddynamik, Klausur - T-CIWVT-101882	
	5.30. Fluiddynamik, Vorleistung - T-CIWVT-101904	
	5.31. Formulierung und Charakterisierung von Energiematerialien - Projektarbeit - T-CIWVT-113479	
	5.32. Formulierung und Charakterisierung von Energiematerialien - Prüfung - T-CIWVT-113478	
	5.33. Grundlagen der Kältetechnik Projektarbeit - T-CIWVT-109118	
	5.34. Grundlagen der Kältetechnik Prüfung - T-CIWVT-109117	
	5.35. Grundlagen der Wärme- und Stoffübertragung - T-CIWVT-101883	
	5.37. Höhere Mathematik II - T-MATH 100276	
	5.38. Höhere Mathematik III - T-MATH-1002775.39. Industriebetriebswirtschaftslehre - T-WIWI-100796	
	5.40. Intensivierung von Bioprozessen - Klausur - T-CIWVT-112998	
	5.41. Kinetik und Katalyse - T-CIWVT-106032	
	5.42. Kreislaufwirtschaft - mündliche Prüfung - T-CIWVT-112172	
	5.43. Kreislaufwirtschaft - Projektarbeit - T-CIWVT-112173	131

	. Lebensmittelbioverfahrenstechnik - T-CIWVT-113021	
5.45.	. Lebensmitteltechnologie - T-CIWVT-103528	133
5.46.	Lebensmitteltechnologie Projektarbeit - T-CIWVT-103529	134
5.47.	. Luftreinhaltung - T-CIWVT-113046	135
5.48.	Luftreinhaltung - Projektarbeit - T-CIWVT-113047	136
	. Maschinenkonstruktionslehre A - T-MACH-112984	
	. Maschinenkonstruktionslehre B und C - T-MACH-112985	
	. Mechanische Separationstechnik Projektarbeit - T-CIWVT-103452	
5.52	. Mechanische Separationstechnik Prüfung - T-CIWVT-103448	140
	. Mechanische Verfahrenstechnik - T-CIWVT-101886	
	. Membrane Technologies in Water Treatment - T-CIWVT-113236	
	. Mikroverfahrenstechnik Projektarbeit - T-CIWVT-103667	
	Mikroverfahrenstechnik Prüfung - T-CIWVT-103666	
	. Numerische Strömungssimulation - T-CIWVT-106035	
	. Organisch-Chemische Prozesskunde (OCP) - T-CIWVT-101890	
	Organische Chemie für Ingenieure - T-CHEMBIO-101865	
	. Organische Chemie für ingenieure - 1-Chemido-101663	
	Physikalische Grundlagen - T-PHYS-101577	
	Praktikum Allgemeine Chemie - T-CIWVT-113117	
	. Praktikum Elektrochemische Energietechnologien - T-ETIT-111376	
	Praktikum Numerik im Ingenieurwesen - T-CIWVT-101876	
	Praktikum Organische Chemie für Ingenieure - T-CHEMBIO-101868	
	. Praktikum Prozess- und Anlagentechnik - T-CIWVT-106148	
	. Praktikum Verfahrenstechnik - T-CIWVT-113118	
	Prozess- und Anlagentechnik Klausur - T-CIWVT-106150	
5.69.	Prozessentwicklung und Scale-up - T-CIWVT-103530	157
	Prozessentwicklung und Scale-up Projektarbeit - T-CIWVT-103556	
	. Regelungstechnik und Systemdynamik - T-CIWVT-112787	
	. SmartMentoring - Gruppenleitung - T-CIWVT-111761	
	Stoffkreisläufe - T-CIWVT-112372	
	. Technische Mechanik: Dynamik, Klausur - T-CIWVT-101877	
	. Technische Mechanik: Dynamik, Vorleistung - T-CIWVT-106290	
	. Technische Mechanik: Statik und Festigkeitslehre für CIW - T-CIWVT-103687	
	. Technische Thermodynamik I, Klausur - T-CIWVT-101879	
	Technische Thermodynamik I, Vorleistung - T-CIWVT-101878	
	. Technische Thermodynamik II, Klausur - T-CIWVT-101881	
	. Technische Thermodynamik II, Vorleistung - T-CIWVT-101880	
	. Technologie dünner Schichten - Projektarbeit - T-CIWVT-114692	
	. Technologie dünner Schichten - Übungsaufgaben und Praktikum - T-CIWVT-114693	
5.83.	Thermische Verfahrenstechnik - T-CIWVT-101885	171
	. Thermische Verfahrenstechnik II - T-CIWVT-114107	
	Thermodynamik III - T-CIWVT-106033	
	. Übungen zu Höhere Mathematik I - T-MATH-100525	
5.87.	. Übungen zu Höhere Mathematik II - T-MATH-100526	175
	. Übungen zu Höhere Mathematik III - T-MATH-100527	
	. Verfahrenstechnische Maschinen - T-CIWVT-101903	
5.90.	. Vorleistung Prozessentwicklung und Scale-up - T-CIWVT-111005	178
5.91.	. Werkstoffkunde I & II - T-MACH-105148	179
5.92.	. Workshop zu Maschinenkonstruktionslehre A - T-MACH-112981	180
5.93.	. Workshop zu Maschinenkonstruktionslehre B - T-MACH-112982	181
	. Workshop zu Maschinenkonstruktionslehre C - T-MACH-112983	
nhan	ıg	183
	Begriffsdefinitionen	

1 Allgemeine Information

1.1 Studiengangdetails

KIT-Fakultät	KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Akademischer Grad	Bachelor of Science (B.Sc.)
Prüfungsordnung Version	2015
Regelstudienzeit	6 Semester
Maximale Studiendauer	12 Semester
Leistungspunkte	180
Sprache	Deutsch
Berechnungsschema	Gewichtung nach (Gewichtung * LP)
Weitere Informationen	Link zum Studiengang www.ciw.kit.edu
	Fakultät https://www.ciw.kit.edu/1627.php
	Dienstleistungseinheit Studium und Lehre https://www.sle.kit.edu/vorstudium/bachelor-chemieingenieurwesen-verfahrenstechnik.php

1.2 Qualifikationsziele

Im Bachelorstudium werden die wissenschaftlichen Grundlagen und die Methodenkompetenz im Bereich des Chemieingenieurwesens und der Verfahrenstechnik vermittelt. Ziel des Studiums ist die Fähigkeit, einen Masterstudiengang erfolgreich absolvieren zu können sowie das erworbene Wissen berufsfeldbezogen anwenden zu können.

Im Pflichtprogramm erwerben die Studierenden methodisch qualifiziertes mathematisches, naturwissenschaftliches und ingenieurwissenschaftliches Grundlagenwissen. Das beinhaltet insbesondere die Kenntnis von Wärme- und Stofftransport und der wichtigsten Grundoperationen aus dem Bereich der thermischen, chemischen und mechanischen Verfahrenstechnik. Die Absolventinnen und Absolventen sind in der Lage einen verfahrenstechnischen Prozess in geeigneter Weise zu bilanzieren. Dies ist auch die Basis für ein weiterführendes Masterstudium.

Der Bereich der Wahlpflichtvorlesungen erlaubt eine erste fachliche Vertiefung im Rahmen eines Profilfachs, in dem die Studierenden verfahrenstechnisches Grundwissen erstmals in einer Projektarbeit anwenden. Neben fachlichen Aspekten sind die Bearbeitung von Projekten im Team sowie die Aufbereitung, Interpretation und Präsentation der Ergebnisse wichtige Bestandteile des Profilfachs.

Im Rahmen der Bachelorarbeit erfolgt der Nachweis, dass die Absolventinnen und Absolventen ein Problem aus dem Bereich des Chemieingenieurwesens/ der Verfahrenstechnik selbstständig und in begrenzter Zeit mit wissenschaftlichen Methoden bearbeiten können.

Die Absolventinnen und Absolventen sind in der Lage, fachliche Probleme grundlagenorientiert zu identifizieren, zu abstrahieren und zu lösen, Produkte und Prozesse systematisch zu bewerten sowie Analyse- und Simulationswerkzeuge auszuwählen und anzuwenden. Sie haben die Fähigkeit, Theorie und Praxis zu kombinieren und eigenverantwortlich Projekte zu organisieren und durchzuführen sowie mit Fachleuten anderer Disziplinen zusammenzuarbeiten.

1.3 Ansprechpersonen

- Studiendekan: Prof. Dr.-Ing. Achim Dittler
- · Fachstudienberatung: Dr.-Ing. Barbara Freudig
- · Bachelorprüfungsausschuss:
 - Vorsitzender: Prof. Dr.-Ing. Achim Dittler
 - Prüfungssekretariat: Julia Hofer
 - Weitere Informationen: http://www.ciw.kit.edu/bpa.php

1.4 Studien- und Prüfungsordnung

Rechtsgrundlage für den Studiengang und die Prüfungen im Studiengang ist die

Studien und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik

vom 05. August 2015

geändert durch die

Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Chemieingenieurwesen und Verfahrenstechnik vom 24. Februar 2020

1.5 Organisatorisches

Termine und Veranstaltungen

Aktuelle Informationen zu den Studiengängen sowie Termine für Informationsveranstaltungen und Klausuren sind auf den Webseiten der Fakultät zu finden:

https://www.ciw.kit.edu/4102.php

Anerkennung von Leistungen gemäß § 19 SPO

- 1. Innerhalb des Hochschulsystems erbrachte Leistungen Gemäß § 19 der Studien und Prüfungsordnung können Studien- und Prüfungsleistungen, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, auf Antrag des Studierenden anerkannt werden.
- Außerhalb des Hochschulsystems erbrachte Leistungen
 Auch außerhalb des Hochschulsystems erworbene Kenntnisse können anerkannt werden. Häufiges Beispiel ist die Anerkennung eines oder mehrerer Praktika durch Nachweis einer einschlägigen Berufsausbildung.

Antragsformulare entnehmen Sie bitte der Webseite der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik https://www.ciw.kit.edu/bpa.php

Studierende, die neu in den Studiengang Chemieingenieurwesen und Verfahrenstechnik immatrikuliert wurden, müssen den Antrag innerhalb eines Semesters beim Bachelorprüfungsausschuss stellen.

2 Studienplan Bachelor Chemieingenieurwesen und Verfahrenstechnik, Studien- und Prüfungsordnung 2015

2.1 Semesterübersicht

Semester LP	Mathematisch/ Natur- wissenschaftliche Grundlagen	Ingenieurwissen- schaftliche Grundlagen	Thermodynamik und Transportprozesse	Verfahrenstechnische Grundlagen	Praktika, Wahlbereich
1 33	Höhere Mathematik I (7) Allgemeine und Anorganische Chemie (6)	Technische Mechanik: Statik (5) Maschinen- konstruktionslehre A (9) Werkstoffkunde (4)			Grundpraktikum Teil I (2)
2 31	Höhere Mathematik II (7) Einführung in die Informatik (5) Organische Chemie (5)	Technische Mechanik: Festigkeitslehre (5) Werkstoffkunde (5)			Grundpraktikum Teil II (4)
3 30	Höhere Mathematik III (7) Einführung in die Informatik – Praktikum Numerik (3)	Technische Mechanik: Dynamik (5)	Thermodynamik I (7)		Aufbaupraktikum (5) Überfachliche Qualifikationen (3)*
4 29			Thermodynamik II (7) Wärme- und Stoffübertragung (7) Fluiddynamik (5) Regelungstechnik und Systemdynamik (5)		Wahlpflichtfach I (5)*
5 32	Physikalische Grundlagen (7)			Chemische Verfahrenstechnik (6) Thermische Verfahrenstechnik (6) Mechanische Verfahrenstechnik (6)	Wahlpflichtfach II (5)* Profilfach (2)**
6 25					Profilfach (10)** Ü Überfachliche Qualifikationen (3)* Bachelorarbeit (12)

Zahlen in Klammern: Leistungspunkte (LP)

Die Verteilung der Überfachlichen Qualifikationen und Wahlpflichtfächer auf die Semester ist ein Vorschlag und kann je nach gewählten Modulen auch anders gestaltet werden.
 Im Bereich der Überfachlichen Qualifikationen muss mindestens eines der Module *Industriebetriebswirtschaftslehre* oder *Ethik und* Stoffkreisläufe gewählt werden.

^{**} Profilfach: Das Profilfach geht über zwei Semester und beginnt immer im Wintersemester. Es kann ein Profilfach aus ca. 10 Angeboten gewählt werden. Die Verteilung des Arbeitsaufwands auf Winter- uns Sommersemester kann für einzelnen Profilfächer abweichen.

2.2 Fach- und Modulübersicht

Fach	Modul	Koordinator	sws	LP
47 LP Mathematisch-	Höhere Mathematik I	Griesmeier	6	7
naturwissenschaftliche Grundlagen	Höhere Mathematik II	Griesmeier	6	7
Crundiagen	Höhere Mathematik III	Griesmeier	6	7
	Programmieren und numerische Methoden	Stein	3 + P	8
	Allgemeine Anorganische Chemie	Ruben	5	6
	Organische Chemie	Meier	4	5
	Physikalische Grundlagen	Pilawa	6	7
38 LP Ingenieur-	Technische Mechanik: Statik u. Festigkeitslehre	Willenbacher	8	10
wissenschaftliche Grundlagen	Technische Mechanik: Dynamik	Klahn	4	5
Ordinalagen	Werkstoffkunde	Schneider	8	9
	Maschinenkonstruktionslehre A	Matthiesen/ Albers	8	9
	Regelungstechnik und Systemdynamik	Meurer	4	5
26 LP Thermodynamik	Thermodynamik I	Enders	5	7
und Transport- prozesse	Thermodynamik II	Enders	5	7
prozesse	Fluiddynamik	Nirschl	4	5
	Wärme/Stoffübertragung	Wetzel	5	7
18 LP Verfahrenstech-	Mechanische Verfahrenstechnik	Dittler	4	6
nische Grundlagen	Thermische Verfahrenstechnik	Zeiner	4	6
	Chemische Verfahrenstechnik	Wehinger	4	6
10 LP Wahlpflichfächer	2 Module aus Auswahlliste		je 4	je 5
Praktika	Grundpraktikum	Horn, Sinanis	Р	6
11 LP	Modul aus folgenden Modulen: Praktikum Verfahrenstechn. Maschinen Praktikum Organische Chemie	Gleiß Rapp	Р	5
6 LP Überfachliche Qualifikationen:	Module aus folgenden Modulen: Industriebetriebswirtschaftslehre Ethik und Stoffkreisläufe Nichttechnisches Wahlmodul	Fichtner Rauch	je 2	je 3
12 LP Profilfach	1 Modul aus Auswahlliste			12
12 LP	Bachelorarbeit			12
SUMME				180

LP: Leistungspunkte (ECTS), SWS: Semesterwochenstunden

2.3 Lehrveranstaltungs- und Prüfungsübersicht

	1. Semester (WS) 2. Semester (SS)									
	٧	Ü	Р	LP	E	>	Ü	Р	LP	E
Höhere Mathematik I und II	4	2	-	7	S+K	4	2	ı	7	S+K
Programmieren und numerische Methoden	-	-	-	-	-	2	1	Р	5	Κ
Technische Mechanik: Statik und Festigkeitslehre	2	2	-	5	-	2	2	-	5	Κ
Allgemeine und Anorganische Chemie (AAC)	3	2	-	6	K	-	1	ı	-	-
Werkstoffkunde I und II	3	1	-	4	-	2	2	ı	5	М
Maschinenkonstruktionslehre A	4	2	•	9	S+K	1	ı	1	-	-
Organische Chemie für Ingenieure	-	-	-	-	-	2	2	1	5	Κ
Grundpraktikum	-	-	Р	2	S	•	1	Ρ	4	S
Summe LP / Anzahl benotete Erfolgskontrollen				33	3				31	5

	3. \$	Sem	mester (WS) 4. Semester (SS)							
	٧	Ü	Р	LP	E	٧	Ü	Р	LP	E
Höhere Mathematik III	4	2	-	7	S+K	-	-	-	-	-
Technische Mechanik: Dynamik	2	2	-	5	S+K	-	-	-	-	-
Programmieren und Numerische Methoden	-	-	Р	3	S	-	-	-	-	-
Regelungstechnik und Systemdynamik	-	-	-	-	1	2	2	-	5	K
Fluiddynamik	-	-	-	-	1	2	2	-	5	S+K
Technische Thermodynamik I und II	3	2	-	7	S+K	3	2	-	7	S+K
Grundlagen d. Wärme- und Stoffübertragung	-	-	-		1	3	2	-	7	K
Wahlpflichtfächer*	-	-	-	-	1	2	2	-	5	K
Praktikum (VM oder OC) 2 Wochen im März/ April	-	-	Р	5	S	-	-	-	-	-
Überfachliche Qualifikationen*	2	-	-	3	S	-	-	-	-	-
Summe LP / Anzahl benotete Erfolgskontrollen				30	3				31	5

	5. Semester (WS) 6. Semester (SS)									
	٧	Ü	Р	LP	E	٧	Ü	Р	LP	E
Chemische Verfahrenstechnik	2	2	-	6	K	-	-	-	-	-
Thermische Verfahrenstechnik	2	2	-	6	K	-	-	-	-	-
Mechanische Verfahrenstechnik	2	2	-	6	K	-	-	-	-	-
Physikalische Grundlagen	4	2	-	7	K	-	-	-	1	-
Wahlpflichtfächer*	4	2	-	5	K	-	-	-	1	-
Profilfach: Vorlesungen, Übungen, Projektarbeit**	1	1	-	2	-	1	1	Р	10	A+M
Überfachliche Qualifikationen*					-	2	-	-	3	S
Bachelor-Arbeit	-	-	-		-	360) h		12	Α
Summe LP / Anzahl benotete Erfolgskontrollen				32	5				25	3

WS: Wintersemester, SS: Sommersemester V: Vorlesung; Ü: Übung; P: Praktikum; LP: Leistungspunkte (ECTS); E: Erfolgskontrolle, K: Klausur, M: Mündliche Prüfung, A: Prüfungsleistung anderer Art/Abschlussarbeit, S: unbenotete Studienleistung,

Die Verteilung der Module in den Fächern "Wahlpflichtfächer" und "Überfachliche Qualifikationen" ist nur ein Vorschlag

^{**} Der Umfang von Vorlesungen, Übungen und Projektarbeit unterscheiden sich je nach gewähltem Profilfach.

3 Aufbau des Studiengangs

Pflichtbestandteile	
Orientierungsprüfung Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	
Bachelorarbeit	12 LP
Mathematisch - Naturwissenschaftliche Grundlagen	47 LP
Ingenieurwissenschaftliche Grundlagen	38 LP
Thermodynamik und Transportprozesse	26 LP
Verfahrenstechnische Grundlagen	18 LP
Wahlpflichtfächer	10 LP
Praktika "ab 01.10.2023" Die Erstverwendung ist ab 01.10.2023 möglich.	11 LP
Profilfach	12 LP
Überfachliche Qualifikationen	6 LP
Freiwillige Bestandteile	•
Mastervorzug Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	

3.1 Orientierungsprüfung

Wahlinformationen

Teilleistungen in diesem Bereich können nicht gewählt oder für die Prüfungsanmeldung verwendet werden. Beim Bestehen der gleichnamigen Teilleistungen werden die Teilleistungen des Orientierungsmoduls automatisch auf Bestanden gesetzt. Folgen Teilleistungen sind im Rahmen der Orientierungprüfung bis zum Ende des 3. Fachsemesters zu bestehen:

- · Höhere Mathematik I
- Allgemeine und Anorganische Chemie

Pflichtbestandtei	е			
M-CIWVT-100874	Orientierungsprüfung	DE	WS+SS	0 LP

3.2 Bachelorarbeit Leistungspunkte

Voraussetzung:

Die Bachelorarbeit kann erst begonnen werden, wenn die Voraussetzung mindestens 120 Leistungspunkte erfüllt ist.

Ablauf der Anmeldung zu einer Bachelorarbeit:

Die Anmeldung der Bachelorarbeit läuft über den Bachelorprüfungsausschuss.

- · Anmeldung vor Beginn der Arbeit
- · Unterlagen möglichst über Institutssekretariat an den Bachelorprüfungsauschuss senden
- · Allerspätestens vier Wochen nach Beginn der Arbeit benötig der Bachelorprüfungsaussschuss folgende Unterlagen
 - Zulassungsbescheinigung https://www.ciw.kit.edu/1838.php ausgefüllt und unterschrieben
 - Kopie der Aufgabenstellung (vom Aufgabensteller unterschrieben)
- Die Bachelorarbeit wird vom Bachelorprüfungsausschuss im Campusmanagementsystem erfasst und angemeldet. Die Abgabefrist wird ebenfalls vom Bachelorprüfungsausschuss erfasst.

Abgabe der Bachelorarbeit:

- Die maximale Bearbeitungszeit beträgt vier Monate. Die Abgabefrist wird im Campusmanagementsystem hinterlegt. Die Arbeit ist innerhalb der Abgabefrist abzugeben.
- Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Der genaue Wortlaut ist der Studien- und Prüfungsordnung zu entnehmen.
- · abzugeben ist
 - 1 Exemplar im Dekanat/ beim Bachelorprüfungsausschuss.
 - Abgabe beim Aufgabensteller nach Rücksprache
- Abgabedatum ist das Datum der Abgabe beim Prüfungsausschuss!

Pflichtbestandteile								
M-CIWVT-103204	Modul Bachelorarbeit	DE	WS+SS	12				
				LP				

3.3 Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte

Pflichtbestandteile				
M-MATH-100280	Höhere Mathematik I	DE	Jährlich	7 LP
M-MATH-100281	Höhere Mathematik II	DE	SS	7 LP
M-MATH-100282	Höhere Mathematik III	DE	WS	7 LP
M-CIWVT-101956	Programmieren und Numerische Methoden	DE	Jährlich	8 LP
M-CHEMBIO-101117	Allgemeine und Anorganische Chemie (AAC)	DE	WS	6 LP
M-CHEMBIO-101115	Organische Chemie für Ingenieure	DE	SS	5 LP
M-PHYS-100993	Physikalische Grundlagen	DE	WS	7 LP

3.4 Ingenieurwissenschaftliche Grundlagen

Leistungspunkte

38

Pflichtbestandteile				
M-CIWVT-101128	Technische Mechanik: Dynamik	DE	WS	5 LP
M-MACH-102567	Werkstoffkunde	DE	WS+SS	9 LP
M-MACH-106527	Maschinenkonstruktionslehre A Die Erstverwendung ist ab 01.10.2023 möglich.	DE	WS	9 LP
M-CIWVT-106308	Regelungstechnik und Systemdynamik Die Erstverwendung ist ab 01.04.2023 möglich.	DE	SS	5 LP
M-CIWVT-104006	Technische Mechanik: Statik und Festigkeitslehre Die Erstverwendung ist ab 01.10.2017 möglich.	DE	Jährlich	10 LP

3.5 Thermodynamik und Transportprozesse

Leistungspunkte

26

Pflichtbestandteil	e			
M-CIWVT-101129	Technische Thermodynamik I	DE	WS	7 LP
M-CIWVT-101130	Technische Thermodynamik II	DE	SS	7 LP
M-CIWVT-101131	Fluiddynamik	DE	SS	5 LP
M-CIWVT-101132	Grundlagen der Wärme- und Stoffübertragung	DE	SS	7 LP

3.6 Verfahrenstechnische Grundlagen

Leistungspunkte

18

Pflichtbestandteile				
M-CIWVT-101135	Mechanische Verfahrenstechnik	DE	WS	6 LP
M-CIWVT-101134	Thermische Verfahrenstechnik	DE	WS	6 LP
M-CIWVT-101133	Chemische Verfahrenstechnik	DE	WS	6 LP

3.7 Wahlpflichtfächer

Leistungspunkte

10

Wahlinformationen

In der Regel werden zwei Module im Umfang von insgesamt 10 ECTS gewählt (unabhängig davon, ob die Module im Sommeroder Wintersemester angeboten werden). Für die meisten Wahlpflichtfächer wird die Teilnahme nicht vor dem vierten Fachsemester emfpohlen.

Wahlpflichtfächer	(Wahl: mind. 10 LP)			
M-CIWVT-103297	Angewandter Apparatebau	DE	SS	5 LP
M-CIWVT-106475	Biopharmazeutische Verfahrenstechnik Die Erstverwendung ist ab 01.04.2025 möglich.	DE	SS	6 LP
M-CIWVT-106434	Bioverfahrenstechnik Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	5 LP
M-CIWVT-106030	Catalysts for the Energy Transition Die Erstverwendung ist ab 01.10.2022 möglich.	EN	SS	5 LP
M-CIWVT-106433	Einführung in das Bioingenieurwesen Die Erstverwendung ist ab 01.04.2024 möglich.	DE	SS	5 LP
M-ETIT-105690	Electrochemical Energy Technologies Die Erstverwendung ist nur zwischen 01.04.2021 und 31.03.2026 möglich.	EN	WS	5 LP
M-ETIT-105703	Praktikum Elektrochemische Energietechnologien Die Erstverwendung ist ab 01.10.2021 möglich.	DE/EN	SS	5 LP
M-CIWVT-101136	Energieverfahrenstechnik	DE	WS	5 LP
M-CIWVT-106880	Fortgeschrittene Methoden der linearen Regelungstechnik Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	6 LP
M-CIWVT-106444	Intensivierung von Bioprozessen Die Erstverwendung ist ab 01.04.2025 möglich.	DE	SS	6 LP
M-CIWVT-106476	Lebensmittelbioverfahrenstechnik Die Erstverwendung ist ab 01.10.2025 möglich.	DE	WS	6 LP
M-MACH-106528	Maschinenkonstruktionslehre B-C Die Erstverwendung ist ab 01.10.2023 möglich.	DE	WS	12 LP
M-CIWVT-101137	Organisch-chemische Prozesskunde	DE	WS	5 LP
M-CIWVT-107403	Bioverfahrensentwicklung Die Erstverwendung ist ab 01.10.2025 möglich.	DE	WS	6 LP

Leistungspunkte 3.8 Praktika "ab 01.10.2023" 11

Hinweise zur Verwendung Die Erstverwendung ist ab 01.10.2023 möglich.

Pflichtbestandteile					
M-CIWVT-106500 Grundpraktikum DE WS 6					
Aufbaupraktikum (W	Aufbaupraktikum (Wahl: 1 Bestandteil)				
M-CIWVT-101139	M-CIWVT-101139 Verfahrenstechnische Maschinen DE WS 5 LF				
M-CHEMBIO-101116	Praktikum Organische Chemie	DE	WS	5 LP	

3.9 Profilfach

Im fünften Semester besteht erstmals die Möglichkeit der Profilbildung. Elf Profilfächer stehen zur Auswahl. Umfang und Aufbau der Profilfächer sind ähnlich. Die Profilfächer erstrecken sich über zwei Semester, beginnen im Wintersemester und enden spätestens Ende Mai. Im Wintersemester finden in der Regel Vorlesungen statt, in denen erweitere, fachspezifische Kenntnisse vermittelt werden. Im Anschluss wird forschungsnahe Projektarbeit in Kleingruppen bearbeitet. Voraussetzung für die Teilnahme an den Profilfächern sind mindestens 60 ECTS und mindestens ein erfolgreich absolviertes Praktikum (z. B. Allgemeine und Anorganische Chemie, Verfahrenstechnisches Praktikum,...).

Die Erfolgskontrolle in den Profilfächern besteht aus zwei Teilleistungen, die in der Beschreibung der einzelnen Profilfächer aufgeführt sind (z. B. mündliche Prüfung und Präsentation der Projektarbeit). Das Profilfach ist nur dann bestanden, wenn beide Teilleistungen mit mindestens "ausreichend" bewertet werden. Eine nicht bestandene Teilleistung kann nur einmal wiederholt werden. Termine für Wiederholungsprüfungen werden mit dem Profilfachverantwortlichen vereinbart.

Da die praktische Arbeit im Labor durchgeführt wird, ist die Teilnehmerzahl in den einzelnen Profilfächern begrenzt. Die Anmeldung zu den Profilfächern ist in der Regel im Juli vor Beginn des Profilfachs möglich. Innerhalb eines Anmeldezeitraums von zwei Wochen, haben Studierende die Möglichkeit, Ihr Wunschprofilfach zu wählen (Mindestens ein Erst- und ein Zweitwunsch). Nach Anmeldeschluss werden die Plätze automatisch vergeben, wobei die Wünsche nach Möglichkeit berücksichtigt werden.

Vor Beginn des Anmeldezeitraums findet **im Juni oder Juli** eine Informationsveranstaltung statt, in der die einzelnen Profilfächer vorgestellt werden und das Anmeldeverfahren erläutert wird.

Ort und Zeit der Informationsveranstaltung werden rechtzeitig auf den Homepages der Fakultät und der Fachschaft sowie im Vorlesungsverzeichnung (institutsübergreifende Veranstaltungen) veröffentlicht.

Besonderheiten zur Wahl

Wahlen in diesem Bereich sind genehmigungspflichtig.

Profilfach (Wahl:	mind. 12 LP)			
M-CIWVT-104458	Angewandte Thermische Verfahrenstechnik	DE	WS	12 LP
M-CIWVT-106477	Automatisierungs- und Regelungstechnik Die Erstverwendung ist ab 01.10.2023 möglich.	DE	WS	12 LP
M-CIWVT-101143	Biotechnologie	DE	WS	12 LP
M-CIWVT-106825	Chemische Reaktionstechnik Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	12 LP
M-CIWVT-101145	Energie- und Umwelttechnik	DE	WS	12 LP
M-CIWVT-106700	Formulierung und Charakterisierung von Energiematerialien Die Erstverwendung ist ab 01.10.2024 möglich.	DE	WS	12 LP
M-CIWVT-104457	Grundlagen der Kältetechnik	DE	WS	12 LP
M-CIWVT-105995	Kreislaufwirtschaft Die Erstverwendung ist ab 01.10.2022 möglich.	DE	WS	12 LP
M-CIWVT-101148	Lebensmitteltechnologie	DE	Jährlich	12 LP
M-CIWVT-106448	Luftreinhaltung Die Erstverwendung ist ab 01.10.2023 möglich.	DE	WS	12 LP
M-CIWVT-101147	Mechanische Separationstechnik	DE	WS	12 LP
M-CIWVT-101154	Mikroverfahrenstechnik	DE	WS	12 LP
M-CIWVT-101153	Prozessentwicklung und Scale-up	DE	WS	12 LP
M-CIWVT-107495	Technologie dünner Schichten Die Erstverwendung ist ab 01.10.2025 möglich.	DE	WS	12 LP

3.10 Überfachliche Qualifikationen

Leistungspunkte

3

Während des Bachelorstudiums sind insgesamt 6 LP im Bereich "Überfachliche Qualifikationen" zu absolvieren. Zu Überfachlichen Qualifikationen zählen nichttechnische Module, beispielsweise Module aus anderen Fachbereichen oder Angebote des House of Competence (HoC), Sprachenzentrums (SPZ) oder des Studium Generale - Forum für Wissenschaft und Gesellschaft (FORUM).

Anmeldung im Campusmanagement / Anerkennung

Zusatzleistungen und Überfachliche Qualifikationen können nicht immer im CAS System direkt angemeldet werden (z.B. manche Module aus einer anderen Fakultät). Sie müssen sich in jedem Fall VOR der Prüfung mit dem Bachelorprüfungsausschuss in Verbindung setzen.

Ausnahme:

Überfachliche Qualifikation am HoC, SPZ oder FORUM:

Wenn die Überfachliche Qualifikation am HoC oder Sprachenzentrum erbracht wird, dann wird keine Zulassungsbescheinigung für eine Prüfungsleistung benötigt, da die Leistungen automatisch im CAS System unter "nicht zugeordnete Leistungsnachweise" gebucht werden. Soll eine Leistung angerechnet werden, die bei den "nicht zugeordneten Leistungsnachweisen" gelistet ist, dann muss ein Antrag an den Bachelorprüfungsausschuss gestellt werden.

Antragsformulare entnehmen Sie bitte der Webseite der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik https://www.ciw.kit.edu/bpa.php

Wahlinformationen

3 der 6 LP sind festgelegt: Mindestens eines der folgenden Module muss gewählt werden:

- "Ethik und Stoffkreisläufe
- · Industriebetriebswirtschaftslehre

Module im Umfang von 3 LP können frei gewählt werden. Dabei können

- · entweder beide oben genannten Module
- oder beliebige Module im Umfang von mindestens 3 LP (z. B. Kurse des HoC oder FORUM)

gewählt werden.

Überfachliche Qu	alifikationen (Wahl: mind. 6 LP)			
M-CIWVT-101149	Ethik und Stoffkreisläufe	DE	SS	3 LP
M-WIWI-100528	Industriebetriebswirtschaftslehre		Jährlich	3 LP
M-CIWVT-105848	SmartMentoring Die Erstverwendung ist ab 01.10.2021 möglich.	DE	WS	3 LP
M-CIWVT-106534	Datengetriebene Modellierung mit Python Die Erstverwendung ist ab 01.10.2023 möglich.	DE	WS	3 LP

3.11 Mastervorzug

Allgemeine Informationen zum Mastervorzug

Zweck des Mastervorzugs

Studierende, die sich im Bachelor zurückmelden müssen, weil Ihnen beispielsweise noch einzelnen Prüfungsleistungen fehlen oder weil die Bachelorarbeit nicht mehr innerhalb des Prüfungszeitraums abgegeben werden kann, können den Mastervorzug nutzen, um "Leerlauf" zwischen Bachelor und Master zu vermeiden. So können bereits während des Bachelorstudiums Prüfungen aus dem Master abgelegt werden, die späte im Masterstudium anerkannt werden können.

Voraussetzungen

Sobald im Bachelorstudium mindestens 120 LP erreicht sind, ist die Anmeldung zu Prüfungen im Rahmen des Mastervorzugs möglich. Nach Auswahl der gewünschten Teilleistungen ist die online-Anmeldung im Studierendenportal für die Prüfungen möglich.

Welche Mastervorzugsleistungen sind möglich

Der Mastervorzug ist auf maximal 30 LP beschränkt. Als Mastervorzugsleistungen können Teilleistungen aus den folgenden Fächern der Masterstudiengänge Chemieingenieurwesen und Verfahrenstechnik sowie Bioingenieurwesen absolviert werden.

- · Erweiterte Grundlagen
- Berufspraktikum
- · Überfachliche Qualifikationen

Nähere Informationen zu einzelnen Modulen sind dem Modulhandbuch des Masterstudiengangs zu entnehmen.

Übertrag der Mastervorzugsleistungen

Innerhalb des ersten Mastersemesters kann ein Antrag auf Übertragung der Mastervorzugsleistungen beim Masterprüfungsausschuss (Frau Benoit) gestellt werden. Das Antragsformular ist unter folgendem Link zu finden:

http://www.ciw.kit.edu/img/content/Formular Uebertrag Mastervorzug MPA.pdf

Folgende Regeln gelten, sofern Sie noch im Bachelor immatrikuliert sind und noch keine Masterzulassung vorliegt (s. auch Erläuterung unter Wahl-Informationen):

Sollte während des Bachelorstudiums eine Prüfungsleistung aus dem Mastervorzug endgültig nicht bestanden werden, so erlischt der Prüfungsanspruch im Bachelorstudiengang **nicht**.

Eine Verpflichtung zur Übertragung der Mastervorzugsleistungen besteht nicht.

!! Wenn Sie sich gegen die Übernahme entscheiden und die Klausur erneut schreiben, ist das "neue" Ergebnis relevant. Auch, wenn Sie sich verschlechtern oder durchfallen sollten!!

Wahlinformationen

Bitte beachten Sie: Eine als Mastervorzugsleistung angemeldete Erfolgskontrolle kann nach dem erfolgreichen Ablegen aller für den Bachelorabschluss erforderlichen Studien- und Prüfungsleistungen nur als Mastervorzugsleistung erbracht werden, solange Sie im Bachelorstudiengang immatrikuliert sind. Weiter darf noch keine Masterzulassung vorliegen und gleichzeitig das Mastersemester begonnen haben.

Dies bedeutet, dass ab Bekanntgabe der Zulassung zum Masterstudium und Beginn des Mastersemester die Teilnahme an der Prüfung als **regulärer erster Prüfungsversuch** im Rahmen des Masterstudiums erfolgt.

DE	30
	DE

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - · Ingenieurwissenschaftliche Grundlagen
 - · Mathematisch Naturwissenschaftliche Grundlagen
 - Praktika "bis 30.09.2023"
 - Profilfach
 - Thermodynamik und Transportprozesse
 - Überfachliche Qualifikationen
 - · Verfahrenstechnische Grundlagen
 - Wahlpflichtfächer

4 Module

4.1 Modul: Allgemeine und Anorganische Chemie (AAC) [M-CHEMBIO-101117]

Verantwortung: Prof. Dr. Mario Ruben

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-101866	Allgemeine und Anorganische Chemie	6 LP	Ruben

Erfolgskontrolle(n)

benotet: Prüfungsklausur (150 min)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden besitzen ein grundlegendes Verständnis der anorganischen Chemie. Mit der Kenntnis des Periodensystems der Elemente, des grundlegenden Aufbaus von Atomen und chemischen Bindungen kennen die Studierenden spezifische anorganische Stoffe, sind in der Lage, diese zu beschreiben und deren verschiedene Reaktionsvermögen abzuschätzen und nach chemischen Gesetzmäßigkeiten zu interpretieren.

Inhalt

• Aufbau der Materie, Atommodelle, Periodensystem der Elemente• Einführung in die chemische Bindung• Metalle, Ionenkristalle, kovalente Verbindungen, Komplexverbindungen• Chemische Reaktionen, Chemisches Gleichgewicht, Massenwirkungsgesetz, Löslichkeitsprodukt• Säuren und Basen, Säure-Basen-Gleichgewichte, Redoxreaktionen• Fällungsreaktionen, Löslichkeitsprodukt• Elektrochemische Grundbegriffe,• Chemie der Elemente

Zusammensetzung der Modulnote

Note Prüfungsklausur

Arbeitsaufwand

Präsenzzeit: 56h Selbststudium: 94h

Literatur

Mortimer, Müller (aktuelle Auflage): Chemie, Thieme Verlag

Riedel (aktuelle Auflage): Moderne Anorganische Chemie, de Gruyter Verlag

Hollemann, Wieberg (aktuelle Auflage): Lehrbuch der Anorganischen Chemie, de Gruyter Verlag

M. Binnewies, M. Jäckel, H. Willner, G. Rayner-Canham: Allgemeine und Anorganische Chemie, Spektrum Verlag 2004

C. E. Housecroft, A. G. Sharpe, Anorganische Chemie, Pearson Verlag 2006.

4.2 Modul: Angewandte Thermische Verfahrenstechnik [M-CIWVT-104458]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
2 SemesterLevel
DeutschVersion
3

Pflichtbestandteile				
T-CIWVT-109120	Angewandte Thermische Verfahrenstechnik - Projektarbeit	6 LP	Dietrich	
T-CIWVT-110803	Angewandte Thermische Verfahrenstechnik - Übungsaufgaben und Praktikum	6 LP	Dietrich	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus zwei Prüfungsleistungen anderer Art:

- 1. Übungsaufgaben und Praktikum (Wintersemester)
- 2. Projektarbeit zu Scale-up Fragestellungen inkl. Präsentation (Sommersemester)

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können

- grundlegende, zukunftsorientierte Prozesse der Angewandten Thermischen Verfahrenstechnik erläutern
- Prozesskette einer wissenschaftlichen Fragestellung bis hin zu deren Beantwortung: Planung, Konzeptionierung, Realisierung, Durchführung und Auswertung von grundlegenden Versuchen, Aspekte zur Umsetzung in einen technischen Maßstab (Scale-Up) beschreiben
- · wissenschaftlich unter Verwendung von DV-Standardtools arbeiten
- wissenschaftliche Ergebnisse präsentieren
- · eigenständig Fachwissen erarbeiten

Inhalt

Im Rahmen dieses Moduls soll ein Einblick in die aktuelle Forschung des Instituts ermöglicht werden, welche sich u.a. mit zukunftsorientierten Themen, wie erneuerbaren Energiekonzepten, Elektromobilität sowie Energiespeicherung beschäftigt. Dazu werden drei grundlegende Versuche im Bereich der Trocknung, Wärmeübertragung und Kristallisation in Form einer Projektarbeit angeboten.

Zunächst werden in einer Vorlesung sowohl die entsprechenden fachlichen als auch methodischen Grundlagen präsentiert. Dies umfasst auch die Vermittlung notwendiger Kenntnisse zur Erstellung eines wissenschaftlichen Berichts bzw. einer wissenschaftlichen Präsentation sowie die Verwendung von speziellen Excel-Tools wie z.B. Solver oder Makros. Innerhalb spezieller Workshops am TVT kann das Gelernte dann trainiert werden. Daran anschließend wird im Labor unter Verwendung moderner, zum Teil selbst aufzubauender Messtechnik (z.B. Temperatursensorik auf Basis von Einplatinencomputern / Arduino) zum jeweiligen Thema der Versuch durchgeführt. Die Auswertung erfolgt mittels der in der Vorlesung gelegten Grundlagen und unter Zuhilfenahme entsprechender Kapitel des VDI-Wärmeatlas. Die Ergebnisse werden in einem Arbeitsbericht zusammengefasst. Im nachfolgenden Schritt wird für einen der Versuche eine Auslegungsrechnung zum industriellen Scale-Up mit entsprechenden Spezifikationen der benötigen Geräte erarbeitet. Die Auslegung ist in einem wissenschaftlichen Seminar mittels einer Präsentation den übrigen Studierenden des Profilfachs vorzustellen. Abgerundet wird der praktische Teil durch eine Exkursion zur BASF in Ludwigshafen, wodurch Einblicke zur Anwendung des Gelernten in der industriellen Umsetzung gewonnen werden können.

Zusammensetzung der Modulnote

Die Modulnote wird aus den Noten der beiden Teilleistungen gebildet. Gewichtung 1:1.

Anmerkungen

Das Profilfach Angewandte Thermische Verfahrenstechnik wird im Wintersemester 2024/25 nicht angeboten.

Arbeitsaufwand

Präsenzzeit: 100 h Selbststudium: 160 h

Praktikum (incl. Auwertung): 100 h

Empfehlungen

Die erfolgreiche Teilnahme an der Vorlesung "Grundlagen der Wärme- und Stoffübertragung" des TVT ist von Vorteil.

Literatur

- VDI-Wärmeatlas, Springer 2013Eigene Skripte

4.3 Modul: Angewandter Apparatebau [M-CIWVT-103297]

Verantwortung: Dr. Martin Neuberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106562	Angewandter Apparatebau Klausur	5 LP	Neuberger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können notwendige Schritte von der Konzeptfindung, Planung sowie Auslegung einer Apparatekonstruktion bis zur Inbetriebsetzung erläutern. Das beinhaltet insbesondere die Auswahl und Auslegung einzelner Komponenten. Die Studierenden können die Prinzipien des Apparatebaus für Anforderungen verschiedener Edukte, Produkte und Prozesse anwenden.

Neben den technischen Anforderungen können sie dabei auch andere Aspekte, wie beispielsweise Kosten, Termine und Qualitätsmanagement mit in Betracht ziehen. Der Ablauf von Genehmigungs- und Beschaffungsprozessen kann in Grundzügen dargestellt werden.

Inhalt

Projektabwicklung

Terminplanung, Ressourcenplanung, Kostenschätzung, Kalkulation, Arbeitspakete, Projektstruktur, Kostenstruktur

Ablauf einer Apparatekonstruktion

Produkt (Charakterisierung und Anforderungen an das Produkt: korrosive Medien, Reinheit, Sauberkeit etc.), Prozess (Erfordernisse der Herstellung, wie Druck, Temperatur etc.), Werkstoffauswahl, Planung (Realisierungsoptionen, Auswahl Komponenten: Motoren, Armaturen, Ventile, Pumpen, Gebläse, Rührwerke, Sonderkomponenten), Wartungs- und Reparaturfreundlichkeit, Zugänglichkeit, Anlagensicherheit, Auslegung, Fertigung (Fertigungsverfahren, Schweißen, Löten etc.), Transport (Transportüberwachung, Gefahrenübergang etc.), Montage (Vorgaben, Ablauf etc.), Inbetriebsetzung (Leistungstest etc.)

Beschaffung

Technische Spezifikation, Ausschreibungsverfahren, Anfrageunterlagen, Auswertung Angebote, Vertragsgestaltung

Qualitätsmanagement

Zertifizierung nach ISO 9001:2015, Qualitätsplanung, Prüfung Planunterlagen (Vorprüfunterlagen)

Beispiel Schweißen: Verfahrensqualifikation, qualifizierte Schweißer etc.

Werkstoffprüfzeugnisse, Überprüfung der Machbarkeit von Prüfungen, Fertigungs- und Montageüberwachung, Funktionsprüfungen und Inbetriebsetzung

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 h Selbststudium: 45 h Prüfungsvorbereitung: 45 h

Literatur

Walter Wagner: Planung im Anlagenbau; Vogel Business Media; Auflage: 3. Auflage (August 2009)

4.4 Modul: Automatisierungs- und Regelungstechnik [M-CIWVT-106477]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2023)

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
2 SemesterLevel
DeutschVersion
4

Pflichtbestandteile				
T-CIWVT-113088	Automatisierungs- und Regelungstechnik - Prüfung	6 LP	Meurer	
T-CIWVT-113089	Automatisierungs- und Regelungstechnik - Projektarbeit	6 LP	Meurer	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- · mündliche Prüfung im Umfang von ca. 30 Minuten
- Prüfungsleistung anderer Art: Projektarbeit als Gruppenarbeit
 Es werden Vorbereitung, Durchführung, Präsentation und schriftlicher Bericht bewertet.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- 60 LP
- 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden kennen Konzepte und Methoden zur Analyse, zur Simulation und zum Regler- sowie zum Beobachterentwurf für lineare zeitkontinuierliche und zeitdiskrete Systeme im Zustandsraum. Sie können diese formulieren und erläutern und sind in der Lage darauf aufbauend komplexere Zusammenhänge abzuleiten. Sie besitzen praktische Fertigkeiten in der Systemanalyse und im Entwurf von Regelungen und Beobachtern für lineare Systeme im Zustandsraum. Sie können deren Verhalten und Eigenschaften evaluieren und beurteilen. Sie sammeln Problemlösungskompetenz im Team und Erfahrungen in der Anwendung wissenschaftlicher Methoden.

Inhalt

- · Modellierung und Simulation physikalischer Systeme
- · Zeitkontinuierliche und zeitdiskrete lineare Systeme
- Struktureigenschaften (Stabilitätstheorie, Steuerbarkeit, Beobachtbarkeit)
- Synthese von Regelkreisen im Zustandsraum (zeitkontinuierlich und zeitdiskret) für lineare Ein- und Mehrgrößensysteme
- Rechnergestützte Umsetzung der Konzepte und Methoden unter Einbezug von MATLAB/Simulink
- Die Anwendung auf konkrete Problemstellungen erfolgt in der Projektarbeit (Teamarbeit), wobei neben simulationstechnischen Analysen auch die experimentelle Evaluation an Versuchsaufbauten angestrebt werden.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Anmerkungen

Das Profilfach kann nicht gewählt werden, wenn im Bereich Wahlpflichtfächer das Modul Fortgeschrittene Methoden der linearen Regelungstechnik gewählt wird.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 30 h, (Computer-)Übungen 15 h
- · Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h
- Projektarbeit: ca. 6 Wochen/ 180 h

Literatur

- T. Meurer: Regelungstechnik und Systemdynamik, Vorlesungsskript.

- K. Aström, R. Murray: Feedback Systems, Princeton University Press, 2008.
 C.T. Chen: Linear System Theory and Design, Oxford Univ. Press, 1999.
 J.C. Doyle, B.A. Francis, A.R. Tannenbaum: Feedback Control Theory, Dover, 2009.
 J. Lunze: Regelungstechnik II, Springer-Verlag, 2010.

4.5 Modul: Biopharmazeutische Verfahrenstechnik [M-CIWVT-106475]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.04.2025)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-113023	Biopharmazeutische Verfahrenstechnik	6 LP	Hubbuch	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Probleme im Bereich der biotechnologischen Trennverfahren analysieren, strukturieren und formal beschreiben. Die Studierenden sind fähig, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Die VL vermittelt grundlegende Aspekte in der Aufarbeitung und Analytik biotechnologischer Produkte.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 hSelbststudium: 80 hKlausurvorbereitung: 40 h

Empfehlungen

Die Inhalte der folgenden Module sind für das Verständnis wichtig:

- Einführung in das Bioingenieurwesen
- Bioverfahrenstechnik

Literatur

wird bekannt gegeben

4.6 Modul: Biotechnologie [M-CIWVT-101143]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	4

Pflichtbestandteile				
T-CIWVT-103668	Biotechnologie - Prüfung	3 LP	Henke	
T-CIWVT-103669	Biotechnologie - Projektarbeit	9 LP	Perner-Nochta	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Schriftlichen Prüfung im Umfang von 90 Minuten zu den Lehrinhalten der Vorlesung Bioanalytik.
- 2. Praktischen Anteil (Prüfungsleistung anderer Art)

Hier gehen folgende Leistungen ein:

- ∘ (0 20 Punkte) Projektplan
- ∘ (0 20 Punkte) die praktische Arbeit
- ∘ (0 20 Punkte) eine Präsentation der Ergebnisse (Poster und Kurzvortrag)
- ∘ (0 20 Punkte) die schriftliche Ausarbeitung ein.

Notenschlüssel auf Anfrage. Die Teilleistung ist bestanden, wenn mindestens 40 Punkte erreicht wurden.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- mind. 1 Praktikum
- für einzelne Versuche werden die Inhalte des Praktikums Biotechnologie vorausgesetzt

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Es muss eine von 8 Bedingungen erfüllt werden:
 - 1. Das Modul M-CIWVT-101138 Verfahrenstechnisches Praktikum muss erfolgreich abgeschlossen worden sein.
 - 2. Das Modul M-CIWVT-101139 Verfahrenstechnische Maschinen muss erfolgreich abgeschlossen worden sein.
 - 3. Das Modul M-CIWVT-101722 Allgemeine Chemie und Chemie in wässrigen Lösungen muss erfolgreich abgeschlossen worden sein.
 - Das Modul M-CIWVT-101964 Praktikum Allgemeine und Anorganische Chemie muss erfolgreich abgeschlossen worden sein.
 - Das Modul M-CHEMBIO-101115 Organische Chemie für Ingenieure muss erfolgreich abgeschlossen worden sein.
 - 6. Die Teilleistung T-CIWVT-103331 Praktikum Biologie im Ingenieurwesen (Mikrobiologie) muss erfolgreich abgeschlossen worden sein.
 - 7. Das Modul M-CIWVT-106427 Naturwissenschaftliches Grundpraktikum muss erfolgreich abgeschlossen worden sein.
 - 8. Das Modul M-CIWVT-106500 Grundpraktikum muss erfolgreich abgeschlossen worden sein.
- 2. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Grundlegendes Verständnis von Prozessen und Prozesssynthesen in der biotechnologischen Produktion

Vorlesung Bioanalytik:

Die Studierenden können die Auswahl und Durchführung von Methodiken für die Analytik von Biomolekülen wiedergeben. Die Studierenden können Vorteile sowie Limitationen der unterschiedlichen Methodiken hinsichtlich ihrer Einsatzgebiete in der biotechnologischen Forschung in Bezug auf die unterschiedlichen Biomoleküle (insbesondere DNA, RNA, Proteine/Enyzme, Metabolite) bewerten. Die Studierenden sind in der Lage, geeignete Methoden sowie Experimentierdesigns für (künftige) eigene Arbeiten im Kontext der qualitativen und quantitativen Bioanalytik zu selektieren.

Vorlesung über Management wissenschaftlicher Projekte mit Übung:

Die Studierenden sind in der Lage, eine eigenständige Literaturrecherche durchzuführen, eigene Versuche zu planen, eigene Daten zu analysieren, eigene wissenschaftliche Texte zu schreiben, selbständig ein kleines Projekt hinsichtlich benötigter Zeit und Finanzen zu planen und einen Projektplan zu erstellen. Sie können den Projektplan vorstellen und ein Poster erstellen und dieses präsentieren.

Projektarbeit:

Die Studierenden können eigene Untersuchungen und praktische Arbeiten auf dem Gebiet der Biotechnologie durchführen, ihre gewonnen Daten analysieren und einen Projektbericht erstellen.

Inhalt

Vorlesungen Bioanalytik:

Die Vorlesung soll die wichtigsten Methoden für die Analyse von Biomolekülen verstellen. Entsprechend des genetischen Informationsflusses in der Zelle, werden Methoden der Bioanalytik von DNA, RNA, Proteinen/Enzymen sowie Metaboliten vermittelt. Die Theorie sowie die Anwendung von Methoden werden anhand von Forschungsbeispielen angeführt. Methodenschwerpunkte bilden Sequenziertechnologien, Proteinanalytik, Enzymologie, chromatographische Verfahren sowie Grundlagen der Massenspektrometrie und NMR. Darüber hinaus werden weitere Methoden der Mikroskopie sowie Reportersysteme zur Analyse von Biomolekülen in ganzen Zellen vorgestellt.

Vorlesung über Management wissenschaftlicher Projekte und Übung:

Literaturrecherche, Versuchsplanung, Datenauswertung, Schreiben wissenschaftlicher Texte, Projektmanagement; teilweise Software-basiert; electronic classroom, dazu praktische Übungen in Literaturrecherche, Erstellen eines Projektplans, Projektplanvorstellung, Erstellen eines Posters, Posterpräsentation

Projektarbeit:

Durchführung eigener Untersuchungen und praktische Arbeiten auf dem Gebiet der Biotechnologie, Erstellen eines Projektberichts

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Instrumentelle Bioanalytik:

- Präsenszeit: 30 h (2 SWS)
- · Vor- und Nachbereitung: 30 h
- Klausurvorbereitung: 30 h

Vorlesung und Übung Management wissenschaftlicher Projekte:

- Präsenszeit: 45 h (2 + 1 SWS)
- · Vor- und Nachbereitung: 45 h

Praktikum Praktische Übungen):

- Präsenszeit: 80 h
- · Vor- und Nachbereitung: 10 h

Projektarbeit:

- Präsenszeit: 10 h
- · Vor- und Nachbereitung: 80 h

Empfehlungen

Module des 1. -4. Semesters, Praktikum Biotechnologie

Literatur

Wird in der Vorlesung bekannt gegeben.

4.7 Modul: Bioverfahrensentwicklung [M-CIWVT-107403]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2025)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-114538	Bioverfahrensentwicklung	6 LP		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen:

Die Studierenden

- · Kennen die grundlegenden Schritte der Entwicklung eines Bioprozesses, von der Konzeption bis zur Umsetzung.
- · Verstehen und wenden grundlegende Methoden an, die für jede Phase der Bioprozessentwicklung relevant sind.
- Erkennen, wie die aufeinanderfolgenden Schritte der Bioprozessentwicklung miteinander verbunden sind und wie Veränderungen in einer Phase andere Phasen beeinflussen können.
- Sind sich der Komplexität und des interdisziplinären Charakters der Bioprozessentwicklung bewusst und integrieren Wissen aus Biologie, Chemie, Ingenieurwesen und Wirtschaft.
- Lernen, einen neuen Bioprozess theoretisch von Grund auf zu entwerfen und dabei alle relevanten Rahmenbedingungen zu berücksichtigen.
- Bewerten und minimieren kritische Schritte und Risiken während der Bioprozessentwicklung.
- Entwickeln Bioprozesse mit Blick auf das Endprodukt unter Berücksichtigung von Marktanforderungen, Kosteneffizienz und Nachhaltigkeit.
- Bleiben über neue Trends, Methoden und Technologien im Fachgebiet informiert, einschließlich des Einflusses von Künstlicher Intelligenz auf die zukünftige Bioprozessentwicklung.

Sozial- und Selbstkompetenz:

Die Studierenden:

- Erkennen die Schlüsselaspekte und Rahmenbedingungen komplexer Bioprozesse.
- Entwickeln effektive Kommunikationsfähigkeiten, um erfolgreich mit Experten verschiedener Disziplinen in der Bioprozessentwicklung zusammenzuarbeiten.
- Betreiben eigenständiges Lernen, um das Wissen kontinuierlich zu erweitern und sich neuen Herausforderungen im Fachgebiet anzupassen.
- Entwickeln kritisches Denken, Kreativität und Problemlösungskompetenz, die für die Entwicklung grundlegend neuer Prozesse und Lösungen notwendig sind.
- Entwickeln mögliche Lösungsansätze und wägen Optionen für die Entwicklung eines Bioprozesses ab.

Inhalt

Erfolgreiche Bioprozessentwicklung erfordert eine Vielzahl technischer und kommunikativer Fähigkeiten. Der Kurs verknüpft die mikrobielle Stammentwicklung mit der Bioverfahrenstechnik und baut auf dem in den ersten Studienjahren erworbenen bioverfahrenstechnischen Grundwissen auf. Kenntnisse aus vorherigen Kursen werden vertieft und für die technische Entwicklung von Bioprozessen angewendet. Zentrale Leitlinien und Konzepte zur Entwicklung robuster, wirtschaftlicher und nachhaltiger Bioprozesse werden eingeführt. Ziel dieses Kurses ist es, den Studierenden das notwendige und grundlegende Verständnis für die Bioprozessentwicklung sowie für die Interaktion verschiedener Fachbereiche zu vermitteln. Dies umfasst (i) die Definition des Produkts, (ii) die Auswahl des Rohstoffs, (iii) die Auswahl des mikrobiellen Wirts, (iv) die Stammentwicklung, (v) die Bioprozessoptimierung sowie (vi) das Scale-up und den Betrieb des Bioprozesses. Aktuelles Wissen wird durch Einblicke in aufkommende Themenfelder wie Miniaturisierung, Automatisierung und Digitalisierung ergänzt, die die Bioprozessentwicklung in Zukunft beschleunigen werden. Die Studierenden lernen, interdisziplinär zu denken und die zentralen Prinzipien der verschiedenen Schritte der Bioprozessentwicklung anzuwenden, um zukünftige Bioprozesse zu entwickeln.

Lehrformate beinhalten Vorlesungen, Übungen und Fallstudien. Die Vorlesungsthemen umfassen:

- 1. Workflow und Leitlinien der Bioprozessentwicklung
- 2. Substrat- und Wirtsauswahl
- 3. Stammentwicklung und Screening
- 4. Bioprozessoptimierung
- 5. Bioprozess-Scale-up
- 6. Kosten- und Nachhaltigkeitsabschätzung
- 7. Fallstudien
- 8. Regulatorische Anforderungen und Qualitätskontrolle
- 9. Digitalisierung und Künstliche Intelligenz

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung und Übung 60 h
- Selbststudium: Vor- und Nachbereitung der Lehrveranstaltungen: 80 h
- Prüfungsvorbereitung: 40 h

Empfehlungen

Bioverfahrenstechnik.

Literatur

- · Lecture scripts
- Pauline M. Doran, Bioprocess Engineering Principles, Academic Press; 2nd edition, ISBN: 012220851X
- Winfried Storhas, Bioverfahrensentwicklung, Wiley-VCH, 2. Aufl. 2014, ISBN: 978-3-527-32542-5

4.8 Modul: Bioverfahrenstechnik [M-CIWVT-106434]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2024)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-113019	Bioverfahrenstechnik	5 LP	Grünberger, Hubbuch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, grundlegende Operationen und Denkschemata der Verfahrenstechnik auf Bioprozesse anzuwenden. Sie können reaktionstechnische Ansätze auf den mikrobiellen Stoffwechsel zu übertragen und daraus reale Prozesse verstehen. Sie lernen verschiedene Prozesse, Bioreaktoren und Prozessführungsstrategien konkret kennen und trainieren daran die Berechnung und Bewertung aus theoretischer und anwendungstechnischer Sicht. Sie lernen verschiedene Bioprozesse im Detail vor dem theoretischen Hintergrund zu interpretieren, diskutieren und kritisch zu beurteilen. Die Studierenden können Probleme im Bereich der biotechnologischen Trennverfahren analysieren, strukturieren und formal beschreiben. Die Studierenden sind fähig, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Die Bioverfahrenstechnik umfasst das Design, den Betrieb, die Regelung und die Optimierung biotechnologischer Prozesse unter kontrollierten Bedingungen in einem Bioreaktor. Bioprozesse werden für die Herstellung einer Vielzahl kommerzieller Produkte entwickelt, die von billigen bis hin zu teuren Spezialchemikalien wie Antibiotika, therapeutischen Proteinen und Impfstoffen reichen. Die Bioverfahrenstechnik ist somit das Rückgrat der Biotechnologieindustrie, die Forschung und Entwicklung auf die Industrie überträgt und hauptsächlich aus drei Bereichen besteht: (i) Upstream-Verarbeitung (ii) Bioreaktor und Bioreaktionen (iii) Downstream-Verarbeitung.

Der Kurs verknüpft die grundlegenden ingenieurwissenschaftlichen und biotechnologischen Kenntnisse, die in den ersten Studienjahren erworben wurden. Kenntnisse aus den bisherigen Lehrveranstaltungen werden vertieft und für die technische Entwicklung von Bioprozessen angewendet. Ziel dieser Lehrveranstaltung ist es, den Studierenden die notwendigen und grundlegenden Kenntnisse der Bioverfahrenstechnik zu vermitteln. Dazu gehören Grundlagen der Biokatalyse (hauptsächlich Zellen als Biokatalysatoren), mikrobielle Kinetik, Massen- und Energiebilanz in Bioprozessen sowie Kinetik von Bioprozessen und Fermentation. Dabei liegt der Schwerpunkt auf grundlegenden kinetischen und stöchiometrischen Prinzipien des mikrobiellen Stoffwechsels. Darauf aufbauend wird das Design von Kultivierungsmedien aufgezeigt und diskutiert. Im zweiten Teil werden das Design, der Betriebs und der Optimierung von Fermentationsprozessen zur Herstellung hochwertiger Bioprodukte diskutiert. Zu den Themen gehören Grundlagen von Prozessführungsstrategien wie Batch-, Fed-Batch- und kontinuierliche Kultivierung. Aufbau, Funktionsweise und Funktionsweise unterschiedlicher Arten von Bioprozessen werden demonstriert. Vor- und Nachteile werden besprochen. Es werden erste Einblicke in die Bioprozessanalytik und -steuerung gegeben. Abschließend wird ein Ausblick auf neue Themen der Bioverfahrenstechnik gegeben, darunter Themen wie Automatisierung und Digitalisierung von Bioprozessen sowie ökonomische und Nachhaltigkeitsaspekte von Bioprozessen. Darüber hinaus wird eine Einführung in die Grundlagen der Aufarbeitung von Bioprodukten gegeben, einschließlich Zellaufschluss, Fest-Flüssig-Trennung, Partitionierung, Adsorption und Chromatographie. Die Studierenden lernen, interdisziplinär zu denken und die Schlüsselprinzipien der verschiedenen Schritte einen Bioprozesses anzuwenden. Die Vorlesungsinhalte werden durch Übungen vertieft.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

• Präsenzzeit Vorlesung: 60 h

· Selbststudium: 50 h

· Klausurvorbereitung: 40 h

Literatur

- Horst Chmiel, Bioprozesstechnik, 2011, DOI:10.1007/978-3-8274-2477-8
- Wilfried Storhas, Bioverfahrensentwicklung, 2013, ISBN: 978-3-527-32899-4
- Clemens Posten, Integrated Bioprocess Engineering, 2018, DOI:10.1515/9783110315394

4.9 Modul: Catalysts for the Energy Transition [M-CIWVT-106030]

Verantwortung: TT-Prof. Dr. Moritz Wolf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2022)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-112214	Catalysts for the Energy Transition	5 LP	Wolf	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden können grundlegende Eigenschaften und Zusammenhänge der Katalyse erläutern, kennen die Herstellungsmethoden heterogener Katalysatoren und sind mit Charakterisierungsmethoden und deren Auswertung vertraut. Sie verstehen anhand beispielhafter, nachhaltiger und zukunftsträchtiger Anwendung der heterogenen Katalyse die Verbindung zwischen den makro- und mikroskopischen strukturellen Eigenschaften und der Aktivität, Selektivität sowie Stabilität.

Inhalt

Vorlesung:

- · Einführung in Katalyse: Klassifizierung, Bedeutung und Begrifflichkeiten
- · Aspekte der (globalen) Energiewende
 - Erneuerbare Energiequellen
 - Wasserstoffwirtschaft: Produktion, Aufreinigung, Speicherung und Transport
- Aufbau, Herstellung, Charakterisierung und Deaktivierung heterogener Katalysatoren anhand folgender Anwendungsbeispiele
 - Erzeugung und Umwandlung von Synthesegas
 - · Nutzung von Kohlenstoffdioxid: (Punkt)Quellen, Power-to-X, nachhaltige Chemikalien
 - · Chemische Wasserstoffspeicherung
- · Katalysatordesign anhand beispielhafter Literaturstudien
 - Struktur-Reaktivitäts- und Struktur-Stabilitäts-Beziehung
 - Integration in Reaktoren

Übung:

- · Auswertung und Interpretation realer Charakterisierungsdaten
- Anwendungsbeispiele aus der Wissenschaft

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung und Übung 45 h
- · Selbststudium: 50 h
- Prüfungsvorbereitung: 55 h

Literatur

Wird in der Vorlesung/ auf den Folien bekanntgegeben.

Grundlagen:

- · I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 2003, Wiley.
- · G. Ertl (Ed.), Handbook of Heterogeneous Catalysis, 2008, Wiley.

4.10 Modul: Chemische Reaktionstechnik [M-CIWVT-106825]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2024)

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile					
T-CIWVT-113695	Chemische Reaktionstechnik - Prüfung	6 LP	Wehinger		
T-CIWVT-113696	Chemische Reaktionstechnik - Projektarbeit	6 LP			

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- mündliche Prüfung im Umfang von ca. 20 Minuten
- · Prüfungsleistung anderer Art:

Projektarbeit als Gruppenarbeit (3er Gruppen).

Bewertet werden Vorbereitung, Durchführung, Präsentation und schriftlicher Bericht.

Voraussetzungen

Mindestens 60 LP, mindestens ein Praktikum.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden verstehen die Konzepte und Methoden der chemischen Reaktionstechnik. Dies umfasst das Aufstellen und Lösen von Material- und Energiebilanzen sowie die Analyse chemischer Reaktionskinetiken. Sie können dieses Wissen zur Lösung von konkreten Fragestellungen der chemischen Reaktionstechnik von Mehrphasensystemen anwenden und die erzielten Ergebnisse in einen größeren Rahmen einordnen. Sie sammeln Problemlösungskompetenz im Team und Erfahrungen in der Anwendung wissenschaftlicher Methoden.

Inhalt

Die Vorlesung vermittelt einen Überblick über Mehrphasen-Reaktionssysteme. Dies beinhaltet Grundwissen zu den wichtigsten Reaktortypen und deren Modellierung mit vereinfachten homogenen Ansätzen. Die Anwendung auf konkrete Problemstellungen erfolgt in der Projektarbeit (Teamarbeit), wobei neben simulationstechnischen Analysen auch die experimentelle Evaluation an Versuchsaufbauten angestrebt werden

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenzzeit:

Vorlesung und Übung: 45 hProjektarbeit 5 Wochen: 185 h

Selbststudium:

- Vor- und Nachbereitung Vorlesung: 30 h
- · Vorbereitung Präsentation und Bericht: 60 h
- Prüfungsvorbereitung: 40 h

4.11 Modul: Chemische Verfahrenstechnik [M-CIWVT-101133]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-101884	Chemische Verfahrenstechnik	6 LP	Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die technisch relevanten Reaktor-Typen für chemische Umsetzungen einphasiger (homogener) Reaktionsmischungen und können ihre Systemeigenschaften erklären. Sie können diese Reaktoren sowohl einzeln als auch in verschiedenen Verschaltungen bilanzieren und Betriebsdaten analysieren. Wenn in einem chemischen Prozess Folge- und Parallelreaktionen auftreten, sind die Studierenden in der Lage, den am besten geeigneten Reaktor auszuwählen und optimale Betriebsbedingungen zu berechnen, um die Reaktionsrichtung zugunsten des Zielprodukts zu lenken. Die Studierenden kennen Methoden zu simultanen Lösung von Material- und Energiebilanzen und sind in der Lage, Wärmeeffekte bei exo- und endothermen Reaktionen zu erklären, zu analysieren und Bedingungen für sicheren Reaktorbetrieb zu identifizieren.

Inhalt

Anwendung von Material- und Energiebilanzen zur Analyse und Auslegung von Modellreaktoren für einphasige Umsetzungen sowie zur Festlegung optimaler Betriebsbedingungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 2 SWS Vorlesung + 2 SWS Übung = 60 h
- Selbststudium: 60 hKlausurvorbereitung: 60 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

- Skript Chemische Verfahrenstechnik I, https://ilias.studium.kit.edu
- G.W. Roberts: Chemical Reactions and Chemical Reactors, Wiley VCH 2009
- O. Levenspiel: Chemical Reaction Engineering, John Wiley & Sons Inc. 1998

4.12 Modul: Datengetriebene Modellierung mit Python [M-CIWVT-106534]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Überfachliche Qualifikationen (EV ab 01.10.2023)

Leistungspunkte
3 LPNotenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile				
T-CIWVT-113190	Datengetriebene Modellierung mit Python	3 LP	Rhein	

Erfolgskontrolle(n)

Erfolgkontrolle ist eine Studienleistung: Diese besteht aus einer Projektarbeit, die auf Wunsch der Studierenden eigenständig oder in kleinen Gruppen durchgeführt wird. Das Projekt erfordert die Anwendung der während dem Semester erarbeiteten Fähigkeiten auf eine neue Problemstellung. Bewertet wird ein einzureichendes Python-Skript, das eine Reihe von gestellten Aufgaben auf der Basis von zur Verfügung gestellten Daten löst.

Voraussetzungen

Keine

Qualifikationsziele

Das Erlernen der Grundkenntnisse und der Aufbau eines vertrauten Umgangs mit der Programmiersprache Python stehen im Fokus der Veranstaltung.

Als semesterbegleitende Anwendungen (Beispiele) werden die Grundzüge der Optimierung, Regression, Datenintegration in physikalische Modelle sowie das Lösen einfacher Differentialgleichungen vermittelt.

Es werden wertvolle Werkzeuge zur automatisierten Datenverarbeitung vermittelt, die im Zuge zunehmender Digitalisierung in Forschung und Industrie immer weiter an Bedeutung gewinnen.

Inhalt

Die Inhalte der Vorlesung sind klar auf das Erlernen der Programmiersprache Python bzw. deren Anwendung in verschiedenen Bereichen der Datenanalyse ausgelegt.

- · Allgemeine Einführung in Python sowie die Bedeutung und Anwendung von Daten und Modellen
- Grundlagen der Programmiersprache Python: Syntax, Variablen, Funktionen, Klassen, ...
- Der Umgang mit Arrays und Matrizen (numpy)
- Erstellen publikationsfähiger Grafiken (matplotlib)
- Einführung in lineare und nichtlineare Regression (scikit-learn)
- Einführung in die Optimierung (scipy.optimize)
- Numerisches Lösen gewöhnlicher Differentialgleichungen (scipy.integrate)
- Datengetriebene Modellierung: Ableiten physikalischer Parameter aus experimentellen Daten durch Kombination aller bisher erlernten Methoden
- Projektarbeit: Eigenständige Anwendung des Gelernten auf eine neue Problemstellung

Zusammensetzung der Modulnote

Unbenotet

Arbeitsaufwand

- Präsenzzeit: 30h
- · Nachbearbeitung der Vorlesung und Bearbeitung weiterführender, freiwilliger Übungsaufgaben: 30h
- Projektarbeit: 30h

4.13 Modul: Einführung in das Bioingenieurwesen [M-CIWVT-106433]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann Prof. Dr. Jürgen Hubbuch Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.04.2024)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile					
T-CIWVT-113018	Einführung in das Bioingenieurwesen	5 LP	Grünberger, Holtmann, Hubbuch, van der Schaaf		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- · Die wissenschaftlich/technische Bedeutung des Bioingenieurwesen in der Biotechnologie zu beschreiben
- Grundoperationen des Bioingenieurwesens zu beschreiben und erläutern
- Biotechnologische Anwendungsfelder aufzuzeigen
- Charakteristika von industriellen Prozessen in der Bio- und Lebenstechnik zu erklären
- Das Zusammenspiel von Upstream und Downstream-Verfahren in der Bio- und Lebenstechnik zu beschreiben
- (Produktions-)Prozess der Biotechnologie/Biopharmazeutischer Technologie sowie Lebensmitteltechnik zu skizzieren und zu erläutern
- Über Fachgrenzen hinweg zu denken und Konzepte und Techniken aus verschiedenen Disziplinen zu integrieren, um innovative Lösungen zu entwickeln.
- Die Studierenden sollten ein Bewusstsein für sozioökonomische und ökologische Themen entwickeln und lernen, ethische Grundsätze und Nachhaltigkeitsprinzipien bei der Entwicklung neuer Bioprozesse zu berücksichtigen

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- · Die Interdisziplinarität innerhalb der Bio- und Lebensmitteltechnik zu erkennen und zu beschreiben
- Das Berufsbild der Bio-Ingenieur*innen eingehend zu beschreiben
- · Ideen und Ergebnisse klar und präzise zu kommunizieren, sowohl schriftlich als auch mündlich
- Eigenständig in eine neue Thematik einzuarbeiten

Inhalt

Das Feld der Biotechnologie beschäftigt sich im Allgemeinen mit der Erforschung und vor allem mit der Anwendung pro- und eukaryotischen Organismen sowie Teilen von diesen (z.B. Enzymen und Nukleinsäuren), um ein breites Spektrum an gesellschaftlich relevanten Produkten und Anwendungen bereit zu stellen. Die Anwendungen reichen dabei von der biologischen Abwasserreinigung bis zur Produktion von Grundchemikalien, pharmazeutischer Wirkstoffe als auch alternativer Lebensmittel. Neue Produktionsplattformen, Prozesse und Produkte sind die treibende Kraft für die Entwicklung zahlreicher neuer Anwendungen in den nächsten Jahrzehnten und bieten ein großes Potential, um bestehende Herausforderungen im Bereich Gesundheit, Ernährung und Umwelt zu lösen. Ein immer bedeutend werdender Aspekt ist dabei die Entwicklung und Etablierung nachhaltiger Verfahren, so dass das Bioingenieurwesen eine der wichtigsten Säulen der aufstrebenden Bioökonomie darstellt.

Diese Einführungsvorlesung gibt einen Überblick über biotechnologische und bioverfahrenstechnische Grundlangen und Anwendungen. Ein Einblick über einen biotechnologischen Entwicklungsprozess vom Gen zum Produkt wird gegeben. Die Biotechnologie und das Bioingenieurwesen sind interdisziplinär angelegt. Zusammenhänge zwischen beteiligten Fachdisziplinen und Anwendungen wird an ausgewählten Beispielen aufgezeigt. Die Vorlesung wird sowohl Grundlagen in verschiedenen Teilbereichen des Bioingenieurwesens als auch ausgewählte Anwendungsfelder vermitteln und diskutieren. Dies beinhaltet zum Beispiel Grundlagen in Enzymtechnologie, fermentative Herstellungsverfahren in Bioreaktoren und Aufarbeitung von Bioproduktionen als auch deren Formulierung. Anwendungsschwerpunkte kommen hierbei aus der industriellen (weißen), medizinischen (roten) Biotechnologie und Lebensmittelbiotechnologie. Aktuelle Fragestellungen aus der Forschung und ein Blick in zukünftige Anwendungsfelder der Biotechnologie und des Bioingenieurwesens runden die Veranstaltung ab.

Die vom Themenspektrum breit angelegte Vorlesung richtet sich an Studierende des Bioingenieurwesen und an alle technisch interessierte Studierende der Biologie, Chemie, Physik und Wirtschaftswissenschaften.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- Vor- und Nachbereitung: 50 h
- · Prüfungsvorbereitung: 40 h

Literatur

- Horst Chmiel, (2011), Bioprozesstechnik, DOI: 10.1007/978-3-8274-2477-8
- Karl-Erich Jaeger, (2019), Einführung in die Enzymtechnologie, DOI:10.1007/978-3-662-57619-9
- Klaus Mudrack, (2010), Biologie der Abwasserreinigung, ISBN: 978-3-8274-2576-8
- Johannes Krämer, (2022), Lebensmittelmittelmikrobiologie, ISBN 978-3-8252-5854-2

4.14 Modul: Electrochemical Energy Technologies [M-ETIT-105690]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** Wahlpflichtfächer (EV zwischen 01.04.2021 und 31.03.2026)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-ETIT-111352	Electrochemical Energy Technologies	5 LP	Krewer

Erfolgskontrolle(n)

Type of Examination: Written exam Duration of Examination: 120 minutes

Voraussetzungen

none

Qualifikationsziele

Students have well-grounded knowledge of electrochemical energy technologies for conversion and storage of electrical energy. They know the working principle of fuel cells, batteries and electrolysers and their components. They understand the underlying electrochemical, electrical and physical processes, and the resulting loss processes as function of operation and cell design. Participation in the course puts them in a position to build cells and evaluate and understand their performance and operating behavior. Furthermore, they can select the appropriate electrochemical cell for a given application, analyse, interpret and operate it.

Inhalt

Lecture:

- · Application and operating principle of fuel cells, batteries and elec-trolysers
- Thermodynamics, potential and voltage of electrochemical cells
- Kinetics and electrochemical reactions
- · Transport processes in electrochemical cells
- · Composition and types of fuel cells and electrolysers
- · Composition and types of batteries
- · Operation and characterization of electrochemical cells
- Electrochemical systems

Exercise:

· Application of the theory to batteries and fuel cells including example calculations.

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

- 1. Attendance in lectures: 30 * 45 Min. = 22,5 h
- 2. Attendance in excercises: 15 * 45 Min. = 11,25 h
- 3. Preparation/follow-upder Vorlesungen und Übungen: 76,25 h (approx. 1,75 h per lecture/exercise)
- 4. Preparation of and attendance in examination: 40 h

In total: 150 h = 5 LP

4.15 Modul: Energie- und Umwelttechnik [M-CIWVT-101145]

Verantwortung: Prof. Dr. Reinhard Rauch

Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	4

Pflichtbestandteile				
T-CIWVT-103527	Energie- und Umwelttechnik Projektarbeit	4 LP	Rauch, Trimis	
T-CIWVT-108254	Energie- und Umwelttechnik	8 LP	Rauch, Trimis	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Schriftlichen Prüfung (8 LP) mit einem Umfang von 120 Minuten
- · Projektarbeit (4 LP), Prüfungsleistung anderer Art

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können nach der Vorlesung verfahrenstechnische Prozesse in den Bereichen Energiebereitstellung und Umweltschutz (primäre/sekundäre Maßnahmen, Effizienz, Rohstoffbasis u.a.) erläutern, analysieren und vergleichen.

Inhalt

Einführung in die Erzeugung von Brennstoffen (chemische Energieträger) aus fossilen und nachwachsenden Rohstoffen und ihre Nutzung, Vermeidung von Schadstoffbildung, Entfernung von Schadstoffen, Übersicht und ausgewählte Beispiele, Grundlagen und Anwendungen der Hochtemperatur-Energieumwandlung.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der Teilleistungen.

Arbeitsaufwand

Präsenzzeit: 60 h Exkursionen: 20 h Selbststudium: 90 h Projektarbeit: 90 h

Prüfungsvorbereitung: 100 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

Vorlesungsskripte sowie weitere in den Vorlesungen angegebene Literatur, zusätzlich:

- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 1997
- G. Schaub, T. Turek: Energy Flows, Material Cycles and Global Development, Springer Verlag, Berlin 2011
- M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010
- E. Rebhan (Hrsg.): Energiehandbuch Gewinnung, Wandlung und Nutzung von Energie, Springer-Verlag, Berlin 2002
- B. Elvers (Hrsg.): Handbook of Fuels, Wiley-VCH, Weinheim 2008

4.16 Modul: Energieverfahrenstechnik [M-CIWVT-101136]

Verantwortung: Dr. Frederik Scheiff

Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-101889	Energieverfahrenstechnik	5 LP	Scheiff, Stein

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 150 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Einordnung des Begriffs Energie und der unterschiedlichen Erscheinungsformen von Energie, Kenntnis der unterschiedlichen Energieträger und des nationalen und globalen Energiebedarfs, Kenntnis und Lösung von einfachen Problemstellungen der Energieumwandlung mit unterschiedlichen Energieumwandlungsverfahren.

Inhalt

Grundlagen: Energiebegriff, Erscheinungsformen der Energie, Systeme und Bilanzen

Verfahrenstechnik: Energieträger, Energieumwandlung, Transport und Speicherung, Dezentrale Systeme

Ökologie / Ökonomie / Politik

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 56 h Selbststudium: 50 Klausurvorbereitung: 44

Empfehlungen

Thermodynamik

- In der Vorlesung angegebene Litaratur, zusätzlich:
- P. Stephan, K. Schaber, K. Stephan, F. Mayinger: Thermodynamik, Springer Verlag, Berlin 2006
- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 1997
- · G. Schaub, T. Turek: Energy Flows, Material Cycles and Global Development, Springer Verlag, Berlin 2011
- VDI-Gesellschaft Energietechnik (Hrsg.): Energietechnische Arbeitsmappe, Springer-Verlag, Berlin 2000
- M. Crocker (Hrsg.): Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, Springer-Verlag, Berlin 2010
- E. Rebhan (Hrsg.): Energiehandbuch Gewinnung, Wandlung und Nutzung von Energie, Springer-Verlag, Berlin 2002
- B. Elvers (Hrsg.): Handbook of Fuels, Wiley-VCH, Weinheim 2008

4.17 Modul: Erfolgskontrollen [M-CIWVT-101992]

Verantwortung: Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mastervorzug

Leistungspunkte	Notenskala	Sprache	Level	Version
30 LP	best./nicht best.	Deutsch	3	7

Mastervorzugsleistungen (Wahl: mind. 30 LP)				
T-CIWVT-106149	Eingangsklausur Praktikum Prozess- und Anlagentechnik	0 LP	Scheiff	
T-CIWVT-106148	Praktikum Prozess- und Anlagentechnik	0 LP	Scheiff	
T-CIWVT-106150	Prozess- und Anlagentechnik Klausur	8 LP	Scheiff	
T-CIWVT-106029	Biopharmazeutische Aufarbeitungsverfahren	6 LP	Hubbuch	
T-CIWVT-106032	Kinetik und Katalyse	6 LP	Wehinger	
T-CIWVT-113235	Excercises: Membrane Technologies	1 LP	Horn, Saravia	
T-CIWVT-113236	Membrane Technologies in Water Treatment	5 LP	Horn, Saravia	
T-CIWVT-106035	Numerische Strömungssimulation	6 LP	Nirschl	
T-CIWVT-106028	Partikeltechnik Klausur	6 LP	Dittler	
T-CIWVT-114107	Thermische Verfahrenstechnik II	6 LP	Zeiner	
T-CIWVT-106033	Thermodynamik III	6 LP	Enders	
T-CIWVT-106036	Berufspraktikum	14 LP	Bajohr	

Voraussetzungen

Keine

4.18 Modul: Ethik und Stoffkreisläufe [M-CIWVT-101149]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3 LP	best./nicht best.	Jedes Sommersemester	1 Semester	Deutsch	3	4

Pflichtbestandteile				
T-CIWVT-112372	Stoffkreisläufe	1 LP	Rauch	
T-CIWVT-112373	Ethik	2 LP	Hillerbrand	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung, die aus zwei Teilleistungen besteht

- Ethik: regelmäßige Teilnahme an den wöchentlichen Veranstaltungen; schriftliche Vor- und/oder Nachbereitung der Sitzungen, ggf Referat; Hausarbeit
- 2. Stoffkreisläufe: unbenotete Klausur, Dauer 60 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Verständnis für Zusammenhänge: Wichtige Stoffkreisläufe auf der Erde und ihre Beeinflussung durch menschliche Gesellschaften, wichtige Begrenzungen für Stoff- und Energieumsetzungen durch menschliche Aktivitäten (zivilisatorisch, Industrialisierung), grundlegende Kenntnisse der angewandten Umwelt- und Ingenieursethik, Nachhaltigkeitsbewertung (Nachhaltigkeitsindikatoren, Lebenszyklusanalyse), Risikoanalyse und Vorsorgeprinzip, Technikfolgenforschung.

Inhalt

Biogeosphäre auf dem Planeten Erde als Lebensraum für den Menschen. Ausgewählte globale Stoffkreisläufe. Begrenzungen anthropogene Stoffund Energieumsetzungen. Beariff der Nachhaltigkeit. Nachhaltigkeitsbewertung (Nachhaltigkeitsindikatoren, Lebenszyklusanalyse), Risikoanalyse und Vorsorgeprinzip, Technikfolgenforschung, Ingenieurkodizes, Grundlagen der normativen Ethik (normative und deskriptive Aussagen).

Arbeitsaufwand

- Präsenzzeit: 15 h
- Selbststudium: 45 h
- Prüfungsvorbereitung und Prüfung: 30 h

- I. v. d. Poel, L. Royakkers: Ethics, Technology and Engineering: An Introduction, Wiley-Blackwell 2011
- H. Lenk, M. Maring: Natur-Umwelt-Ethik, LIT Verlag Münster 2003
- G. Schaub, Th. Turek: Energy Flows, Material Cycles, and Global Development A Process Engineering Approach to the Earth System, Springer Verlag Berlin 2010

4.19 Modul: Fluiddynamik [M-CIWVT-101131]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Thermodynamik und Transportprozesse

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile				
T-CIWVT-101882	Fluiddynamik, Klausur	5 LP	Nirschl	
T-CIWVT-101904	Fluiddynamik, Vorleistung	0 LP	Nirschl	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus:

1. einer unbenoteten Studienleistung nach § 4 Abs. 3 SPO

Als Vorleistung für die schriftliche Klausur sind vier von fünf Hausarbeiten zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

2. einer schriftlichen Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können Probleme im Bereich der Fluidmechanik analysieren, strukturieren und formal beschreiben. Sie sind in der Lage, die Methoden zur Berechnung von spezifischen Strömungen anzuwenden. Sie sind zusätzlich in der Lage, Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Außerdem werden Sie in die Lage versetzt, die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Grundlagen der Strömungslehre: Hydrostatik, Aerostatik, kompressible und inkompressible Strömungen, turbulente Strömungen, Navier-Stokes Gleichungen, Grenzschichttheorie

Zusammensetzung der Modulnote

Note der Prüfungsklausur

Arbeitsaufwand

Prässenzzeit: Vorlesung 2 SWS Übung 2 SWS: 56 h

Selbststudium: 56 h Prüfungsvorbereitung: 56 h

Empfehlungen

Module des 1. - 3. Semesters

Literatur

Nirschl, Zarzalis: Skriptum Fluidmechanik

Zierep: Grundzüge der Strömungslehre, Teubner 2008 Prandtl: Führer durch die Strömungslehre, Teubner 2008

4.20 Modul: Formulierung und Charakterisierung von Energiematerialien [M-CIWVT-106700]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2024)

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-113478	Formulierung und Charakterisierung von Energiematerialien - Prüfung	8 LP	Oelschlaeger	
T-CIWVT-113479	Formulierung und Charakterisierung von Energiematerialien - Projektarbeit	4 LP	Oelschlaeger	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Einer mündlichen Einzelprüfung im Umfang von ca. 30 Minuten über die Inhalte der Vorelsung und der Übung
- 2. Einer Prüfungsleistung anderer Art: Projektarbeit (Teamnote):

Voraussetzung für die Zulassung zur Projektarbeit ist die Teilnahme an der mündlichen Einzelprüfung und eine Bewertung mit mind. "ausreichend".

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Basiswissen zur Gestaltung komplexer Fluide auf Basis von Dispersionen oder Emulsionen durch verfahrenstechnische Prozesse; Verständnis der Anwendungs- und Verarbeitungseigenschaften, des Fließverhaltens und der kolloidalen Stabilität disperser Systeme. Anwendung dieses Wissen im Rahmen einer Projektarbeit. Sammeln von Erfahrungen in der teamorientiertem Erarbeitung von Problemlösungen.

Inhalt

Vermittlung einer Systematik, welche die Qualitätsmerkmale von Produkten mit den physikalisch-chemischen Eigenschaften des Produktes in Beziehung setzt. Diese Eigenschaften werden durch die jeweiligen Herstellprozesse generiert. Diese Systematik wird grundlegend in der Vorlesung "Herstellung und rheologische Charakterisierung von Energiematerialien" dargestellt. Die Anwendung auf konkrete Fälle wird in der Projektarbeit erprobt.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenzztei: 135 hSelbststudium: 225 h

- · Skripte, Artikel aus Fachzeitschriften
- · Fachbücher:
- Lagaly/Schulz/Zimehl: Dispersionen und Emulsionen, Steinkopff (1997)
- Barnes/Hutton/Walters: An Introduction to Rheology, Elsevier (1989)
- Macosko: Rheology: Principles, Measurements and Applications, Wiley-VCH (1994)
- Eric M. Furst and Todd M. Squires: Microrheology, Oxford University Press; Auflage: 1 (29. Dezember 2017)

4.21 Modul: Fortgeschrittene Methoden der linearen Regelungstechnik [M-CIWVT-106880]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2024)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113088	Automatisierungs- und Regelungstechnik - Prüfung	6 LP	Meurer

Erfolgskontrolle(n)

Erfolgskontrolleist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden kennen Konzepte und Methoden zur Analyse, zur Simulation und zum Regler- sowie zum Beobachterentwurf für lineare zeitkontinuierliche und zeitdiskrete Systeme im Zustandsraum. Sie können diese formulieren und erläutern und sind in der Lage darauf aufbauend komplexere Zusammenhänge abzuleiten. Sie besitzen praktische Fertigkeiten in der Systemanalyse und im Entwurf von Regelungen und Beobachtern für lineare Systeme im Zustandsraum. Sie können deren Verhalten und Eigenschaften evaluieren und beurteilen.

Inhalt

- · Modellierung und Simulation physikalischer Systeme
- Zeitkontinuierliche und zeitdiskrete lineare Systeme
- · Struktureigenschaften (Stabilitätstheorie, Steuerbarkeit, Beobachtbarkeit)
- Synthese von Regelkreisen im Zustandsraum (zeitkontinuierlich und zeitdiskret) für lineare Ein- und Mehrgrößensysteme
- Rechnergestützte Umsetzung der Konzepte und Methoden unter Einbezug von MATLAB/Simulink

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Das Modul kann nicht gewählt werden, wenn das Profilfach Automatisierungs- und Regelungstechnik gewählt wird.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 30 h, (Computer-)Übungen 15 h
- · Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h

- · T. Meurer: Regelungstechnik und Systemdynamik, Vorlesungsskript.
- K. Aström, R. Murray: Feedback Systems, Princeton University Press, 2008.
- C.T. Chen: Linear System Theory and Design, Oxford Univ. Press, 1999.
- J.C. Dovle, B.A. Francis, A.R. Tannenbaum: Feedback Control Theory, Dover, 2009.
- J. Lunze: Regelungstechnik II, Springer-Verlag, 2010.

4.22 Modul: Grundlagen der Kältetechnik [M-CIWVT-104457]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	4

Pflichtbestandteile					
T-CIWVT-109117	Grundlagen der Kältetechnik Prüfung	6 LP	Grohmann		
T-CIWVT-109118	Grundlagen der Kältetechnik Projektarbeit	6 LP	Grohmann		

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst zwei benotete Leistungsnachweise:

- 1. Projektarbeit und Gruppenpräsentation der Projektarbeit, Prüfungsleistung anderer Art
- 2. einer mündlichen Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung Kältetechnik A

Voraussetzung für die Anmeldung zur mündlichen Prüfung ist die Teilnahme an der Projektarbeit und eine Bewertung mit mindestens "ausreichend".

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können die Grundlagen der Kältetechnik erläutern und auf verschiedene Verfahren anwenden. Sie können Eigenschaften verschiedener Kältemittel und Arbeitsstoffe beschreiben und können deren Umwelteinfluss auf der Basis verschiedener Kriterien bewerten. Sie können Kälte- und Wärmepumpenprozesse unter Verwendung von Zustandsdiagrammen und Stoffdatenprogrammen konzipieren und auslegen, sowie die Ursachen des Energiebedarfs unter Anwendung des 1. und 2. Hauptsatzes der Thermodynamik analysieren. Sie können geeignete Verdichter und Wärmeübertrager auswählen und auslegen, sowie Schaltungen und Reglungskonzepte erarbeiten.

Inhalt

Einführung in die Grundlagen der Kältetechnik, Zustandsdiagramme, Mindestenergiebedarf und Analyse von Energietransformationsprozessen auf Basis des 1. und 2. Hauptsatzes der Thermodynamik, Arbeitsstoffe und deren Umwelteinfluss, Funktionsweise und Ausführungen der wichtigsten Kälte- und Wärmepumpenprozesse einschließlich der Kreislaufkomponenten, sowie Reglung von Kälteanlagen.

Zusammensetzung der Modulnote

Die Modulnote errechnet sich aus dem LP-gewichteten Mittel der beiden Teilleistungen: Eine Teamnote für die Projektarbeit und -präsentation sowie eine Einzelnote für die mündliche Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 2 SWS, Übung 1 SWS: 45 h

Selbststudium: 60 h Prüfungsvorbereitung: 75 h

Projektarbeit einschließlich Präsentation: 180 h

Empfehlungen

. Keine

- Jungnickel, H., Agsten, R. und Kraus, W.E., 3. Auflage (1990), Verlag Technik GmbH, Berlin
- v. Cube, H.L. (Hrsg.), Lehrbuch der Kältetechnik Band 1 und 2, 4. Auflage (1997), C.F. Müller, Heidelberg

- Gosney, W.B., Principles of Refrigeration, Cambridge University Press, Cambridge, 1982
 Berliner, P., Kältetechnik Vogel-Verlag, Würzburg (1986 und frühere)
 Kältemaschinenregeln, Deutscher Kälte- und Klimatechnischer Verein (DKV) (Herausgeber)
- DKV-Arbeitsblätter für die Wärme- und Kältetechnik in: C.F. Müller Verlag, Hüthig Gruppe, Heidelberg, wird jeweils aktualisiert (Sept. 2008)

4.23 Modul: Grundlagen der Wärme- und Stoffübertragung [M-CIWVT-101132]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Thermodynamik und Transportprozesse

Leistungspunkte
7 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-101883	Grundlagen der Wärme- und Stoffübertragung	7 LP	Dietrich, Wetzel

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 180 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können die Grundlagen und Gesetze der Wärmeübertragung und der Stoffübertragung erläutern und sind in der Lage, die methodischen Hilfsmittel in beiden Fachgebieten angemessen zu gebrauchen und zur Lösung ingenieurtechnischer Aufgabenstellungen anzuwenden.

Inhalt

Wärmeübertragung: Definitionen - System, Bilanzen und Erhaltungssätze; Kinetik der Wärmeübertragung, Wärmeleitung, Wärmestrahlung, Wärmeübertragung in ruhenden und an strömende Medien, Dimensionslose Kennzahlen.

Stoffübertragung: Kinetik der Stoffübertragung, Gleichgewicht, Diffusions- und Stoffströme, Knudsen- und Mehrkomponenten-Diffusion, Lewis-Analogie zwischen Wärme- und Stoffübertragung.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 75 hSelbststudium: 55 hKlausurvorbereitung: 80 h

Empfehlungen

Module des 1. - 3. Semesters, insbesondere Grundlagen der Thermodynamik

Literatur

v. Boeckh, Wetzel: Wärmeübertragung, Springer 2009

4.24 Modul: Grundpraktikum [M-CIWVT-106500]

Verantwortung: Prof. Dr. Harald Horn

Dr. Sokratis Sinanis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Praktika "ab 01.10.2023" (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	best./nicht best.	Jedes Wintersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile					
T-CIWVT-113117	Praktikum Allgemeine Chemie	2 LP	Horn, West		
T-CIWVT-113118	Praktikum Verfahrenstechnik	4 LP	Sinanis		

Erfolgskontrolle(n)

Die Erfolgskontrolle umfasst zwei unbenotete Studienleistungen:

- 1. Praktikum Allgemeine Chemie
- 2. Praktikum Verfahrenstechnik

Voraussetzungen

- Die Klausur Allgemeine und Anorganische Chemie muss bestanden sein.
- Eine erfolgreich absolvierte Sicherheitsunterweisung ist Voraussetzung für die Teilnahme am Praktikum.

Qualifikationsziele

Die Studierenden

- erlangen ein grundlegendes Verständnis der qualitativen und quantitativen Chemie,
- · können einfache chemische Analysen eigenständig durchführen,
- · können mit chemischen Stoffen umgehen,
- beherrchen sicheres experimentelles Arbeiten und die Messung physikalischer Größen mit Genauigkeitsabschätzung (Fehlerrechnung),
- sind fähig, Messergebnisse auszuwerten, zu interpretieren und in einem Versuchprokoll darzustellen,
- sind fähig, Berechnungen durchzuführen, die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Inhalt

Vorlesung und Seminar zum Grundpraktikum

- · Überblick zum Inhalt und Ziele der im Praktikum durchzuführenden Versuche
- Einführung in die gute wissenschaftliche Praxis
- Fehlerrechnung und Fehlerabschätzung bei Messungen von physikalischen Größen
- · Anleitungen zur Auswertung und zur Protokollerstellung

Teil I: Allgemeine Chemie

Durchführung von qualitativen und quantitativen chemischen Analysen und Reaktionen.

- Redox- und Säure-Base-Reaktionen
- · Chemisches Gleichgewicht
- Elektrochemie

Teil II: Verfahrenstechnik

Grundlegende Versuche aus allen Bereichen der Verfahrenstechnik (jede Gruppe führt 7 der folgenden Versuche durch):

- Viskosimetrie
- Siebanalyse
- · Partikelausscheidung aus Luft
- Flüssig-Flüssig-Extraktion
- Fraktionierte Destillation
- · Stoffdaten von Benzin und Diesel
- · Kinetik der Oxidation von Eisen (II) in der wässrigen Phase
- · Bestimmung der Avogadro Konstante
- · Dampfdruckkurve von Wasser
- Verweilzeitverteilung

Zusammensetzung der Modulnote

Unbenotet.

Zum Bestehen des Praktikums müssen beide Praktikumsteile bestanden sein. Weitere Informationen --> Teilleistungen.

Arbeitsaufwand

Vorlesung/ Seminar 32 h (Verteilt auf Winter- und Sommersemester)

- Präsenzzeit: 16 h
- · Vor- und Nachbereichtung: 16 h

Teil I: Allgemeine Chemie 50 h im Wintersemester

- · Präsenzzeit: 5 Versuche/ 20 h
- · Selbststudium: 30 h

Teil II: Verfahresntechnik 98 h im Sommersemester

- Präsenzzeit: 7 Versuche/ 28 h
- Vorbereitung, Fehlerrechnung, Protokollerstellung: 70 h

- Schweda, E.: Jander/Blasius Anorganische Chemie I+II. Hirzel Verlag, Suttgart, 19. bzw. 18. Auflage, 2022
- Praktikumsskript zu Teilleistung "Allgemeine Chemie," wird in ILIAS zur Verfügung gestellt.
- Versuchsbeschreibungen der jeweiligen Institute. Alle erforderlichen Unterlagen zum Praktikum werden in ILIAS bereitgestellt.

4.25 Modul: Höhere Mathematik I [M-MATH-100280]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jährlich	1 Semester	Deutsch	3	3

Pflichtbestandteile						
T-MATH-100275	Höhere Mathematik I	7 LP	Arens, Griesmaier, Hettlich			
T-MATH-100525	Übungen zu Höhere Mathematik I Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen der eindimensionalen Analysis. Der korrekte Umgang mit Grenzwerten, Funktionen, Potenzreihen und Integralen gelingt ihnen sicher. Sie verstehen zentrale Begriffe wie Stetigkeit, Differenzierbarkeit oder Integrierbarkeit, wichtige Aussagen hierzu sind ihnen bekannt. Die in der Vorlesung dargelegten Begründungen dieser Aussagen können die Studierenden nachvollziehen und einfache, hierauf aufbauende Aussagen selbstständig begründen.

Inhalt

Grundbegriffe, Folgen und Konvergenz, Funktionen und Stetigkeit, Reihen, Differentialrechnung einer reellen Veränderlichen, Integralrechnung.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

· Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Literatur

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik II

4.26 Modul: Höhere Mathematik II [M-MATH-100281]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile						
T-MATH-100276	Höhere Mathematik II	7 LP	Arens, Griesmaier, Hettlich			
T-MATH-100526	Übungen zu Höhere Mathematik II Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Grundlagen der Vektorraumtheorie.

Die Verwendung von Vektoren, linearen Abbildungen und Matrizen gelingt ihnen problemlos. Sie haben grundlegende Kenntnisse über Fourierreihen. Weiterhin beherrschen die Studierenden den theoretischen und praktischen Umgang mit Anfangswertproblemen für gewöhnliche Differentialgleichungen. Sie können klassische Lösungsmethoden für lineare Differentialgleichungen anwenden.

Inhalt

Vektorräume, lineare Abbildungen, Eigenwerte, Fourierreihen, Differentialgleichungen, Laplacetransformation

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

· Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Höhere Mathematik 1

Literatur

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik III

4.27 Modul: Höhere Mathematik III [M-MATH-100282]

Verantwortung: Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-MATH-100277	Höhere Mathematik III	7 LP	Arens, Griesmaier, Hettlich		
T-MATH-100527	Übungen zu Höhere Mathematik III Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Arens, Griesmaier, Hettlich		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden beherrschen die Differentialrechnung für vektorwertige Funktionen mehrerer Veränderlicher und Techniken der Vektoranalysis wie die Definition und Anwendung von Differentialoperatoren, die Berechnung von Gebiets-, Kurven- und Oberflächenintegralen sowie zentrale Integralsätze. Sie haben grundlegende Kenntnisse über partielle Differentialgleichungen und beherrschen Grundbegriffe der Stochastik.

Inhalt

Mehrdimensionale Analysis, Gebietsintegrale, Vekoranalysis, partielle Differentialgleichungen, Stochastik

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Höhere Mathematik I und II

Literatui

wird in der Vorlesung bekannt gegeben.

4.28 Modul: Industriebetriebswirtschaftslehre [M-WIWI-100528]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte
3 LPNotenskala
best./nicht best.Turnus
JährlichDauer
1 SemesterLevel
3Version
1

Pflichtbestandteile				
T-WIWI-100796	Industriebetriebswirtschaftslehre	3 LP	Fichtner	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer unbenoteten schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach § 4, Abs. 2, 1 SPO..

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage Rechtsformen für Industriebetriebe zu beschreiben und voneinander abzugrenzen.

Die Studierenden erlangen Kenntnis über verschiedene Möglichkeiten der Finanzierung zur Kapitalbeschaffung.

Die Studierenden erlangen Kenntnis über die Grundlagen der Finanzbuchhaltung und sind in der Lage in Betrieben auftretende Leistungs- und Kapitalflüsse zu erfassen und zu verbuchen.

Die Studierenden erlangen Kenntnis über verschiedene Arten der Kostenrechnung und können diese anwenden.

Die Studierenden erlangen Kenntnis über Grundlagen der Investitionsplanung und sind in der Lage Investitionen wirtschaftlich zu bewerten.

Die Studierenden erlangen Kenntnis über Grundlagen der linearen Optimierung und können einfache Optimierungsprobleme mit dem Simplex-Algorithmus lösen.

Die Studierenden erlangen Kenntnis über grundlegende Methoden des Marketings und können diese beschreiben und voneinander abgrenzen.

Die Studierenden erlangen Kenntnis über grundlegende Methoden des Projektmanagements und können diese an Praxisbeispielen anwenden.

Inhalt

- · Ziele und Grundlagen
- · Gesetzlicher Rahmen für Industriebetriebe
- Finanzbuchhaltung
- Kostenrechnung
- Investitionsrechnung
- Optimierung
- Netzplantechnik

Arbeitsaufwand

Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.

Präsenzzeit: 20 h

Prüfungsvorbereitung: 30 h

Selbststudium: 40 h

4.29 Modul: Intensivierung von Bioprozessen [M-CIWVT-106444]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.04.2025)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-112998	Intensivierung von Bioprozessen - Klausur	6 LP	Holtmann

Erfolgskontrolle(n)

Erfolgskontrolleist eine schriftliche Prüfung mit einer Dauer von 90 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- Die Konzepte der Prozessintensivierung zu erläutern
- Verschiedene intensivierte Prozesse quantitativ zu beschreiben
- bioverfahrenstechnische Prozesse auf Basis der PI zu konzipieren und zu bewerten
- interdisziplinäre Problemstellungen an der Schnittstelle von Technik und biologischen Systemen zu analysieren und Problemlösungen zu erarbeiten
- durch die Kombination der Vorteile von Einzeldisziplinen Prozesse mit optimalen Produktivitäten bei möglichst geringem Energie- und Rohstoffeinsatz zu entwickeln

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- die Rahmenbedingungen für innovative Prozesse analysieren und die wesentlichen Aspekte identifizieren
- (interdisziplinäre) Handlungsoptionen aufzustellen und abzuwägen
- sich eigenständig in eine neue Thematik einzuarbeiten
- komplexe wissenschaftliche Prozesse zusammenzufassen

Inhalt

Unternehmen der chemischen und biotechnologischen Industrie stehen in Zeiten steigender Rohstoffkosten, verstärkten Wettbewerbs und kürzerer Produktlebenszyklen vor besonderen Herausforderungen.

Prozessintensivierte Verfahren bieten ein hohes Ressourceneffizienzpotenzial, da sie dazu beitragen, Materialien und Energie einzusparen. Gemäß einer allgemeingültigen Definition ist "Prozessintensivierung (PI) eine Zusammenstellung radikal innovativer Prinzipien (Paradigmenwechsel) für Apparate und Prozesse, welche hinsichtlich der Effizienz von Prozessen oder Prozessketten, Investitions- und Betriebskosten, Qualität, Abfall, Prozesssicherheit (und andere Aspekte) eine signifikante Verbesserung mit sich bringen kann."

In den letzten Jahren kommen auch in der Bioverfahrenstechnik (USP und DSP) verstärkt die Methoden der Prozessintensivierung zum Einsatz. Diese Methoden stehen im Fokus des Moduls. Folgende Themen werden in dem Modul behandelt:

- · Definition von PI, Abgrenzung zwischen Prozessoptimierung und PI
- · Beispiele aus der Chemietechnik
- Intensivierte Bioreaktoren und Reaktorauswahl (z.B. Single-use-Technologien, Rotating-Bed Reaktoren, Enzymmembranreaktoren, Biofilmreaktoren)
- PI durch angepasste Betriebsweisen (z.B. repeated Fed-Batch, Perfusion, kontinuierliche Verfahren, in-situ-Produktentfernung)
- · Prozessintensivierung durch immobilisierte Enzyme und Mikroorganismen
- · Integration von Chemo- und Biokatalyse
- · Elektrobiotechnologische Prozesse
- · Fotobiotechnologische Prozesse
- · Einsatz von Ultraschall und Mikrowellen zur Intensivierung von Bioprozessen
- · Bioprozesse in alternativen Reaktionsmedien
- · Einsatz von extremophilen Organismen/ unkonventionellen Produktionsorganismen

Bei allen Teilaspekten steht die quantitative Beschreibung der intensivierten Prozesse im Fokus.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- · Präsenzzeit: 60 h Vorlesung und Übung
- · Vor- und Nachbereitung: 80 h
- Klausurvorbereitung: 40 h

Empfehlungen

Grundlagen in Bioverfahrenstechnik werden vorausgesetzt.

Literatur

- Frerich J. Keil (2017) Process intensification, doi.org/10.1515/revce-2017-0085
- Andrzej Stankiewicz, Tom van Gerven, Georgios Stefanidis (2019) The Fundamentals of Process Intensification, Wiley-VCH, Weinheim, ISBN: 978-3-527-32783-6
- VDI ZRE Publikationen: Kurzanalyse Nr. 24, Ressourceneffizienz durch Prozessintensivierung
- Burek et al (2022) Process Intensification as Game Changer in Enzyme Catalysis, https://doi.org/10.3389/ fctls.2022.858706

Weitere Literaturempfehlungen werden jeweils aktuell bekannt gegeben.

4.30 Modul: Kreislaufwirtschaft [M-CIWVT-105995]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2022)

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile					
T-CIWVT-112172	Kreislaufwirtschaft - mündliche Prüfung	8 LP	Stapf		
T-CIWVT-112173	Kreislaufwirtschaft - Projektarbeit	4 LP	Stapf		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. mündliche Prüfung über die Inhalte von Vorlesung, Übung und Fallstudien, Dauer ca. 30 Minuten
- Prüfungsleistung anderer Art/ Projektarbeit; bewertet werden die schriftliche Ausarbeitung sowie die Präsentation der Ergebnisse

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden verstehen wichtige Stoffsysteme und wesentliche verfahrenstechnische Prozessschritte der Bereitstellung und des Recyclings mineralischer und metallischer Grundstoffe und des anthropogenen Kohlenstoffs. Mit dem Ziel der Schließung von Kreisläufen können sie Methoden der Prozessbewertung anwenden, Prozessketten analysieren und anhand von Effizienzindikatoren beurteilen. Hierzu bearbeiten die Studierenden zunehmend komplexe Fallbeispiele im Team selbstständig mit wissenschaftlichen Methoden und wenden dies in der Projektarbeit an.

Inhalt

Einführung in den Ressourcen- und Technologiewandel für eine nachhaltige Kreislaufwirtschaft. Kenntniserwerb in der System-, Effizienz- und Nachhaltigkeitsbewertung. Motivation für verfahrenstechnische Forschung und Entwicklung auf dem Gebiet der nachhaltigen Rohstoffversorgung einer klimaneutralen Gesellschaft:

- Stoffstrom- und Prozesswissen der Grundstoff- und Recyclingindustrien
- Methodenwissen (betriebswirtschaftliche Grundlagen, Stoffstromanalyse, Indikatorenermittlung)
- Selbstständiges wissenschaftliches Arbeiten (Wissensanwendung, Analyse, Beurteilung) in Fallstudien und als Projektarbeit.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenszeit:

- Vorlesung und Übung: 45 h
- Projektarbeit: 80

Selbststudium:

- · Vor- und Nacharbeit der Vorlesung: 45 h
- · Vor- und Nachbereitung der Fallstudien: 60 h
- Verfassen des Projektberichts, Erstellen der Präsentation: 40 h

Prüfungsvorbereitung: 90 h

4.31 Modul: Lebensmittelbioverfahrenstechnik [M-CIWVT-106476]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2025)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-CIWVT-113021	Lebensmittelbioverfahrenstechnik	6 LP	Leister

Erfolgskontrolle(n)

Die Erfolgskontrolleist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Vorlesung:

Die Studierenden können die Grundlagen des mikrobiellen Verderbs sowie die Möglichkeiten zur Konservierung von Lebensmitteln und Life-Science-Produkten beschreiben. Sie sind in der Lage, die Eignung verschiedener Konservierungsmethoden für unterschiedliche Produkte zu analysieren und deren jeweilige Vor- und Nachteile zuzuordnen. Zudem können die Studierenden biotechnologisch hergestellte Lebensmittel benennen und die entsprechenden Prozesse sowie die verwendeten Apparate beschreiben. Anhand von Anwendungsbeispielen aus der Lebensmittelbioverfahrenstechnik können sie die Besonderheiten der Prozessführung aufzeigen, diskutieren und erörtern.

Übung:

Die Studierenden sind in der Lage, für ausgewählte Anwendungsfälle Berechnungen zur Prozessauslegung selbständig durchzuführen und die dafür benötigten Hilfsmittel methodisch angemessen zu gebrauchen.

Inhalt

Die Studierenden lernen

- welche Mikroorganismen(gruppen) für die Sicherheit und die Herstellung von Lebensmitteln und Life Science Produkten wichtig sind.
- technische Möglichkeiten, um die Sicherheit von Lebensmitteln zu gewährleisten.
- anhand ausgewählter historischer biotechnologischer Verfahren zur Lebensmittelherstellung deren modernen technologischen Umsetzungsmöglichkeiten kennen.
- anhand von aktuellen Fallstudien das Vorgehen eines Lebensmittelingenieurs in der Produkt- und Prozessentwicklung.
- · die Berechnungsgrundlagen für technische Prozessauslegungen.
- · produktorientierte Anwendungsbeispiele kennen.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- Selbststudium, 80 h
- Klausurvorbereitung: 40

- · Vorlesungsfolien, Skripte mit Übungsfragen, FAQ zum Vorlesungsstoff
- Lebensmittelmikrobiologie (J. Krämer, UTB Ulmer)
- · Lebensmittelbiotechnologie (Heinz Rutloff, Akademie Verlag)
- · Lebensmittelverfahrenstechnik, Teil A (Schuchmann, Wiley)
- Lebensmittelbiotechnologie: eine Einführung (P. Czermak, GIT)
- Lebensmittelbiotechnolige (R. Heiss, Springer)
- Lexikon der Lebensmitteltechnologie (B. Kunz, Springer)

4.32 Modul: Lebensmitteltechnologie [M-CIWVT-101148]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jährlich	2 Semester	Deutsch	4	5

Pflichtbestandteile				
T-CIWVT-103528	Lebensmitteltechnologie	5 LP	Leister	
T-CIWVT-103529	Lebensmitteltechnologie Projektarbeit	7 LP	Leister	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. Einer mündlichen Gruppenprüfung im Umfang von ca. 45 Minuten.
- Einer Projektarbeit. Hier gehen die Abschlusspräsentation, Abschlussbericht, wissenschaftliches Arbeiten und Soft Skills in die Bewertung mit ein.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können einfache Lebensmittel formulieren und bewerten. Sie sind in der Lage, Aufgaben meilensteinorientiert in einem interdisziplinären Projektteam zu definieren, klar zu umreißen, fokussieren und gezielt zu bearbeiten. Die Studierenden können ein Beispielprodukt im Labormaßstab selbstständig herstellen und die Einflüssen von Rezeptur und Prozessführung auf die Eigenschaften des Produkts bewerten. Sie können Ziele und Ergebnisse ihres im Team bearbeiteten Projektes klar, nachvollziehbar und verständlich präsentieren.

Inhalt

V: Grundlegende Einführung in die Gestaltung und Qualitätssicherung ausgewählter Lebensmittel;

Projektarbeit (Teamarbeit): Definition, Herstellung und Bewertung eines ausgewählten Lebensmittels als Team; Präsentation und Verteidigung des Vorgehens sowie der Ergebnisse incl. Degustation in der Gesamtgruppe; Exkursion zu ausgewählten Industriebetrieben

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

- Präsenzzeit: 115 h
 - (Vorlesung 2 SWS Vorlesung, Projektarbeit 5 SWS)
- Selbststudium: 185 h
 - (dies beinhaltet Projektplanung, Projekttreffen, Recherche zur Projektarbeit, projektbezogene Vor- und Selbstversuche, sowie Vor- und Nachbereiten der theoretischen Grundlagen)
- Prüfungsvorbereitung: 60 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

Wird entsprechend der auswählbaren Produkte in der Vorlesung verteilt

4.33 Modul: Luftreinhaltung [M-CIWVT-106448]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2023)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile				
T-CIWVT-113046	Luftreinhaltung	7 LP	Dittler	
T-CIWVT-113047	Luftreinhaltung - Projektarbeit	5 LP	Dittler	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. einer mündlichen Prüfung im Umfang von ca. 30 Minuten
- 2. Bewertung der Projektarbeit: Bewertet werden Vorbereitung, Durchführung, Präsentation u. schriftlicher Bericht

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Studierende verstehen Transportverhalten und Messmethoden für Partikelgrößenverteilungen von gasgetragenen feinen Partikeln im Kontext von Umwelttechnik und Nanopartikeltechnik. Sie können dieses Wissen zur Lösung von elementaren Aufgaben der Partikeltechnik praktisch anwenden.

Inhalt

Die Vorlesungen vermitteln das Grundwissen zu Partikeldispergierung, Partikeltransport in der Gasphase und Messverfahren mit Bezug zu Umwelttechnik und Arbeitsplatz. Die Anwendung auf konkrete Fälle wird in einer teambasierten Projektarbeit erprobt.

Zusammensetzung der Modulnote

Die Modulnote setzt sich zu 40 % aus der Note der Projektarbeit und zu 60 % aus der Note der mündliche Prüfung zusammen.

Arbeitsaufwand

- Präsenzzeit: 56 h (V+Ü) + 120 (Projektarbeit) + 10 (Exk.)
- · Selbststudium: 24 h
- Prüfungsvorbereitung: 140 h

Literatur

Skriptum Gas-Partikel-Messtechnik

4.34 Modul: Maschinenkonstruktionslehre A [M-MACH-106527]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Ingenieurwissenschaftliche Grundlagen (EV ab 01.10.2023)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	3

Pflichtbestandteile					
T-MACH-112984	Maschinenkonstruktionslehre A	7 LP	Düser, Matthiesen		
T-MACH-112981	Workshop zu Maschinenkonstruktionslehre A	2 LP	Düser, Matthiesen		

Erfolgskontrolle(n)

Siehe einzelne Teilleistungen

Voraussetzungen

Keine

Qualifikationsziele

In der Maschinenkonstruktionslehre erwerben die Studierenden Kompetenzen zur Analyse und Synthese an Beispielen. Diese umfassen sowohl einzelne Maschinenelemente, wie Lager oder Federn, als auch kompliziertere Systeme wie Getriebe oder Kupplungen. Die Studierenden können nach Absolvieren der Maschinenkonstruktionslehre die gelernten Inhalte auf weitere – auch aus der Vorlesung nicht bekannte – technische Systeme anwenden, indem sie die exemplarisch erlernten Wirkprinzipien und Grundfunktionen auf andere Kontexte übertragen. Dadurch können die Studierenden unbekannte technische Systeme selbstständig analysieren und für gegebene Problemstellungen geeignete Systeme synthetisieren.

Inhalt

MKL A

- Federn
- Technische Systeme
- · Lager und Lagerungen
- Dichtungen
- Bauteilverbindung
- Getriebe

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Keine

Arbeitsaufwand

MKL A: Gesamter Arbeitsaufwand: 240 h, davon Anwesenheit 75 h, aufgeteilt in Vorlesung + Übung: 4 SWS -> 60 h sowie Workshop: 1 SWS -> 15 h; Selbststudium 165 h

Empfehlungen

Keine

Lehr- und Lernformen

Vorlesungen, Übungen und Semsterbegleitende Workshops sowie Projektarbeiten

Literatur

Grundlagen der Berechnung und Gestaltung von Maschinenelementen; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-22033-X oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Grundlage für

Keine

4.35 Modul: Maschinenkonstruktionslehre B-C [M-MACH-106528]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2023)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	1

Pflichtbestandteile					
T-MACH-112985	Maschinenkonstruktionslehre B und C	6 LP	Düser, Matthiesen		
T-MACH-112982	Workshop zu Maschinenkonstruktionslehre B	3 LP	Düser, Matthiesen		
T-MACH-112983	Workshop zu Maschinenkonstruktionslehre C	3 LP	Düser, Matthiesen		

Erfolgskontrolle(n)

Siehe einzelne Teilleistungen

Voraussetzungen

Keine

Qualifikationsziele

In der Maschinenkonstruktionslehre erwerben die Studierenden Kompetenzen zur Analyse und Synthese an Beispielen. Diese umfassen sowohl einzelne Maschinenelemente wie Lager oder Federn als auch kompliziertere Systeme wie Getriebe oder Kupplungen. Die Studierenden können nach Absolvieren der Maschinenkonstruktionslehre die gelernten Inhalte auf weitere – auch aus der Vorlesung nicht bekannte – technische Systeme anwenden, indem sie die exemplarisch erlernten Wirkprinzipien und Grundfunktionen auf andere Kontexte übertragen. Dadurch können die Studierenden unbekannte technische Systeme selbstständig analysieren und für gegebene Problemstellungen geeignete Systeme synthetisieren.

Inhalt

MKL B

- Gestaltung
- Toleranzen und Passungen
- Zahnradgetriebe
- Kupplungen

MKL C

- Schraubenverbindungen
- Dimensionierung
- · E-Maschinen + Hydraulik

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Keine

Arbeitsaufwand

MKL B: Gesamter Arbeitsaufwand: 180 h, davon Anwesenheit: 67,5 h, aufgeteilt in Vorlesung + Übung: 3 SWS -> 45 h sowie Workshop: 1,5 SWS -> 22,5; Selbststudium 112,5 h

MKL C: Gesamter Arbeitsaufwand: 180 h, davon Anwesenheit: 67,5 h, aufgeteilt in Vorlesung + Übung: 3 SWS -> 45 h sowie Workshop: 1,5 SWS -> 22,5; Selbststudium 112,5 h

Empfehlungen

Keine

Lehr- und Lernformen

Vorlesungen, Übungen und Semsterbegleitende Workshops sowie Projektarbeiten

Literatur

Grundlagen der Berechnung und Gestaltung von Maschinenelementen; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-22033-X oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Grundlage für Keine

4.36 Modul: Mechanische Separationstechnik [M-CIWVT-101147]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	3

Pflichtbestandteile			
T-CIWVT-103448	Mechanische Separationstechnik Prüfung	8 LP	Gleiß
T-CIWVT-103452	Mechanische Separationstechnik Projektarbeit	4 LP	Gleiß

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst zwei benotete Leistungsnachweise

- Mündliche Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung "Mechanische Separationstechnik" und den dazu gehörenden Übungen
- Projektarbeit. Es werden die praktische Mitarbeit, der schriftliche Bericht sowie die mündliche Präsentation der Ergebnisse individuell bewertet.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

mind, 60 LP

· mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können die grundlegenden Gesetze und daraus folgende physikalischen Prinzipien der Abtrennung von Partikeln aus Flüssigkeiten erläutern und nicht nur den prinzipiell dafür geeigneten Trennapparaten zuordnen, sondern auch spezielle Varianten. Sie sind in der Lage, den Zusammenhang zwischen Produkt-, Betriebs- und Konstruktionsparametern auf verschiedene Trenntechniken anzuwenden. Sie können Trennprobleme mit wissenschaftlichen Methoden analysieren und alternative Lösungsvorschläge angeben. Die Studierenden können Grundlagen- und Prozesswissen auf das Beispiel des Bierbrauens praktisch anwenden.

Inhalt

Physikalische Grundlagen, Apparate, Anwendungen, Strategien; Charakterisierung von Partikelsystemen und Suspensionen; Vorbehandlungsmethoden zur Verbesserung der Trennbarkeit von Suspensionen; Grundlagen, Apparate und Anlagentechnik der statischen und zentrifugalen Sedimentation, Flotation, Tiefenfiltration, Querstromfiltration, Kuchenbildenden Vakuum- und Gasüberdruckfiltration, Filterzentrifugen und Pressfilter; Filtermedien; Auswahlkriterien und Dimensionierungsmethoden für trenntechnische Apparate und Maschinen; Kombinationsschaltungen; Fallbeispiele zur Lösung trenntechnischer Aufgabenstellungen.

Zusammensetzung der Modulnote

Die Modulnote errechnet sich aus dem LP-gewichteten Mittel der beiden Teilleistungen.

Arbeitsaufwand

Vorlesung 3 SWS und Übung 1 SWS:

Präsenzzeit: 60 h

Selbststudium: 80 h

Prüfungsvorbereitung: 80 h

Projektarbeit:

· Präsenzzeit und Selbststudium:140 h

Literatur

Anlauf: Skriptum "Mechanische Separationstechnik - Fest/Flüssig-Trennung"

4.37 Modul: Mechanische Verfahrenstechnik [M-CIWVT-101135]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-101886	Mechanische Verfahrenstechnik	6 LP	Dittler

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120.

Voraussetzungen

Keine

Qualifikationsziele

Studierende verstehen das Verhalten von Partikelsystemen in wichtigen Ingenieuranwendungen; sie können dieses Verständnis auf die grundlegende Berechnung und Auslegung ausgewählter Verfahrensschritte/Vorgänge anwenden.

Inhalt

- Grundoperationen der Mechanischen Verfahrenstechnik Einführung & Übersicht
- Partikelgrößenverteilungen Bestimmung, Darstellung & Umrechnung
- Kräfte auf Partikeln in Strömungen
- · Trennfunktion Charakterisierung einer Trennung
- Grundlagen des Mischens & Rührens
- Einführung in die Dimensionsanalyse
- Charakterisierung von Packungen
- Kapillarität in porösen Feststoff-Systemen
- · Durchströmung von Packungen, Wirbelschicht
- · Grundlagen der Agglomeration
- · Grundlagen des Lagerns und Förderns

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 h
- Selbststudium: 45 h (ca. 3 h pro Semesterwoche)
- Klausurvorbereitung: zusätzlich 75 h

Empfehlungen

Module des 1. - 4. Semesters

- Dittler, Skriptum MVT
- Löffler, Raasch: Grundlagen der Mechanischen Verfahrenstechnik, Vieweg 1992
- Schubert, Heidenreich, Liepe, Neeße: Mechanische Verfahrenstechnik, Deutscher Verlag Grundstoffindustrie, Leipzig 1990
- Dialer, Onken, Leschonski: Grundzüge Verfahrenstechnik&Reaktionstechnik, Hanser Verlag 1986
- Zogg: Einführung in die Mechanische Verfahrenstechnik, Teubner 1993

4.38 Modul: Mikroverfahrenstechnik [M-CIWVT-101154]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	3

Pflichtbestandteile				
T-CIWVT-103666	Mikroverfahrenstechnik Prüfung	7 LP	Pfeifer	
T-CIWVT-103667	Mikroverfahrenstechnik Projektarbeit	5 LP	Dittmeyer, Pfeifer	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. Einer mündlichen Einzelprüfung im Umfang von ca. 25 Minuten zu Lehrveranstaltung "Auslegung von Mikroreaktoren"
- 2. Einer Prüfungsleistung anderer Art: Projektarbeit (Teamnote), bei der Mitarbeit (max. 30 Punkte), Bericht (max. 20 Punkte) und Abschlusspräsentation (max 10 Punkte) bewertet wird; Notenschlüssel auf Anfrage. Die Teilleistung ist bestanden, wenn mindestens 20 Punkte erreicht wurden.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

mind. 60 LP

· mind. 1 Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können die Methoden der Prozessintensivierung durch Mikrostrukturierung des Reaktionsraumes anwenden und sind in der Lage, die Vorteile und Nachteile einer Übertragung von gegebenen Prozessen in mikroverfahrenstechnische Apparate zu analysieren. Mit Kenntnis über spezielle Herstellverfahren für Mikroreaktoren sind die Studierenden in der Lage, Auslegungsmethoden auf mikrostrukturierte Systeme hinsichtlich des Wärmetauschs anzuwenden und die Möglichkeiten zur Übertragung von Prozessen aus konventioneller Verfahrenstechnik in den Mikroreaktor hinsichtlich der Wärmeübertragungsleistung zu analysieren. Sie verstehen außerdem, wie die Mechanismen von Stofftransport und Mischung in strukturierten Strömungsmischern zusammenspielen, und sind in der Lage diese Kenntnisse auf die Kombination von Mischung und Reaktion anzuwenden. Darüber hinaus können sie mögliche Limitierungen bei der Prozessumstellung analysieren und so mikrostrukturierten Reaktoren für homogene Reaktionen angemessen auslegen. Die Studierenden verstehen die Bedeutung der Verweilzeitverteilung für Umsatz und Selektivität und sind in der Lage das Zusammenspiel von Stofftransport durch Diffusion und hydrodynamischer Verweilzeit in mikroverfahrenstechnischen Apparaten in gegebenen Anwendungsfällen zu analysieren.

Inhalt

Basiswissen zu mikroverfahrenstechnischen Systemen: Herstellung von mikrostrukturierten Systemen und Wechselwirkung mit Prozessen, Intensivierung von Wärmetausch und spezielle Effekte durch Wärmeleitung, Verweilzeitverteilung in Reaktoren und Besonderheiten in mikrostrukturierten Systemen, strukturierte Strömungsmischer (Bauformen und Charakterisierung) und Auslegung von strukturierten Reaktoren hinsichtlich Stoff- und Wärmetransport.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichteten Mittel der beiden Teilleistungen.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 3 SWS Übung 1 SWS: 60 h
- · Selbststudium: 60 h
- Prüfungsvorbereitung: 60 h (ca. 2 Wochen)
- Projektarbeit 180 h

Literatur

Skript (Foliensammlung)

Fachbücher:

- Kockmann, Norbert (Hrsg.), Micro Process Engineering, Fundamentals, Devices, Fabrication, and Applications, ISBN-10: 3-527-31246-3
- Micro Process Engineering A Comprehens (Hardcover), Volker Hessel (Editor), Jaap C. Schouten (Editor), Albert Renken (Editor), Yong Wang (Editor), Junichi Yoshida (Editor), 3 Bände, 1500 Seiten, Wiley VCH, ISBN-10: 3527315500
- Winnacker-Küchler: Chemische Technik, Prozesse und Produkte, BAND 2: NEUE TECHNOLOGIEN, Kapitel Mikroverfahrenstechnik S. 759-819, ISBN-10: 3-527-30430-4
- Emig, Gerhard, Klemm, Elias, Technische Chemie, Einführung in die chemische Reaktionstechnik, Springer-Lehrbuch,
 5., aktual. u. erg. Aufl., 2005, 568 Seiten, ISBN-10: 3-540-23452-7 (Kapitel Mikroreaktionstechnik S. 444-467)
- Chemical Kinetics, ISBN 978-953-51-0132-1 "Application of Catalysts to Metal Microreactor Systems", P. Pfeifer, http://www.intechopen.com/books/chemical-kinetics/application-of-catalysts-to-metal-microreactor-systems

4.39 Modul: Modul Bachelorarbeit [M-CIWVT-103204]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Bachelorarbeit

Leistungspunkte
12 LPNotenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile			
T-CIWVT-106365	Bachelorarbeit	12 LP	

Voraussetzungen

§ 14 Abs. 1 SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015:

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, ein Problem aus ihrem Fach selbständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten.

Inhalt

Theoretische oder experimentelle Bearbeitung einer komplexen Problemstellung aus einem Teilbereich des Chemieingenieurwesens nach wissenschaftlichen Methoden.

Arbeitsaufwand

Es gelten die Regelungen aus § 14 SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015.

4.40 Modul: Organisch-chemische Prozesskunde [M-CIWVT-101137]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Wahlpflichtfächer

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CIWVT-101890	Organisch-Chemische Prozesskunde (OCP)	5 LP	Rauch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 SPO.

Voraussetzungen

Organische Chemie muss bestanden sein.

Qualifikationsziele

Kenntnis von organischen Stoffen und chemischen Reaktionstypen vertiefen; Zusammenhänge verstehen von organischchemischen Reaktionen/R-typen und technischen Prozessen anhand ausgewählter Beispiele; technische Stoffumwandlungswege von Rohstoffen zu Endprodukten verstehen.

Perspektiven der stofflichen Nutzung nachwachsender Rohstoffe aufzeigen können.

Mechanismen der Synthese von synthetischen Polymeren kennen und vertiefen lernen; Wechselbeziehung zwischen Mechanismus und technischer Auslegung des Prozesses nachvollziehen können; Zusammenhang zwischen Struktur, Eigenschaften und Anwendung herstellen können; Einsatzfelder von Hochleistungskunststoffen kennen und beurteilen.

Inhalt

Rohstoffe für die industrielle organische Chemie; Industrielle Herstellung von Grundchemikalien und Zwischenprodukten anhand ausgewählter Beispiele, Digitalisierung und Industrie 4.0 in der chemischen Industrie.

Mechanismen der Bildung von synthetischen Makromolekülen; Herstellungsverfahren und Eigenschaften von Kunststoffen und polymeren Werkstoffen; Spektroskopische Methoden der Strukturaufklärung organischer Moleküle.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 h Selbststudium: 40 h Klausurvorbereitung: 50 h

Literatur

Vorlesungsskripte

Onken, Behr: Chem. Prozeßkunde, Wiley-VCH 1996 Arpe: Industrielle Org. Chemie, Wiley-VCH 2007 Brahm: Polymerchemie kompakt, Hirzel 2009 Tieke: Makromolekulare Chemie, Wiley-VCH 2014

Hesse u.a.: Spektroskop. Methoden in der OC, Thieme 2011

4.41 Modul: Organische Chemie für Ingenieure [M-CHEMBIO-101115]

Verantwortung: Prof. Dr. Michael Meier

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CHEMBIO-101865	Organische Chemie für Ingenieure	5 LP	Meier

Erfolgskontrolle(n)

benotet: Prüfungsklausur

Voraussetzungen

keine

Qualifikationsziele

Bedeutung, Grundlagen- und methoden-orientierte Kenntnis der Organischen Chemie; Zusammenhang zwischen Struktur und Reaktivität herstellen; Kenntnis wichtiger Modelle und Prinzipien der Organischen Chemie; Anwendung des Wissens zur eigenständigen Lösung von Problemstellungen

Inhalt

Nomenklatur, Struktur und Bindung organischer Moleküle; Organische Verbindungsklassen und funktionelle Gruppen; Eigenschaften, Reaktionsmechanismen und Synthese organischer Verbindungen; Stereochemie und optische Aktivität; Technische Polymere und Biopolymere; Methoden zur Strukturaufklärung

Zusammensetzung der Modulnote

Note der Prüfungsklausur

Arbeitsaufwand Präsenzzeit: 34h

Selbststudium: 86h

Literatur

Paula Y. Bruice: Organische Chemie, Pearson Studium, 5. Aufl., München 2007

K.P.C. Vollhardt, Neil Schore; K. Peter: Organische Chemie, 4. Aufl., Wiley-VCH, Weinheim 2005

Neil E. Schore: Arbeitsbuch Organische Chemie, 4. Aufl., Wiley-VCH, Weinheim 2006

Hans Beyer, Wolfgang Walter: Lehrbuch der Organischen Chemie, 24. Aufl., Hirzel, Stuttgart 2004

Adalbert Wollrab: Organische Chemie, 2. Aufl., Springer, Berlin 2002

4.42 Modul: Orientierungsprüfung [M-CIWVT-100874]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Orientierungsprüfung

Leistungspunkte
0 LPNotenskala
best./nicht best.Turnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-MATH-100275	Höhere Mathematik I	7 LP	Arens, Griesmaier, Hettlich	
T-MATH-100525	Übungen zu Höhere Mathematik I	0 LP	Arens, Griesmaier, Hettlich	
T-CHEMBIO-101866	Allgemeine und Anorganische Chemie	6 LP	Ruben	

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

Keine

4.43 Modul: Physikalische Grundlagen [M-PHYS-100993]

Verantwortung: Prof. Dr. Alexey Ustinov Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte
7 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-PHYS-101577	Physikalische Grundlagen	7 LP	Ustinov

Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls.

Voraussetzungen

Das Modul Höhere Mathematik I muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MATH-100280 - Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Studierende beherrschen die Grundbegriffe und Konzepte der klassischen Wellenmechanik, Strahlen- und Wellenoptik, Elektrodynamik, speziellen Relativitätstheorie, Quantenmechanik, Atom- und Kernphysik sowie der Festkörperphysik und können diese erläutern und anwenden.

Inhalt

Mechanische Wellen in kontinuierlichen Medien, Strahlen- und Wellenoptik, Elektrostatik, Magnetostatik, elektromagnetische Wellen, relativistische Dilatation, Welle-Teilchen Dualismus, Schrödingergleichung, atomare Wellenfunktionen, Aufbau der Atome, Kerne und Radioaktivität, Kristalle, Metalle und Halbleiter.

Arbeitsaufwand

Präsenzzeit: 84 Stunden Selbststudium: 84 Stunden Prüfungsvorbereitung: 42 Stunden

Empfehlungen

Inhalte von Technische Mechanik: Dynamik

- P. Tipler, Physik für Wissenschaftler und Ingenieure, Springer 2015
- E. Hering, R. Martin, M. Stohrer, Physik für Ingenieure, Springer 2016

4.44 Modul: Praktikum Elektrochemische Energietechnologien [M-ETIT-105703]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Wahlpflichtfächer (EV ab 01.10.2021)

Leistungspunkte

5 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch

Level 3 Version 3

Pflichtbestandteile

T-ETIT-111376 Praktikum Elektrochemische Energietechnologien

5 LP

Röse

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen, bewertet wird jeweils das schriftliche Versuchsprotokoll. Die Modulnote wird aus dem Gesamteindruck gebildet.

Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen eine Prüfungseinheit. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Voraussetzungen

- Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 Electrochemical Energy Technologies" erfolgreich abgelegt haben.
- Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-ETIT-105690 - Electrochemical Energy Technologies muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden vertiefen und verfestigen ihre zuvor erlernten Grundkenntnisse aus der Vorlesung "Elektrochemische Energietechnologien". Sie verstehen, wie man Prozesse an Grenzflächen unter Stoffumwandlung durch Ladungstransfer experimentell analysiert und quantitativ beschreibt. Sie sind in der Lage elektrochemische Zellen aufzubauen, verstehen deren Funktionsprinzip und werden in die Lage versetzt, ablaufende elektrochemische Prozesse zu bestimmen. Des Weiteren sind sie in der Lage elektrochemische Messmethoden gezielt auf Fragestellungen anzuwenden, die relevant für die Analyse moderner Energiewandler und -Speichertechnologien sind.

Sie sind darüber hinaus befähigt, gemessene Daten zu dokumentieren, auszuwerten und die Ergebnisse kritisch zu diskutieren. Sie können Fehlerabschätzungen kompetent durchführen und beherrschen sicher die rechnergestützte Datenauswertung.

Inhalt

Vier ausgewählte experimentelle Versuche aus den Gebieten der Elektrochemie werden durchgeführt:

Praktikumsversuch 1: Ermittlung von Transportparametern reversibler Systeme

- · Voltammetrie an einer stationären Elektrode
- · Voltammetrie an einer rotierenden Scheibenelektrode

Praktikumsversuch 2: Bestimmung der Wasserstoff- und Sauerstoffüberspannung

Praktikumsversuch 3: Bau einer Polymerelektrolytmembran Brennstoffzell

Praktikumsversuch 4: Untersuchung der selbstgebauten PEM-Brennstoffzelle unter verschiedenen Betriebsbedingungen

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilungen der schriftlichen Versuchsprotokolle ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

Arbeitsaufwand

1. Präsenzzeit im Praktikum: 4x 5 h (Block-Veranstaltung)

2. Vorbereitung für die Versuche: 30 h3. Anfertigung Protokolle: 100 h

4.45 Modul: Praktikum Organische Chemie [M-CHEMBIO-101116]

Verantwortung: Dr. Andreas Rapp

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften **Bestandteil von:** Praktika "ab 01.10.2023" (Aufbaupraktikum)

Leistungspunkte
5 LPNotenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile	Pflichtbestandteile			
T-CHEMBIO-101868	Praktikum Organische Chemie für Ingenieure	5 LP	Rapp	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung.

Bewertet werden Protokolle und Analysenergebnisse: Insgesamt absolvieren die Studierenden 5 Versuche. Pro Versuch können maximal 10 Punte für Protokolle und Versuchsergebnisse erreicht werden. Zum Bestehen des Praktikums müssen alle Versuche erfolgreich durchgeführt und insgesamt mindestens 25 Punkte erreicht werden.

Voraussetzungen

Pflicht: Prüfungsklausur OC für Ingenieure

Qualifikationsziele

Die Präparate orientieren sich am Organikum. Komplexe Glasapparaturen spannungsfrei aufbauen, Gefahrstoffe risikolos in die Apparaturen einfüllen und die Reaktion verantwortungsvoll überwachen. Erlernen des richtigen Umgangs mit Gefahrstoffen. Kennenlernen von grundlegenden organischen Reinigungsverfahren, wie z. B. einer Destillation.

Inhalt

Schlüsselreaktionen der Organischen Chemie, z.B.: nucleophile Substitution, Substitution am Aromaten, Carbonylverbindungen, Addition an nichtaktivierte C-C-Mehrfachbindungen

Zusammensetzung der Modulnote

Durchschnittsnote der Analysenergebnisse/ Versuche

Arbeitsaufwand Präsenzzeit: 45h

Selbsstudium: 75h

Ocibastudium. 70i

Literatur

Schwetlick: Organikum, Wiley-VCH

4.46 Modul: Programmieren und Numerische Methoden [M-CIWVT-101956]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Mathematisch - Naturwissenschaftliche Grundlagen

Leistungspunkte
8 LPNotenskala
ZehntelnotenTurnus
JährlichDauer
2 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-MATH-102250	Einstieg in die Informatik und algorithmische Mathematik - Klausur	5 LP	Dörfler, Krause
T-CIWVT-101876	Praktikum Numerik im Ingenieurwesen	3 LP	Stein

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Klausur im Umfang von 75 Minuten und 75 Punkten.
 Dabei können für jede testierte Pflichtaufgabe 0,5 Bonuspunkte ingesamt maximal 4,5 Punkte für die Klausur gesammelt werden. Der Bonus ist gültig für eine bestandene Prüfung im selben oder darauffolgenden Semester. Danach verfallen die Bonuspunkte.
- Studienleistung: Unbenotete mündliche Prüfung mit einem Umfang von 10 Minuten.
 Die Studierenden müssen Kenntnisse zum Inhalt der Aufgabe und deren Lösung verstanden haben und mit eigenen Worten wiedergeben können.

Voraussetzungen

Keine

Qualifikationsziele

Höhere Programmiersprache, Entwurf und Beschreibung von Algorithmen, Grundlegende Algorithmen aus Mathematik und Informatik, Umsetzung mathematischer Konzepte am Rechner, Modellierung und Simulation naturwissenschaftlicher und technischer Probleme.

Die Studierenden können numerische Methoden zur Lösung von Ingenieurproblemen anwenden, eine Problemstellung in Gruppenarbeit im Rahmen eines Zeitplans lösen und die Arbeitsergebnisse in einer Präsentation darstellen.

Inhalt

Die Vorlesung bietet die Grundlagen, um ein weiterführendes Praktikum zu besuchen. Wesentliche Konzepte der Vorlesungen sind: Strukturierter Programmentwurf, Iteration, Rekursion, Datenstrukturen (insbesondere Felder), Prozedurale Programmierung mit Funktionen bzw. Methoden, Entwicklung anwendungsorientierter Programme. Im vorlesungsbegleitenden Praktikum werden mathematische Konzepte am Rechner umgesetzt.

Praktikum Numerik: Praktische Grundlagen für die numerische Lösung von verfahrenstechnischen Problemstellungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Einstieg in die Informatik und algorithmische Mathematik:

Präsenzzeit: 60 hSelbststudium: 90 h

Praktikum Numerik:

Präsenzzeit: 10 hSelbststudium 80 h

4.47 Modul: Prozessentwicklung und Scale-up [M-CIWVT-101153]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	4	4

Pflichtbestandteile				
T-CIWVT-103530	Prozessentwicklung und Scale-up	8 LP	Sauer	
T-CIWVT-103556	Prozessentwicklung und Scale-up Projektarbeit	4 LP	Sauer	
T-CIWVT-111005	Vorleistung Prozessentwicklung und Scale-up	0 LP	Sauer	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- einer mündlichen Prüfung im Umfang von ca. 30 Minuten zu Vorlesung und Übung
- Studienleistung: Vorleistung zur mündlichen Prüfung: Online Qick-Tests begleitend zur Vorlesung
- Prüfungsleistung anderer Art: Projektarbeit, zur individuellen Bewertung werden die Präsentation und schriftliche Dokumentation der Ergebnisse herangezogen.

Voraussetzungen

Die Teilnahme an einem Profilfach ist nur möglich, wenn folgende Leistungen erbracht wurden:

- mind. 60 LP
- · mind. 1 Praktikum

Voraussetzungen innerhalb des Moduls:

Für die Teilnahme an der mündlichen Prüfung müssen 4 von 5 der online Quick-Tests bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können Stoff- und Energiebilanzen für einen komplexen verfahrenstechnischen Prozess ermitteln und diesen Prozess hinsichtlich der Optimierungspotentiale analysieren. Zur Prozessoptimierung können sie geeignete Verfahren ableiten. Die Studierenden können die Hauptapparatekosten ermitteln und die Investkosten für eine Chemieanlage im Schätzungsverfahren bestimmen. Mit der Bestimmung der variablen Herstellkosten können sie die Wirtschaftlichkeit einer Chemieanlage analysieren.

Weiterhin lernen die Studierenden Grundbegriffe des Projektmanagements, werden zur Teamarbeit befähigt und angeleitet zum selbständigen wissenschaftlichen Arbeiten.

Inhalt

Einführung in die Systematik der Verfahrensentwicklung und des Projektmanagements für Entwicklungen aus dem Labor über die Konzipierung eines darauf aufbauenden chemisch-verfahrenstechnischen Prozesses bis zur Auslegung von Miniplant- und Pilotanlagen und der Überführung in den Produktionsmaßstab. Überblick über Methoden für die wirtschaftliche und technische Bewertung von Verfahren, sowie die Erstellung von Businessplänen.

Zusammensetzung der Modulnote

Die Modulnote setzt sich zu 50 % aus der mündlichen Prüfung und zu 50 % aus der Projektarbeit (Präsentation und Ausarbeitung) zusammen.

Anmerkungen

Im Rahmen der Veranstaltung ist eine Exkursion zum IKFT und zur bioliq-Anlage im Campus-Nord geplant, sowie eine Exkursion zu einem Industriebetrieb.

Arbeitsaufwand

- Präsenszeit Vorlesung: 22,5 h
- · Selbststudium Vorlesung: 45 h
- Präsenszeit Übung: 22,5 h
- Selbststudium Übung: 45 h
- Prüfungsvorbereitung mündliche Prüfung: 45 h
- Projektarbeit: 180 h

- Vorlesungs- und Übungsfolien (KIT Studierendenportal ILIAS)
- · Helmus, F. P., Process Plant Design: Project Management from Inquiry to Acceptance, Wiley-VCH, 2008.
- Towler, G., Sinnott, R. K., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, Butterworth-Heinemann, 2012.
- Peters, M.S., Timmerhaus, K.D., West R.E.: Plant Design and Economics for Chemical Engineers, 2003, Mc Graw-Hill, NY.
- Seider, W.D., Seader, J.D., Lewin, D. R., Widagdo, S.: Product and Process Design Principles, Wiley & Sons, NY, 2010.
- Vogel, G.H.:. Verfahrensentwicklung, Wiley-VCH, 2002.
- Belbin, R.M., Management Teams, Why They Succeed or Fail, Routledge, NY, 2013.
- Busse von Colbe, W.; Coenenberg, A.G., Kajüter, P., Linnhoff, U., Betriebswirtschaftslehre für Führungskräfte, 2002, S. 148

4.48 Modul: Regelungstechnik und Systemdynamik [M-CIWVT-106308]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Ingenieurwissenschaftliche Grundlagen (EV ab 01.04.2023)

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-CIWVT-112787	Regelungstechnik und Systemdynamik	5 LP	Meurer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen Konzepte und Methoden zur Analyse und zum Regler- sowie zum Beobachterentwurf für lineare Systeme im Frequenzbereich und im Zustandsraum. Sie können diese formulieren und erläutern und sind in der Lage darauf aufbauend komplexere Zusammenhänge abzuleiten. Sie besitzen praktische Fertigkeiten in der Systemanalyse und im Entwurf von Regelungen und Beobachtern für lineare Systeme im Frequenzbereich und im Zustandsraum. Sie können deren Verhalten und Eigenschaften evaluieren und beurteilen.

Inhalt

- · Einführung in regelungstechnische Fragestellungen und das Systemkonzept
- · Modellierung physikalischer Systeme
- · Mathematische Analyse dynamischer Systeme (Linearität und Zeitinvarianz, Linearisierung nichtlinearer Systeme)
- Lineare dynamische Systeme im Zeitbereich (Transitionsmatrix, Zustands- und Ähnlichkeitstransformationen, Stabilität linearer Systeme)
- Lineare dynamische Systeme im Frequenzbereich (Übertragungsfunktion, Eingangs-Ausgangs-Stabilität, Nyquist-Ortskurve, Bode-Diagramme, Pol- und Nullstellen, Analyse wichtiger Regelkreisglieder)
- Analyse und Entwurf von Regelkreisen im Frequenzbereich (Regelkreisstrukturen, Stabilitätskriterien, Regelungsentwurf mit dem Frequenzkennlinienverfahren)
- Analyse und Entwurf von Regelkreisen im Zustandsraum (Steuerbarkeit und Beobachtbarkeit, Entwurf von Zustandsreglern und Zustandsbeobachtern, Separationsprinzip)

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit:

Vorlesung: 30 hÜbung: 15 h

Selbststudium:

- · Vor- und Nachbereitung der Lehrveranstaltungen: 60 Stunden
- Prüfungsvorbereitung: 45 Stunden

- Meurer: Regelungstechnik und Systemdynamik, Vorlesungsskript.
- · Aström, R. Murray: Feedback Systems, Princeton University Press, 2008.
- C.T. Chen: Linear System Theory and Design, Oxford Univ. Press, 1999.
- · Lunze: Regelungstechnik I, Springer-Verlag, 2010.
- Lunze: Regelungstechnik II, Springer-Verlag, 2010.
- H. Unbehauen: Regelungstechnik I, Vieweg, 2005.

4.49 Modul: SmartMentoring [M-CIWVT-105848]

Verantwortung: Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Überfachliche Qualifikationen (EV ab 01.10.2021)

Leistungspunkte
3 LPNotenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-111761	SmartMentoring - Gruppenleitung	2 LP	Freudig

Inhalt

Workshop-Angebot des Hous-of-Competence:

Workshop 1: Mentoring Basics

Meine Rolle als Mentor*in; Teambuilding und Teamleitung, Kommunikation und Moderation

 Workshop 2: Lern- und Arbeitstechniken im Studium Lerntechniken gezielt anwenden; Zeit- und Selbstmanagement; Strategien gegen das Aufschieben

Workshop 3: Stressbewältigung und Prüfungsvorbereitung
 Umgang mit Stress im Studium; Prüfungsplanung; Prüfungsangst bewältigen

 Workshop 4: Reflexion: individuelle Kompetenzentwicklung, Herausforderungen und Ressourcen beim Mentoring, Entwicklungspotenzaile des Programms

Mentoring Programm:

- Unterstützung einer Gruppe aus Studienanfänger*innen beim Studienstart
- Organisation regelmäßiger Gruppentreffen während des Semesters (3 5 Treffen)

Anmerkungen

Anmeldung/Vergabe von Leistungspunkten nur für Mentor*innen!

Für die Teilnahme als Mentor*in ist die Anmeldung an der Fakultät erforderlich.

Die Teilnahme ist auch ohne Besuch der Workshops das House of Competence möglich, in dem Fall werden 2 LP vergeben.

Arbeitsaufwand

- Workshops: 20 h
- · Vor- und Nachbereitung; Aufbereitung der Inhalte für die Teilnehmer*innen des Mentoring-Programms: 40 h
- Organisation und Durchführung der Gruppentreffen: 50 h
- Evaluation: 10 h

4.50 Modul: Technische Mechanik: Dynamik [M-CIWVT-101128]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-CIWVT-101877	Technische Mechanik: Dynamik, Klausur	5 LP	Klahn
T-CIWVT-106290	Technische Mechanik: Dynamik, Vorleistung	0 LP	Klahn

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Studienleistung/ Prüfungsvorleistung: Hausaufgabenblätter
- 2. Schriftliche Prüfung mit einem Umfang von 120 Minuten

Voraussetzungen

Die Anmeldung zur Klausur ist erst nach bestandener Prüfungsvorleistung möglich:

Drei von vier Hausaufgabenblättern müssen erfolgreich bearbeitet sein.

Qualifikationsziele

Die Studierenden verfügen über Basiswissen in Technischer Mechanik/Dynamik, sie sind vertraut mit problemlösendem Denken und können dieses Wissen einsetzen um praxisnahe Ingenieurprobleme theoretisch zu analysieren und zu lösen.

Inhalt

Kinematik und Kinetik des Massenpunktes;

Kinematik und Kinetik starrer Körper;

Impulssatz, Drehimpulssatz, Arbeits- und Energiesatz;

Schwingungen von Systemen mit einem und mehreren Freiheitsgraden;

Relativbewegung des Massenpunktes;

Methoden der analytischen Mechanik, Lagrange-Gleichungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 56 h Selbststudium: 56 h Klausurvorbereitung: 40 h

Empfehlungen

Module des 1.-2. Semesters

- Gross/Ehlers/Wriggers/Schröder/Mülle: Formeln und Aufgaben zur Technischen Mechanik 3, 13. Auflage https://doi.org/ 10.1007/978-3-662-66190-1
- Kühlhorn/Silber: Technische Mechanik für Ingenieure, Hüthig 2000
- · Hibbler: Dynamik, Pearson 2006, 10. Auflage
- Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner2006

4.51 Modul: Technische Mechanik: Statik und Festigkeitslehre [M-CIWVT-104006]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Ingenieurwissenschaftliche Grundlagen (EV ab 01.10.2017)

Leistungspunkte
10 LPNotenskala
ZehntelnotenTurnus
JährlichDauer
2 SemesterSprache
DeutschLevel
3Version
4

Pflichtbestandteile				
T-CIWVT-103687	Technische Mechanik: Statik und Festigkeitslehre für CIW	10 LP	Hochstein, Oelschlaeger, Willenbacher	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftlichen Prüfung Statik und Festigkeitslehre mit einem Umfang von 90 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Vermittlung von Basiswissen der Mechanik (Statik u. Festigkeitslehre), Grundlagen der Modellbildung, theoretisches Durchdringen und Lösen einfacher (auch dreidimensionaler), praxisnaher Ingenieurprobleme aus der Statik und Festigkeitslehre.

Inhalt

Kräfte und Momente, statisches Gleichgewicht, Lager, Fachwerke, Schwerpunkt, Allgemeiner (3-dim.) Spannungs- und Dehnungszustand, Schnittgrößen an Balken, Rahmen und Bögen, Reibung, Prinzip der virtuellen Arbeit; Spannung und Dehnung in Stäben, Festigkeitshypothesen, Stoffgesetze, Balkentheorie incl. schiefe Biegung, Torsion, Knickung.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 120 Stunden Selbststudium: 120 Stunden Prüfungsvorbereitung: 60 Stunden

- Gross/Hauger/Schnell/Schröder: Technische Mechanik
 - Bd. 1: Statik, Springer 2004, 8. Auflage;
- Bd. 2: Elastostatik Springer (2002) 7. Auflage,
- · Hibbeler:
 - Technische Mechanik 1- Statik, Pearson (2005), 10. Auflage;
 - Technische Mechanik 2 Festigkeitslehre, Pearson (2006) 5. Auflage
 - Mechanics of Materials, Pearson (2004),
- Kühhorn/Silber: Technische Mechanik für Ingenieure, Hüthig (2000)
- Wriggers/Nackenhorst/Beuermann/Spiess/Löhnert: Technische Mechanik kompakt, Teubner (2006)
- Müller/Ferber: Technische Mechanik für Ingenieure (mit CD-Rom), Fachbuchverlag Leipzig (2005)
- Richard/Sander: Technische Mechanik Festigkeitslehre, Vieweg (2006)

4.52 Modul: Technische Thermodynamik I [M-CIWVT-101129]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Thermodynamik und Transportprozesse

Leistungspunkte
7 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-CIWVT-101878	Technische Thermodynamik I, Vorleistung	0 LP	Enders
T-CIWVT-101879	Technische Thermodynamik I, Klausur	7 LP	Enders

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen

- 1. schriftliche Prüfung im Umfang von 120 min
- Prüfungsvorleistung: unbenotete Studienleistung; die Studienleistung ist bestanden, wenn 2 von 3 Pflichtübungsblättern anerkannt wurden.

Voraussetzungen

Für die Teilnahme an der Klausur muss die Vorleistung bestanden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, Energiewandlungsprozesse unter Verwendung des ersten und zweiten Hauptsatzes der Thermodynamik zu analysieren und zu berechnen. Sie verstehen das Verhalten realer Einstoffsysteme und können thermodynamische Prozesse mit und ohne Phasenwechsel mit Hilfe von Zustandsdiagrammen und Prozessschemata erklären.

Inhalt

Thermodynamische Grundbegriffe; thermisches Gleichgewicht und empirische Temperatur; Zustandsgrößen und Zustandsgleichung des idealen Gases; Energie und erster Hauptsatz für geschlossene Systeme; Erhaltungssätze für offene Systeme; Entropie und thermodynamische Potentiale; Zweiter Hauptsatz; kalorische Zustandsgleichungen für Einstoffsysteme; Phasenwechselvorgänge von Einstoffsystemen und Phasendiagramme; Kreisprozesse für Wärmekraftmaschinen, Kältemaschinen und Wärmepumpen; Exergie.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 70 h Selbststudium: 80 h Klausurvorbereitung: 60 h

Empfehlungen

Module des 1. und 2. Semesters

- Schaber, K.: Skriptum Thermodynamik I (www.ttk.uni-karlsruhe.de)
- Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 1 Einstoffsysteme, 18. Aufl., Springer, 2009
- · Baehr, H. D.: Thermodynamik, 11. Aufl., Springer, 2002
- · Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006

4.53 Modul: Technische Thermodynamik II [M-CIWVT-101130]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Thermodynamik und Transportprozesse

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-CIWVT-101880	Technische Thermodynamik II, Vorleistung	0 LP	Enders
T-CIWVT-101881	Technische Thermodynamik II, Klausur	7 LP	Enders

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen

- 1. schriftliche Prüfung im Umfang von 120 min
- Prüfungsvorleistung: unbenotete Studienleistung; die Studienleistung ist bestanden, wenn 2 von 3 Pflichtübungsblättern anerkannt wurden.

Voraussetzungen

Für die Teilnahme an der Klausur muss die Vorleistung bestanden sein.

Qualifikationsziele

Die Studierenden verstehen das Verhalten von realen Gasen, Gas-Dampf-Gemischen, einfachen realen Gemischen und chemischen Gleichgewichten idealer Gase. Sie können entsprechende thermodynamische Prozesse mit Hilfe von Zustandsdiagrammen und Prozessschemata erklären. Sie sind in der Lage, diese Prozesse auf der Basis von Bilanzen und Gleichgewichten zu analysieren und zu berechnen.

Inhalt

Reale Gase und Gasverflüssigung; Potentialfunktionen; Charakterisierung von Mischungen; Mischungen idealer Gase; Gas-Dampf-Gemische und Prozesse mit feuchter Luft; Phasengleichgewichte und Phasendiagramme, Gesetze von Raoult und Henry, Flüssig-Flüssig-Gleichgewichte, Enthalpie von Mischungen; Allgemeine Beschreibung von Mischphasen und das chemische Potential; Reaktionsgleichgewichte in idealen Gasen. Grundlagen der Verbrennung.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 70 h Selbststudium: 80 h Klausurvorbereitung: 60 h

Empfehlungen

Module des 1.-3. Semesters
Technische Thermodynamik I

- Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 2: Mehrstoffsysteme und chemische Reaktionen, 15. Aufl., Springer, 2010
- Baehr, H. D., Kabelac, S.: Thermodynamik, 14. Aufl., Springer, 2009
- Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2006
- Gmehling, J., Kolbe, B.: Thermodynamik, 2. Auflage, VCH Verlag Weinheim, 1992

4.54 Modul: Technologie dünner Schichten [M-CIWVT-107495]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Profilfach (EV ab 01.10.2025)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile					
T-CIWVT-114692	Technologie dünner Schichten - Projektarbeit	6 LP	Schabel, Scharfer		
T-CIWVT-114693	Technologie dünner Schichten - Übungsaufgaben und Praktikum	6 LP	Schabel, Scharfer		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen

- 1. Prüfungsleistung anderer Art: Übungsaufgaben und Praktikum (Wintersemester)
- 2. Prüfungsleistung anderer Art: Projektarbeit zu Scale-up Fragestellungen inkl. Präsentation (Sommersemester)

Voraussetzungen

Zum Beginn des Profilfachs im Winterseemster müssen mindestens 60 LP erbracht und ein Praktikum absolviert sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 60 Leistungspunkte erbracht worden sein.

Qualifikationsziele

Die Studierenden können

- grundlegende, zukunftsorientierte Prozesse der Technologie dünner Schichten erläutern
- Prozesskette einer wissenschaftlichen Fragestellung bis hin zu deren Beantwortung: Planung, Konzeptionierung, Realisierung, Durchführung und Auswertung von grundlegenden Versuchen, Aspekte zur Umsetzung in einen technischen Maßstab (Scale-Up) beschreiben
- wissenschaftlich unter Verwendung von Standardtools arbeiten
- · wissenschaftliche Ergebnisse präsentieren
- eigenständig Fachwissen erarbeiten
- Fachwissen vermitteln und darstellen

Inhalt

Im Rahmen dieses Moduls erhalten Studierende verfahrenstechnische Einblicke in die aktuelle Forschung der Arbeitsgruppe Thin Film Technology (TFT), die sich u. a. mit innovativen Themen rund um Beschichtungs- und Trocknungsprozesse dünner Schichten befasst. Der Forschungsschwerpunkt liegt derzeit insbesondere auf Anwendungen der Dünnschichttechnik im Bereich der Energieforschung an neuen Batterietechnologien ergänzt durch Entwicklungen im Bereich der Wasserstofftechnologie, etwa bei Brennstoffzellen und Elektrolyseuren. Ziel des Profilfachs ist es, über diese zukunftsrelevanten Themen ingenieurwissenschaftliche Schlüsselkompetenzen zu vermitteln und einzuüben. Im Wintersemester werden dafür kompakte Vorlesungseinheiten angeboten, in denen sowohl technische als auch methodische Grundlagen erarbeitet werden. Dazu zählen unter anderem die Erstellung wissenschaftlicher Berichte und Präsentationen sowie der Umgang mit speziellen Excel-Werkzeugen wie Solver oder Makros. Ergänzend erfolgt eine Einführung in moderne Messtechnik – beispielsweise durch den Einsatz von Einplatinencomputern wie Arduino zur Temperaturmessung – sowie in die Datenverarbeitung mittels LabVIEW.

Das erlernte Wissen wird in praxisnahen Workshops vertieft. Im Anschluss führen die Studierenden im Labor zwei ausgewählte Experimente zu aktuellen Forschungsthemen durch. Die Auswertung basiert auf den im theoretischen Teil vermittelten Kenntnissen und erfolgt auch mithilfe dafür relevanter Kapitel aus dem VDI-Wärmeatlas. Die Resultate werden in Form einer wissenschaftlichen Ausarbeitung dokumentiert.

Im Sommersemester schließt sich daran eine projektbasierte Gruppenarbeit in kleineren Teams an, bei der das erlernte Wissen auf eine praxisnahe Aufgabenstellung übertragen und auch im größeren Maßstab (Scale-up) angewendet wird. Die Projektergebnisse werden am Ende des Semesters im Rahmen eines wissenschaftlichen Seminars präsentiert.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Anmerkungen

Im Rahmen des Moduls wird eine Exkursion angeboten, die den Bezug zwischen wissenschaftlicher Theorie und industrieller Praxis anschaulich macht. (Beispielsweise zur BASF nach Ludwigshafen, zu DAIMLER Truck nach Mannheim, VARTA nach Ellwangen, EVONIK nach Rheinstetten, ROCHE nach Mannheim, BOSCH nach Stuttgart oder zu Leclanché in Willstätt).

Arbeitsaufwand

Präsenzzeit: 100 hSelbststudium: 160 h

· Praktikum (inkl. Auswertung) 100 h

- VDI-Wärmeatlas, Springer 2013
- eigene Skripte

4.55 Modul: Thermische Verfahrenstechnik [M-CIWVT-101134]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Verfahrenstechnische Grundlagen

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-CIWVT-101885	Thermische Verfahrenstechnik	6 LP	Zeiner	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten nach § 4 Abs. 2 SPO. Änderung ab dem WS 21/22: Umfang 180 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Fachwissen zu den Grundlagen der Thermischen Trennverfahren erläutern. Dabei wird zwischen dem methodischen Werkzeug und dessen Anwendung auf ausgewählte Grundoperationen unterschieden. Sie sind in der Lage, standardisierte Aufgabenstellungen auf dem Gebiet der Thermischen Verfahrenstechnik zu bearbeiten, rechnerisch zu lösen und die hierfür notwendigen methodischen Hilfsmittel angemessen zu gebrauchen. Ferner können die Studierenden das erlernte Fachwissen und methodischen Werkzeuge auf für sie neue Prozesse und Fragestellungen qualifiziert anwenden.

Inhalt

Die vermittelten methodischen Werkzeuge sind vorrangig die Bilanzierung von Erhaltungsgrößen, das thermodynamische Gleichgewicht und deren Anwendung auf ein- und mehrstufige Prozesse. Im Rahmen dieses Moduls werden die folgenden verfahrenstechnischen Grundoperationen behandelt: Destillation, Rektifikation, Absorption, Extraktion, Verdampfung, Kristallisation, Trocknung, Adsorption/Chromatographie.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit (Vorlesung und Übung): 56 h

Selbststudium:44 h Klausurvorbereitung: 80 h

Empfehlungen

Module des 1. - 4. Semesters

Literatur

Umdrucke, Fachbücher

4.56 Modul: Verfahrenstechnische Maschinen [M-CIWVT-101139]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Praktika "ab 01.10.2023" (Aufbaupraktikum)

Leistungspunkte
5 LPNotenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile					
T-CIWVT-101903	Verfahrenstechnische Maschinen	5 LP	Gleiß		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung.

Eingangskolloquium beim Praktikum für jeden Versuch mündlich/schriftlich muss bestanden sein; Versuchsberichte müssen anerkannt sein

Voraussetzungen

Die Klausur "Organische Chemie für Ingenieure" muss vor Beginn des Praktikums bestanden sein.

Qualifikationsziele

Die Studierenden können Grundlagen zur prozesstechnischen Auslegung ausgewählter verfahrenstechnischer Apparate und Maschinen erläutern. Sie sind in der Lage nach Anweisung und einer Versuchsvorschrift selbst praktische Experimente zu diesen Verfahren durchzuführen, die Ergebnisse messtechnisch zu erfassen, darzustellen und zu interpretieren. Sie können einfache Rechnungen zur Auslegung dieser Prozesse anstellen.

Inhalt

- Fehlerrechnung
- Pumpen
- Elektroabscheider
- · Leistungseintrag in Rührkessel
- Wärmeübergang in und aus Rührkesseln
- · Kältemaschine/Wärmepumpe
- Emulgieren
- · Transport von Kunststoffgranulat in einem Schneckenreaktor
- Volumenstrommessung von Gasen
- · Verweilzeitverteilung

Zusammensetzung der Modulnote

Unbenotet

Anmerkungen

Es kann entweder das Praktikum "Verfahrenstechnische Maschinen" oder das Praktikum "Organische Chemie für Ingenieure" gewählt werden.

Von insgesamt 9 angebotenen Versuchen werden von jeder Praktikumsgruppe 7 Versuche durchgeführt. Die Gruppen werden durch den Praktikumsverantwortlichen eingeteilt.

Praktikumsrichtlinien und Hinweise zur Protokollerstellung sind unbedingt einzuhalten. Die Dokumente werden unter Ilias zur Verfügung gestellt.

Arbeitsaufwand

Präsenszeit: 7 Versuche, insgesamt ca. 30 h

Vor- und Nachbereitung: 120 h

Literatur

Skripten zur Vorlesung und Versuchsanleitungen zum Praktikum

4.57 Modul: Werkstoffkunde [M-MACH-102567]

Verantwortung: Dr.-Ing. Johannes Schneider **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: Ingenieurwissenschaftliche Grundlagen

Leistungspunkte
9 LPNotenskala
ZehntelnotenTurnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile				
T-MACH-105148	Werkstoffkunde I & II	9 LP	Schneider	

Erfolgskontrolle(n)

Mündliche Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können für die wichtigsten Ingenieurswerkstoffe die Eigenschaftsprofile beschreiben und Anwendungsgebiete nennen.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Inhalt

Atomaufbau und atomare Bindungen

Kristalline und amorphe Festkörperstrukturen

Störungen in kristallinen Festkörperstrukturen

Legierungslehre

Materietransport und Umwandlungen im festen Zustand

Korrosion

Verschleiß

Mechanische Eigenschaften

Werkstoffprüfung

Eisenbasiswerkstoffe

Nichteisenmetalle

Polymere Werkstoffe

Keramische Werkstoffe

Verbundwerkstoffe

Zusammensetzung der Modulnote

Note der mündlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 90 Stunden Selbststudium: 180 Stunden

Lehr- und Lernformen

Vorlesungen und Übungen

Literatur

- W. Bergmann: Werkstofftechnik I + II, Hanser Verlag, München, 2008/9 M. Merkel: Taschenbuch der Werkstoffe, Hanser Verlag, München, 2008
- R. Schwab: Werkstoffkunde und Werkstoffprüfung für Dummies, Wiley VCH, Weinheim, 2011
- J.F. Shackelford; Werkstofftechnologie für Ingenieure, Pearson Studium, München, 2008 (E-Book) J.F. Shackelford,: Introduction to Materials Science for Engineers. Prentice Hall, 2008

Vorlesungs- und Praktikumsskripte

5 Teilleistungen

5.1 Teilleistung: Allgemeine und Anorganische Chemie [T-CHEMBIO-101866]

Verantwortung: Prof. Dr. Mario Ruben

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101117 - Allgemeine und Anorganische Chemie (AAC)

M-CIWVT-100874 - Orientierungsprüfung

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 6 LP Notenskala Drittelnoten

Turnus Jedes Wintersemester Version

Lehrverans	staltungen				
WS 25/26	5004	Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens, der Angewandten Geowissenschaften sowie der Materialwissenschaften und Werkzeugtechnik)	3 SWS	Vorlesung (V) / 🗣	Behrens
WS 25/26	5005	Seminar zur Vorlesung Allgemeine und Anorganische Chemie (für Studierende des Chemieingenieurwesens, der Angewandten Geowissenschaften sowie der Materialwissenschaften und Werkzeugtechnik)	2 SWS	Seminar (S) / ⊈ ₄	Behrens, Schacherl
Prüfungsv	eranstaltungen				
WS 25/26	7100003	Allgemeine und Anorganische Chemie (für CIW, AGEW, TVWL, MWT)			Anson, Behrens
WS 25/26	7100004	Allgemeine und Anorganische Chen Wiederholung)	Allgemeine und Anorganische Chemie (CIW, AGEW, TVWL, MWT,		

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

5.2 Teilleistung: Angewandte Thermische Verfahrenstechnik - Projektarbeit [T-CIWVT-109120]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104458 - Angewandte Thermische Verfahrenstechnik

Teilleistungsart Leistungspunkte Note
Prüfungsleistung anderer Art 6 LP Dritte

NotenskalaDrittelnoten

Turnus

Jedes Sommersemester

Version 2

Lehrveran	staltungen				
SS 2025	2260310	Grundlagen der Angewandten Thermischen Verfahrenstechnik (Profilfach)	2 SWS	Vorlesung (V) / x	Dietrich
SS 2025	2260311	Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik (Profilfach)	2 SWS	Seminar (S) / x	Dietrich
SS 2025	2260312	Praktikum zu Angewandte Thermische Verfahrenstechnik (Profilfach)	2 SWS	Praktikum (P) / x	Dietrich, und Mitarbeitende
Prüfungsv	/eranstaltungen	1	•		
SS 2025	7280004	Thermische Verfahrenstechnik - P	Thermische Verfahrenstechnik - Praktischer Anteil		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art.

Voraussetzungen

5.3 Teilleistung: Angewandte Thermische Verfahrenstechnik - Übungsaufgaben und Praktikum [T-CIWVT-110803]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-104458 - Angewandte Thermische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Wintersemester2

Lehrverans	staltungen				
WS 25/26	2260310	Grundlagen der Angewandten Thermischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Dietrich, Wetzel, Zeiner
WS 25/26	2260311	Ausgewählte Kapitel der Angewandten Thermischen Verfahrenstechnik	2 SWS	Seminar (S) / ⊈	Dietrich, Wetzel, Zeiner, und Mitarbeitende
WS 25/26	2260312	Praktikum zu Angewandte Thermische Verfahrenstechnik (Projektarbeit)	2 SWS	Praktikum (P) / 🗣	Dietrich, Wetzel, Zeiner, und Mitarbeitende
Prüfungsve	eranstaltungen			•	
WS 25/26	7280003	Angewandte Thermische Verfahrens Praktikum	Dietrich		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bewertet werden die Übungsblätter (maximal 10 Punkte) und zwei Praktikumsversuche (maximal 20 Punkte). Die Teilleistung ist bestanden, wenn mindestens 15 Punkte erreicht wurden. Notenschlüssel auf Anfrage.

Voraussetzungen

5.4 Teilleistung: Angewandter Apparatebau Klausur [T-CIWVT-106562]

Verantwortung: Dr. Martin Neuberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103297 - Angewandter Apparatebau

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2245830	Angewandter Apparatebau	4 SWS	Vorlesung (V) / 🗣	Neuberger	
Prüfungsveranstaltungen						
SS 2025 7291956 Angewandter Apparatebau			Neuberger			
WS 25/26	7291956	Angewandter Apparatebau Klausur			Neuberger	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

5.5 Teilleistung: Automatisierungs- und Regelungstechnik - Projektarbeit [T-CIWVT-113089]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106477 - Automatisierungs- und Regelungstechnik

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 6 LP Notenskala Drittelnoten

Version 1

Lehrveran	staltungen				
SS 2025	2243022	Projektarbeit im Profilfach Automatisierungs- und Regelungstechnik	3 SWS	Projekt (PRO) / 🗣	Meurer
WS 25/26	2243020	Fortgeschrittene Methoden der linearen Regelungstechnik	3 SWS	Vorlesung / Übung (VÜ) / ⊈	Meurer
WS 25/26	2243021	Exkursion im Profilfach Automatisierungs- und Regelungstechnik	1 SWS	Exkursion (EXK) / 🗣	Meurer
Prüfungsv	eranstaltungen				
WS 25/26	7243022	Automatisierungs- und Regelungs	Meurer, Jerono		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

5.6 Teilleistung: Automatisierungs- und Regelungstechnik - Prüfung [T-CIWVT-113088]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106477 - Automatisierungs- und Regelungstechnik

M-CIWVT-106880 - Fortgeschrittene Methoden der linearen Regelungstechnik

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 6 LP **Notenskala** Drittelnoten

Version 1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2243020	Fortgeschrittene Methoden der linearen Regelungstechnik	3 SWS	Vorlesung / Übung (VÜ) / ⊈	Meurer		
WS 25/26	2243021	Exkursion im Profilfach Automatisierungs- und Regelungstechnik	1 SWS	Exkursion (EXK) / 🗣	Meurer		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7243020	Automatisierungs- und Regelungs	Meurer, Jerono				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.7 Teilleistung: Bachelorarbeit [T-CIWVT-106365]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103204 - Modul Bachelorarbeit

Teilleistungsart
AbschlussarbeitLeistungspunkte
12 LPNotenskala
DrittelnotenTurnus
Jedes SemesterVersion
3

Voraussetzungen

§ 14 Abs. 1 SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik 2015:

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 4 Monate

Maximale Verlängerungsfrist 4 Wochen

Korrekturfrist 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

5.8 Teilleistung: Berufspraktikum [T-CIWVT-106036]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart Studienleistung **Leistungspunkte** 14 LP Notenskala best./nicht best. Version 1

Prüfungsveranstaltungen				
WS 25/26	7200000	Berufspraktikum	Bajohr	

Voraussetzungen

keine

5.9 Teilleistung: Biopharmazeutische Aufarbeitungsverfahren [T-CIWVT-106029]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart Leistungspunkte Prüfungsleistung schriftlich 6 LP Notenskala Drittelnoten 1

Lehrveranstaltungen							
WS 25/26	2214010	Biopharmazeutische Aufarbeitungsverfahren	3 SWS	Vorlesung (V) / 🗣	Hubbuch, Franzreb		
WS 25/26	2214011	Übung zu 2214010 Biopharmazeutische Aufarbeitungsverfahren	1 SWS	Übung (Ü) / 🗣	Hubbuch, Franzreb		
Prüfungsv	eranstaltungen	•		•	•		
SS 2025	7223011	Biopharmazeutische Aufarbeitu	Biopharmazeutische Aufarbeitungsverfahren				
WS 25/26	7214010	Biopharmazeutische Aufarbeitu	Biopharmazeutische Aufarbeitungsverfahren				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von ca. 120 Minuten (Gesamtprüfung im nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

5.10 Teilleistung: Biopharmazeutische Verfahrenstechnik [T-CIWVT-113023]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106475 - Biopharmazeutische Verfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
SS 2025	2214040	Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)	3 SWS	Vorlesung (V) / 🗣	Hubbuch	
SS 2025	2214041	Übungen zu 2241040 Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)	1 SWS	Übung (Ü) / ●	Hubbuch, und Mitarbeiter	
Prüfungsv	eranstaltungen		-			
SS 2025	7223001	Biopharmazeutische Verfahrenstech Trennverfahren)	Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)			
WS 25/26	7214040	Biopharmazeutische Verfahrenstechnik (ehemals Biotechnologische Trennverfahren)			Hubbuch	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Arbeitsaufwand

180 Std.

5.11 Teilleistung: Biotechnologie - Projektarbeit [T-CIWVT-103669]

Verantwortung: Dr.-Ing. Iris Perner-Nochta

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101143 - Biotechnologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art9 LPDrittelnoten2

Lehrverans	staltungen				
WS 25/26	2214210	Profilfach Biotechnologie - Management wissenschaftlicher Projekte	3 SWS	Vorlesung / Übung (VÜ) / ● :	Perner-Nochta, Grünberger, und Mitarbeitende
WS 25/26	2214211	Praktische Übungen zu 2214210 Profilfach Biotechnologie	6 SWS	Praktikum (P) / 🗣	Perner-Nochta, Grünberger, und Mitarbeitende
WS 25/26	2214212	Projektarbeit zu 2214210 Profilfach Biotechnologie	1 SWS	Übung (Ü) / 🗣	Perner-Nochta, und Mitarbeitende
Prüfungsv	eranstaltungen			•	
WS 25/26	7223002	Profilfach Biotechnologie - Managen (Projektarbeit)	Perner-Nochta, Hubbuch		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist ein praktischer Anteil, Prüfungsleistung anderer Art.

Hier gehen folgende Leistungen ein:

- (0 20 Punkte) Projektplan
- (0 20 Punkte) die praktische Arbeit
- (0 20 Punkte) eine Präsentation) der Ergebnisse (Poster und Kurzvortrag)
- (0 20 Punkte) die schriftliche Ausarbeitung ein.

Notenschlüssel auf Anfrage. Die Teilleistung ist bestanden, wenn mindestens 40 Punkte erreicht wurden.

Voraussetzungen

5.12 Teilleistung: Biotechnologie - Prüfung [T-CIWVT-103668]

Verantwortung: Dr. Nadja Alina Henke

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101143 - Biotechnologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3 LP	Drittelnoten	Jedes Semester	2

Lehrveranstaltungen							
WS 25/26	2214215	Bioanalytik	2 SWS	Vorlesung (V) / €	Henke, Bleher		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7214215	Bioanalytik -Nachprüfung	Bioanalytik -Nachprüfung				
SS 2025	7223003	Biotechnologie - Prüfung Instrument	Biotechnologie - Prüfung Instrumentelle Bioanalytik (Profilfach)				
WS 25/26	7214215	Bioanalytik - Prüfung			Henke, Bleher		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftlichen Prüfung im Umfang von 90 Minuten zu den Lehrinhalten der Vorlesung Bioanalytik.

Voraussetzungen

5.13 Teilleistung: Bioverfahrensentwicklung [T-CIWVT-114538]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107403 - Bioverfahrensentwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2213050	Bioverfahrensentwicklung	2 SWS	Vorlesung (V) / 🗣	Grünberger	
WS 25/26	2213051	Übungen zu 2213050 Bioverfahrensentwicklung	2 SWS	Übung (Ü) / ♀	Grünberger	
Prüfungsveranstaltungen						
WS 25/26	7222001	Bioprocess Development			Grünberger	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.14 Teilleistung: Bioverfahrenstechnik [T-CIWVT-113019]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106434 - Bioverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich5 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2213010	Bioverfahrenstechnik	4 SWS	Vorlesung (V) / 🗣	Grünberger, Hubbuch		
WS 25/26	2213011	Repetitorium Bioverfahrenstechnik	1 SWS	Übung (Ü) / 💢	Grünberger		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	722122-VBP-947	Bioverfahrenstechnik			Grünberger, Hubbuch		
WS 25/26	722122-VBP-947	Bioverfahrenstechnik			Grünberger, Hubbuch		

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

5.15 Teilleistung: Catalysts for the Energy Transition [T-CIWVT-112214]

Verantwortung: TT-Prof. Dr. Moritz Wolf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106030 - Catalysts for the Energy Transition

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich5 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen						
SS 2025	2231410	Catalysts for the Energy Transition	2 SWS	Vorlesung (V) / ●	Wolf		
SS 2025	2231411	Übungen zu 2231410 Catalysts for the Energy Transition	1 SWS	Übung (Ü) / 🗣	Wolf		
Prüfungsve	eranstaltungen						
SS 2025	7200100	Catalysts for the Energy Transition			Wolf		
WS 25/26	7231410	Catalysts for the Energy Transition			Wolf		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 20 Minuten.

Voraussetzungen

5.16 Teilleistung: Chemische Reaktionstechnik - Projektarbeit [T-CIWVT-113696]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106825 - Chemische Reaktionstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2220023	Projektarbeit im Profilfach Chemische Reaktionstechnik	3 SWS	Projekt (PRO) / 🗣	Wehinger	
WS 25/26	2220022	Exkursion im Profilfach Chemische Reaktionstechnik	1 SWS	Exkursion (EXK) / 🗣	Wehinger	
Prüfungsveranstaltungen						
SS 2025	7220023	Chemische Reaktionstechnik - Projektarbeit			Wehinger	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

5.17 Teilleistung: Chemische Reaktionstechnik - Prüfung [T-CIWVT-113695]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106825 - Chemische Reaktionstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2220020	Chemische Verfahrenstechnik II	2 SWS	Vorlesung (V) / 🗣	Wehinger	
WS 25/26	2220021	Übung zu 2220020 Chemische Verfahrenstechnik II	1 SWS	Übung (Ü) / 🗣	Wehinger	
Prüfungsveranstaltungen						
SS 2025	7220021	Chemische Reaktionstechnik - Prüfung			Wehinger	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

5.18 Teilleistung: Chemische Verfahrenstechnik [T-CIWVT-101884]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101133 - Chemische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen					
SS 2025	2220012	Repetitorium zur Klausur Chemische Verfahrenstechnik	2 SWS	Übung (Ü) /	Wehinger, und Mitarbeitende
WS 25/26	2220010	Chemische Verfahrenstechnik	2 SWS	Vorlesung (V) / €	Wehinger
WS 25/26	2220011	Übung zu 2220010 Chemische Verfahrenstechnik	2 SWS	Übung (Ü) / 🗣	Wehinger, und Mitarbeitende
WS 25/26	2220012	Repetitorium zur Klausur Chemische Verfahrenstechnik	2 SWS	Übung (Ü) /	Wehinger, und Mitarbeitende
Prüfungsveranstaltungen					
SS 2025	7210101	Chemische Verfahrenstechnik			Wehinger
WS 25/26	7210101	Chemische Verfahrenstechnik			Wehinger

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

5.19 Teilleistung: Datengetriebene Modellierung mit Python [T-CIWVT-113190]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106534 - Datengetriebene Modellierung mit Python

Teilleistungsart	Leistungspunkte	Notenskala	Version
Studienleistung	3 LP	best./nicht best.	1

Lehrveranstaltungen						
WS 25/26	2245320	Datengetriebene Modellierung mit Python	2 SWS	Vorlesung (V) / 🗣	Rhein	
Prüfungsveranstaltungen						
WS 25/26	7291320	Datengetriebene Modellierung mit Python - Projekt			Rhein	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgkontrolle ist eine Studienleistung: Unbenotete Projektarbeit.

Voraussetzungen

5.20 Teilleistung: Einführung in das Bioingenieurwesen [T-CIWVT-113018]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann Prof. Dr. Jürgen Hubbuch Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106433 - Einführung in das Bioingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5 LPDrittelnoten1

Lehrveranstaltungen					
SS 2025	2210010	Einführung in das Bioingenieurwesen	4 SWS	Vorlesung (V) / 🗣	Grünberger, Holtmann, Hubbuch, van der Schaaf
Prüfungsv	veranstaltunger	1		•	
SS 2025	7210010	Einführung in das Bioingenieurwesen			Grünberger, Holtmann, Hubbuch, van der Schaaf
WS 25/26	7210010	Einführung in das Bioingeni	eurwesen		Grünberger, Holtmann, Hubbuch, van der Schaaf

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

5.21 Teilleistung: Eingangsklausur Praktikum Prozess- und Anlagentechnik [T-CIWVT-106149]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung schriftlich0 LPbest./nicht best.Jedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2231010	Prozess- und Anlagentechnik I - Grundlagen der Ingenieurstechnik	2 SWS	Vorlesung (V) / 🗣	Scheiff, Bajohr	
WS 25/26	2231012	Praktikum Prozess- und Anlagentechnik	1 SWS	Praktikum (P) / 🗣	Scheiff, und Mitarbeitende	
Prüfungsv	eranstaltungen					
WS 25/26	7230100	Eingangsklausur Praktikum Prozess	Eingangsklausur Praktikum Prozess- und Anlagentechnik			
WS 25/26	7230100-2	Eingangsklausur Praktikum Prozess- und Anlagentechnik			Scheiff	

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Studienleistung; unbenotete Eingangsklausur

Voraussetzungen

5.22 Teilleistung: Einstieg in die Informatik und algorithmische Mathematik - Klausur [T-MATH-102250]

Verantwortung: Prof. Dr. Willy Dörfler

PD Dr. Mathias Krause

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-CIWVT-101956 - Programmieren und Numerische Methoden

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 5 LP **Notenskala** Drittelnoten Version

Lehrverans	staltungen				
SS 2025	0150700	Einstieg in die Informatik und Algorithmische Mathematik (für Bio- und Chemie-Ingenieurwesen)	2 SWS	Vorlesung (V)	Krause, Karch, Doll
SS 2025	0150800	Übungen zu 0150700	1 SWS	Übung (Ü)	Krause, Karch, Doll
SS 2025	0150900	Praktikum zu 0150700	2 SWS	Praktikum (P)	Krause, Karch, Doll
WS 25/26	0101100	Einstieg in die Informatik und algorithmische Mathematik	2 SWS	Vorlesung (V) / 🗣	Krause
WS 25/26	0101200	Übungen zu 0101100	2 SWS	Übung (Ü) / 🗣	Krause
WS 25/26	0101300	Rechnerpraktikum zu 0101100	2 SWS	Praktikum (P)	Krause
Prüfungsv	eranstaltungen				
SS 2025	7700003_01	Einstieg in die Informatik und algorithmische Mathematik - C++- Klausur			Krause
WS 25/26	7700003_02	Einstieg in die Informatik und algorithmische Mathematik - Nachklausur (C++)			Dörfler

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Voraussetzungen

keine

5.23 Teilleistung: Electrochemical Energy Technologies [T-ETIT-111352]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105690 - Electrochemical Energy Technologies

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 25/26	2304236	Electrochemical Energy Technologies	2 SWS	Vorlesung (V) / 🗣	Krewer		
WS 25/26	2304237	Exercise for 2304236 Electrochemical Energy Technologies	1 SWS	Übung (Ü) / ♣	Pauer		
Prüfungsv	eranstaltungen						
SS 2025	7300009	Electrochemical Energy Technologies			Krewer		
WS 25/26	7300002	Electrochemical Energy Technologies			Krewer		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Type of Examination: Written exam

Duration of Examination: approx. 120 minutes

Voraussetzungen

none

5.24 Teilleistung: Energie- und Umwelttechnik [T-CIWVT-108254]

Verantwortung: Prof. Dr. Reinhard Rauch

Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101145 - Energie- und Umwelttechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich8 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2231150	Verfahren zur Erzeugung chemischer Energieträger	2 SWS	Vorlesung (V) / 🗣	Rauch	
WS 25/26	2232050	Grundlagen der Hochtemperatur- Energieumwandlung	2 SWS	Vorlesung (V) / 🗣	Trimis	
Prüfungsv	eranstaltungen					
SS 2025	7230500	Energie- und Umwelttechnik			Trimis, Rauch	
WS 25/26	7230500-1	Energie- und Umwelttechnik			Rauch, Trimis	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Empfehlungen

Module des 1. - 4. Semesters

5.25 Teilleistung: Energie- und Umwelttechnik Projektarbeit [T-CIWVT-103527]

Verantwortung: Prof. Dr. Reinhard Rauch

Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101145 - Energie- und Umwelttechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art4 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	SS 2025 2231151 Projektarbeit im Profilfach Energie- 3 SWS Projekt (PRO) / 🗣 und Umwelttechnik				Rauch, Trimis, Scheiff	
Prüfungsveranstaltungen						
WS 25/26	WS 25/26 7230501 Energie- und Umwelttechnik Projektarbeit			Rauch, Trimis		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Projektarbeit (Prüfungsleistung anderer Art).

Voraussetzungen

5.26 Teilleistung: Energieverfahrenstechnik [T-CIWVT-101889]

Verantwortung: Dr. Frederik Scheiff

Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101136 - Energieverfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
WS 25/26	2232110	Energieverfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Stein, Scheiff	
WS 25/26	2232111	Übung zu 2232110 Energieverfahrenstechnik	1 SWS	Übung (Ü) / 🗣	Stein, Scheiff, und Mitarbeitende	
Prüfungsv	eranstaltungen		•	•	•	
SS 2025	7232110	Energieverfahrenstechnik			Scheiff, Stein	
WS 25/26	7232110	Energieverfahrenstechnik			Stein, Scheiff	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 150 Minuten.

Voraussetzungen

Keine

Empfehlungen

Inhalte aus den Module Thermodynamik I und II werden vorausgesetzt.

5.27 Teilleistung: Ethik [T-CIWVT-112373]

Verantwortung: Prof. Dr. Dr. Rafaela Hillerbrand

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101149 - Ethik und Stoffkreisläufe

Teilleistungsart
StudienleistungLeistungspunkte
2 LPNotenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrveranstaltungen							
SS 2025	2231160	Ethik und Stoffkreisläufe	2 SWS	Vorlesung (V) / 🗣	Hillerbrand, Rauch		
Prüfungsveranstaltungen							
SS 2025	7230001	Ethik			Hillerbrand		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Regelmäßige Teilnahme an den wöchentichen Veranstaltungen; schriftliche Vor- und/oder Nachbereitung der Sitzungen, ggf. Referat.

Voraussetzungen

5.28 Teilleistung: Excercises: Membrane Technologies [T-CIWVT-113235]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1 LP	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2233011	Membrane Technologies in Water Treatment - Excercises	1 SWS	Übung (Ü) / 🛱	Horn, Saravia, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	2025 7233011 Excercises for Membrane Technologies				Horn, Saravia	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung: Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

5.29 Teilleistung: Fluiddynamik, Klausur [T-CIWVT-101882]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101131 - Fluiddynamik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2245010	Fluiddynamik	2 SWS	Vorlesung (V) / 🗣	Nirschl	
SS 2025	2245011	Übungen zu 2245010 Fluiddynamik in kleinen Gruppen	2 SWS	Übung (Ü) / 🗣	Nirschl	
Prüfungsve	eranstaltungen					
SS 2025	7291944	Fluiddynamik			Nirschl	
WS 25/26	7291944	Fluiddynamik			Nirschl	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Als Vorleistung sind vier von fünf Hausarbeiten zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-101904 - Fluiddynamik, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.30 Teilleistung: Fluiddynamik, Vorleistung [T-CIWVT-101904]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101131 - Fluiddynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0 LP	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen					
SS 2025	2245010	Fluiddynamik	2 SWS	Vorlesung (V) / €	Nirschl	
SS 2025	2245011	Übungen zu 2245010 Fluiddynamik in kleinen Gruppen	2 SWS	Übung (Ü) / 🗣	Nirschl	
Prüfungsve	eranstaltungen					
SS 2025	7291943	Fluiddynamik, Vorleistung			Nirschl	
WS 25/26	7291943	Fluiddynamik, Vorleistung			Nirschl	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung:

Als Vorleistung für die schriftliche Klausur sind vier von fünf Hausarbeiten zu bestehen. Alternativ dazu kann eine der Arbeiten auch durch eine Präsentation während der Vorlesung abgegolten werden.

Voraussetzungen

keine

5.31 Teilleistung: Formulierung und Charakterisierung von Energiematerialien - Projektarbeit [T-CIWVT-113479]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106700 - Formulierung und Charakterisierung von Energiematerialien

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 4 LP Notenskala Drittelnoten

Turnus Jedes Sommersemester Version 1

Prüfungsveranstaltungen					
SS 2025	7242026	Formulierung und Charakterisierung von Energiematerialien - Projektarbeit	Oelschlaeger		

Voraussetzungen

Die Teilnahme an der Projektarbeit ist nur möglich, wenn die mündliche Prüfung bestanden ist.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-113478 - Formulierung und Charakterisierung von Energiematerialien - Prüfung muss erfolgreich abgeschlossen worden sein.

5.32 Teilleistung: Formulierung und Charakterisierung von Energiematerialien - Prüfung [T-CIWVT-113478]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106700 - Formulierung und Charakterisierung von Energiematerialien

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 8 LP Notenskala Drittelnoten Version 1

WS 25/26	2242025	Herstellung und rheologische Charakterisierung von Energiematerialien	3 SWS	Vorlesung (V) / 🗣	Willenbacher, Hochstein, Oelschlaeger
WS 25/26	2242026	Übungen zu 2242025 Herstellung und rheologische Charakterisierung von Energiematerialien	1 SWS	Übung (Ü) / 🗣	Willenbacher, Oelschlaeger, und Mitarbeitende
Prüfungsv	eranstaltunger	1	•		_
SS 2025	7242025	Formulierung und Charakterisierung Prüfung	Formulierung und Charakterisierung von Energiematerialien - Prüfung		

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

5.33 Teilleistung: Grundlagen der Kältetechnik Projektarbeit [T-CIWVT-109118]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104457 - Grundlagen der Kältetechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art6 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2250112	Projektarbeit zum Profilfach Grundlagen der Kältetechnik	2 SWS	Übung (Ü) / 🗣	Grohmann	
Prüfungsve	eranstaltungen					
SS 2025	7250112	Grundlagen der Kältetechnik Projekt	Grundlagen der Kältetechnik Projektarbeit			
WS 25/26	7250112	Grundlagen der Kältetechnik Projektarbeit			Grohmann	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle des Moduls ist eine Prüfungsleistung anderer Art: Gruppenpräsentation der Projektarbeit.

Voraussetzungen

5.34 Teilleistung: Grundlagen der Kältetechnik Prüfung [T-CIWVT-109117]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104457 - Grundlagen der Kältetechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Sommersemester3

Lehrveranstaltungen					
WS 25/26	2250110	Kältetechnik A	2 SWS	Vorlesung (V) /	Grohmann
WS 25/26	2250111	Übung zu 2250110 Kältetechnik A	1 SWS	Übung (Ü) / 🗣	Grohmann, und Mitarbeitende
Prüfungsve	eranstaltungen				
SS 2025	7250110	Grundlagen der Kältetechnik Prüfung			Grohmann
WS 25/26	7250110	Grundlagen der Kältetechnik Prüfung			Grohmann

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung Grundlagen der Kältetechnik.

Voraussetzungen

Projektarbeit

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-109118 - Grundlagen der Kältetechnik Projektarbeit muss begonnen worden sein.

5.35 Teilleistung: Grundlagen der Wärme- und Stoffübertragung [T-CIWVT-101883]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101132 - Grundlagen der Wärme- und Stoffübertragung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 7 LP **Notenskala** Drittelnoten

Turnus Jedes Semester Version 1

Lehrverans	Lehrveranstaltungen						
SS 2025	2260030	Wärme- und Stoffübertragung	3 SWS	Vorlesung (V) / 🗣	Wetzel, Dietrich		
SS 2025	2260031	Übungen zu 2260030 Wärme- und Stoffübertragung	2 SWS	Übung (Ü) / ⊈ ⁴	Wetzel, Dietrich, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7280001	Grundlagen der Wärme- und Stoffübertragung			Wetzel, Dietrich		
WS 25/26	7280001	Grundlagen der Wärme- und Stoffübertragung			Wetzel, Dietrich		

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 180 Minuten.

Voraussetzungen

5.36 Teilleistung: Höhere Mathematik I [T-MATH-100275]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-CIWVT-100874 - Orientierungsprüfung M-MATH-100280 - Höhere Mathematik I

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich7 LPDrittelnotenJedes Semester3

Lehrveran	staltungen				
WS 25/26	0131000	Höhere Mathematik I für die Fachrichtungen Maschinenbau, Geodäsie und Geoinformatik, Materialwissenschaft und Werkstofftechnik, und Ingenieurpädagogik	4 SWS	Vorlesung (V)	Arens
WS 25/26	0131200	Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen und Verfahrenstechnik, Bioingenieurwesen, und Mechatronik und Informationstechnik	4 SWS	Vorlesung (V)	Arens
Prüfungsv	eranstaltunger	1			
SS 2025	6700025	Höhere Mathematik I	Höhere Mathematik I		
WS 25/26	6700007	Höhere Mathematik I			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 1-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 1.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100525 - Übungen zu Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.

5.37 Teilleistung: Höhere Mathematik II [T-MATH-100276]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	Jedes Semester	2

Lehrveran	staltungen				
SS 2025	0180800	Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie und Geoinformatik, Materialwissenschaft und Werkstofftechnik, und Ingenieurpädagogik	4 SWS	Vorlesung (V)	Arens
SS 2025	0181000	Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen und Verfahrenstechnik, Bioingenieurwesen, und Mechatronik und Informationstechnik	4 SWS	Vorlesung (V)	Arens
Prüfungsv	eranstaltunger	1			
SS 2025	6700001	Höhere Mathematik II	Höhere Mathematik II		
WS 25/26	6700008	Höhere Mathematik II			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 2-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 2.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100526 - Übungen zu Höhere Mathematik II muss erfolgreich abgeschlossen worden sein.

5.38 Teilleistung: Höhere Mathematik III [T-MATH-100277]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100282 - Höhere Mathematik III

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	Jedes Semester	2

Lehrveran	staltungen				
WS 25/26	0131400	Höhere Mathematik III für die Fachrichtungen Maschinenbau, Materialwissenschaft und Werkstofftechnik, Chemieingenieurwesen und Verfahrenstechnik, Bioingenieurwesen, und Mechatronik und Informationstechnik	4 SWS	Vorlesung (V)	Hettlich
Prüfungsv	eranstaltunger	ı			
SS 2025	6700002	Höhere Mathematik III			Arens, Griesmaier, Hettlich
WS 25/26	6700009	Höhere Mathematik III			Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 3-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 3.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100527 - Übungen zu Höhere Mathematik III muss erfolgreich abgeschlossen worden sein.

5.39 Teilleistung: Industriebetriebswirtschaftslehre [T-WIWI-100796]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-100528 - Industriebetriebswirtschaftslehre

TeilleistungsartLeistungspunkteNotenskala
best./nicht best.TurnusVersionStudienleistung schriftlich3 LPbest./nicht best.Jedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2581040	Industriebetriebswirtschaftslehre	2 SWS	Vorlesung (V) / 🗣	Fichtner		
Prüfungsveranstaltungen							
SS 2025	7981040	Industriebetriebswirtschaftslehre			Fichtner		
WS 25/26	7981040	Industriebetriebswirtschaftslehre			Fichtner		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer unbenoteten schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten.

Voraussetzungen

5.40 Teilleistung: Intensivierung von Bioprozessen - Klausur [T-CIWVT-112998]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106444 - Intensivierung von Bioprozessen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2212050	Intensivierung von Bioprozessen	2 SWS	Vorlesung (V) /	Holtmann	
SS 2025	2212051	Übungen zu 2212050 Intensivierung von Bioprozessen	2 SWS	Übung (Ü) / 🗣	Holtmann, und Mitarbeitende	
Prüfungsve	eranstaltungen					
SS 2025	7212050-WP-IBP	Intensivierung von Bioprozessen - K	lausur		Holtmann	
WS 25/26	7212050-WP-IBP	Intensivierung von Bioprozessen - K	lausur		Holtmann	

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

5.41 Teilleistung: Kinetik und Katalyse [T-CIWVT-106032]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2220030	Kinetik und Katalyse	2 SWS	Vorlesung (V) / 🗣	Wehinger		
SS 2025	2220031	Übungen zu 2220030 Kinetik und Katalyse	1 SWS	Übung (Ü) / 🗣	Wehinger, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7210102	Kinetik und Katalyse	Kinetik und Katalyse				
WS 25/26	7210102	Kinetik und Katalyse			Wehinger		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen

5.42 Teilleistung: Kreislaufwirtschaft - mündliche Prüfung [T-CIWVT-112172]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105995 - Kreislaufwirtschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich8 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2232220	Kreislaufwirtschaft	2 SWS	Vorlesung (V) / 🗣	Stapf		
WS 25/26	2232221	Übungen zu 2232220 Kreislaufwirtschaft	1 SWS	Übung (Ü) / 🗣	Stapf		
Prüfungsveranstaltungen							
SS 2025	7232220	Kreislaufwirtschaft - mündliche Prüfung			Stapf		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung über die Inhalte von Vorlesung, Übung und Fallstudien mit einer Dauer von ca. 30 Minuten.

Voraussetzungen

5.43 Teilleistung: Kreislaufwirtschaft - Projektarbeit [T-CIWVT-112173]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105995 - Kreislaufwirtschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen							
SS 2025	2232222	Projektarbeit Profilfach Kreislaufwirtschaft	2 SWS	Projekt (PRO) / 🗣	Stapf, und Mitarbeitende		
Prüfungsveranstaltungen							
WS 25/26	7231004	Kreislaufwirtschaft - Projektarbeit			Stapf		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art/ Projektarbeit; bewertet werden die schriftliche Ausarbeitung sowie die Präsentation der Ergebnisse.

Voraussetzungen

5.44 Teilleistung: Lebensmittelbioverfahrenstechnik [T-CIWVT-113021]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106476 - Lebensmittelbioverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2211020	Lebensmittelbioverfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Leister		
WS 25/26	2211021	Übung zu 2211020 Lebensmittelbioverfahrenstechnik	2 SWS	Übung (Ü) / ♀ ⁴	Leister		
Prüfungsve	eranstaltungen						
SS 2025	7220006	Lebensmittelbiotechnologie			Leister		
WS 25/26	7211020	Lebensmittelbioverfahrenstechnik			Leister		
WS 25/26	7220006	Lebensmittelbiotechnologie			Leister		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine.

Arbeitsaufwand

180 Std.

5.45 Teilleistung: Lebensmitteltechnologie [T-CIWVT-103528]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101148 - Lebensmitteltechnologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	5 LP	Drittelnoten	Jedes Sommersemester	3

Lehrverans	staltungen						
SS 2025	2211043	Exkursion im Profilfach Lebensmitteltechnologie	1 SWS	Exkursion (EXK) / 🗣	Leister, und Mitarbeitende		
WS 25/26	2211040	Einführung in das Profilfach Lebensmitteltechnologie	2 SWS	Vorlesung (V) / 🗣	Leister, und Mitarbeitende		
WS 25/26	2211041	Projektarbeit im Profilfach Lebensmitteltechnologie	1 SWS	Projekt (PRO) / 🗣	Leister, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
WS 25/26	7220010	Lebensmitteltechnologie			Leister		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Gruppenprüfung im Umfang von ca. 45 Minuten zu den Inhalten der Lehrveranstaltungen.

Voraussetzungen

Keine.

Empfehlungen

Module des 1. - 4. Semesters.

5.46 Teilleistung: Lebensmitteltechnologie Projektarbeit [T-CIWVT-103529]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101148 - Lebensmitteltechnologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art7 LPDrittelnoten1

Lehrveranstaltungen							
SS 2025	2211041	Projektarbeit im Profilfach Lebensmitteltechnologie	4 SWS	Projekt (PRO) / 🗣	Leister, und Mitarbeitende		
WS 25/26	2211041	Projektarbeit im Profilfach Lebensmitteltechnologie	1 SWS	Projekt (PRO) / 🗣	Leister, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7220011	Lebensmitteltechnologie Projektarbeit			Leister		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art.

Hier gehen die Abschlusspräsentation, Abschlussbericht, wissenschaftliches Arbeiten und Soft Skills in die Bewertung mit ein.

Voraussetzungen

Keine

Empfehlungen

Module des 1. - 4. Semesters.

5.47 Teilleistung: Luftreinhaltung [T-CIWVT-113046]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106448 - Luftreinhaltung

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich7 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen							
WS 25/26	2244020	Gas-Partikel-Messtechnik	2 SWS	Vorlesung (V) / 🗣	Dittler		
WS 25/26	2244021	Übungen in kleinen Gruppen zu 2244020 Gas-Partikel-Messtechnik	1 SWS	Übung (Ü) / ♀	Dittler, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7244021	Luftreinhaltung (Profilfach)			Dittler		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

5.48 Teilleistung: Luftreinhaltung - Projektarbeit [T-CIWVT-113047]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106448 - Luftreinhaltung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art5 LPDrittelnoten1

Lehrveranstaltungen							
SS 2025	2244022	Projektarbeit im Profilfach Luftreinhaltung	2 SWS	Projekt (PRO) / x	Dittler, und Mitarbeitende		
WS 25/26	2244023	Exkursion zum Profilfach Luftreinhaltung	2 SWS	Exkursion (EXK) / 🗣	Dittler, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7244022	Luftreinhaltung - Projektarbeit			Dittler		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art; Projektarbeit.

Voraussetzungen

5.49 Teilleistung: Maschinenkonstruktionslehre A [T-MACH-112984]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106527 - Maschinenkonstruktionslehre A

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	Jedes Wintersemester	1 Sem.	2

Lehrveranstaltungen								
WS 25/26	2145170	Maschinenkonstruktionslehre A	3 SWS	Vorlesung (V) / 🗣	Matthiesen, Düser			
WS 25/26	2145194	Übungen zu Maschinenkonstruktionslehre A	1 SWS	Übung (Ü) / 🗣	Matthiesen, Düser			
Prüfungsv	eranstaltungen							
SS 2025	76T-MACH-112984	Maschinenkonstruktionslehre A			Matthiesen, Düser			
WS 25/26	76-T-MACH-112984	Maschinenkonstruktionslehre A			Matthiesen, Düser			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung mit einer Dauer von 90 min.

Voraussetzungen

Voraussetzung für die Teilnahme an der Klausur ist der Workshop Maschinenkonstruktionslehre A (T-MACH-112981)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-MACH-112981 - Workshop zu Maschinenkonstruktionslehre A muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Keine

Anmerkungen

Die Studierenden sind mit den grundlegenden Maschinenelementen technischer Systeme vertraut und sind dazu in der Lage diese im Systemkontext zu analysieren

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

210 Std.

Turnus

Dauer

Version

5.50 Teilleistung: Maschinenkonstruktionslehre B und C [T-MACH-112985]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Teilleistungsart

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106528 - Maschinenkonstruktionslehre B-C

Leistungspunkte

Prüfung	gsleistung schriftlich	6 LP	Drittelnote	n Je	edes Sommersemester	2 Sem.	1
Lehrverans	staltungen						
SS 2025	2146200	Maschinenkonstrukti	onslehre B	2 SWS	S Vorlesung (V) / 🗣	Matthies	en, Düser
SS 2025	2146201	Übungen zu Maschinenkonstruktionslehre B		1 SWS	S Übung (Ü) / ♣	Matthies	en, Düser
WS 25/26	2145140	Maschinenkonstrukti	Maschinenkonstruktionslehre C		S Vorlesung (V) / 🗣	Matthies	en, Düser
WS 25/26	2145141	Übungen zu Maschinenkonstrukti	Übungen zu Maschinenkonstruktionslehre C		G Übung (Ü) / ♀	Matthies	en, Düser
Prüfungsv	eranstaltungen	•		•			
SS 2025	76-T-MACH-112985	Maschinenkonstrukti	Maschinenkonstruktionslehre B & C			Matthies	en, Düser
WS 25/26	76-T-MACH-112985	Maschinenkonstrukti	onslehre B &	C		Matthies	en, Düser

Notenskala

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung bestehend aus schriftlichem & konstruktivem Teil (insgesamt 240 Minuten)

Voraussetzungen

Voraussetzung für die Teilnahme an der Klausur sind der Workshop Maschinenkonstruktionslehre B (T-MACH-112982) UND der Workshop Maschinenkonstruktionslehre C (T-MACH-112983)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-112983 Workshop zu Maschinenkonstruktionslehre C muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-112982 Workshop zu Maschinenkonstruktionslehre B muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Kein

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

180 Std.

5.51 Teilleistung: Mechanische Separationstechnik Projektarbeit [T-CIWVT-103452]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101147 - Mechanische Separationstechnik

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 4 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen								
SS 2025	2245232	Projektarbeit im Profilfach Mechanische Separationstechnik (2245230)	1 SWS	Übung (Ü) / 🗣	Gleiß, und Mitarbeitende			
Prüfungsve	Prüfungsveranstaltungen							
WS 25/26	7291300	Mechanische Separationstechnik Pr	ojektarbeit		Gleiß			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Projektarbeit. Es werden die praktische Mitarbeit, der schriftliche Bericht sowie die mündliche Präsentation der Ergebnisse individuell bewertet

Voraussetzungen

keine

Empfehlungen

Module des 1. -4. Semesters

5.52 Teilleistung: Mechanische Separationstechnik Prüfung [T-CIWVT-103448]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101147 - Mechanische Separationstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	8 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen							
WS 25/26	2245230	Mechanische Separationstechnik	3 SWS	Vorlesung (V) / 🗣	Gleiß		
WS 25/26	2245231	Übung zu 2245230 Mechanische Separationstechnik	1 SWS	Übung (Ü) / 🗣	Gleiß		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7291231	Mechanische Separationstechnik Pr	Mechanische Separationstechnik Prüfung				

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Einzelprüfung im Umfang von ca. 30 Minuten zu Lehrveranstaltung "22987 Mechanische Separationstechnik" und "22988 Übung zu 22987" .

Voraussetzungen

Keine

Empfehlungen

Module des 1. -4. Semesters

5.53 Teilleistung: Mechanische Verfahrenstechnik [T-CIWVT-101886]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101135 - Mechanische Verfahrenstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen								
WS 25/26	2244010	Grundlagen der Mechanischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Dittler				
WS 25/26	2244011	Übung zu 2244010 Grundlagen der Mechanischen Verfahrenstechnik	2 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende				
Prüfungsv	eranstaltungen								
SS 2025	7244010	Mechanische Verfahrenstechnik			Dittler				
WS 25/26	7244010	Mechanische Verfahrenstechnik			Dittler				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Empfehlungen

Module des 1.-4. Semesters.

5.54 Teilleistung: Membrane Technologies in Water Treatment [T-CIWVT-113236]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen								
SS 2025	2233010	Membrane Technologies in Water Treatment	2 SWS	Vorlesung (V) / ♀ ⁴	Horn, Saravia			
SS 2025	2233011	Membrane Technologies in Water Treatment - Excercises	1 SWS	Übung (Ü) / 🛱	Horn, Saravia, und Mitarbeitende			
Prüfungsv	eranstaltungen							
SS 2025	7233010	Membrane Technologies in Water T	Membrane Technologies in Water Treatment					
WS 25/26	7232605	Membrane Technologies in Water T	Membrane Technologies in Water Treatment					

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 90 Minuten.

Voraussetzungen

Prüfungsvorleistung: Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113235 - Excercises: Membrane Technologies muss erfolgreich abgeschlossen worden sein.

5.55 Teilleistung: Mikroverfahrenstechnik Projektarbeit [T-CIWVT-103667]

Verantwortung: Prof. Dr.-Ing. Roland Dittmeyer

Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101154 - Mikroverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art5 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen								
SS 2025		Projektarbeit im Profilfach Mikroverfahrenstechnik	2 SWS	Übung (Ü) / ♀ ⊧	Dittmeyer, Pfeifer, und Mitarbeitende				
Prüfungsve	Prüfungsveranstaltungen								
SS 2025	025 7220221 Mikroverfahrenstechnik Projektarbeit				Pfeifer				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

5.56 Teilleistung: Mikroverfahrenstechnik Prüfung [T-CIWVT-103666]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101154 - Mikroverfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich7 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen								
WS 25/26	2220220	Auslegung von Mikroreaktoren	3 SWS	Vorlesung / Übung (VÜ) / ⊈ ∗	Pfeifer			
Prüfungsve	Prüfungsveranstaltungen							
SS 2025	7220222	Mikroverfahrenstechnik Prüfung			Pfeifer			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

5.57 Teilleistung: Numerische Strömungssimulation [T-CIWVT-106035]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen				
WS 25/26	2245020	Numerische Strömungssimulation	2 SWS	Vorlesung (V) / 🗣	Nirschl, und Mitarbeitende
WS 25/26	2245021	Übungen zu 2245020 Numerische Strömungssimulation (in kleinen Gruppen)	1 SWS	Übung (Ü) / 🗣	Nirschl, und Mitarbeitende
Prüfungsv	eranstaltungen			•	•
SS 2025	7291932	Numerische Strömungssimulation			Nirschl
WS 25/26	7291020	Numerische Strömungssimulation			Nirschl

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

5.58 Teilleistung: Organisch-Chemische Prozesskunde (OCP) [T-CIWVT-101890]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101137 - Organisch-chemische Prozesskunde

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
WS 25/26	2231140	Organisch-Chemische Prozesskunde	3 SWS	Vorlesung (V) / 🗣	Rauch	
WS 25/26	2231141	Übung zu 2231140 Organisch- Chemische Prozesskunde	1 SWS	Übung (Ü) / ♀ ⁴	Rauch	
Prüfungsv	eranstaltungen					
SS 2025	7223703	Organisch-Chemische Prozesskunde (OCP)			Rauch	
WS 25/26	7223703	Organisch-Chemische Prozesskunde (OCP)			Rauch	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CHEMBIO-101115 - Organische Chemie für Ingenieure muss begonnen worden sein.

5.59 Teilleistung: Organische Chemie für Ingenieure [T-CHEMBIO-101865]

Verantwortung: Prof. Dr. Michael Meier

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101115 - Organische Chemie für Ingenieure

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5 LPDrittelnoten2

Lehrveran	Lehrveranstaltungen						
SS 2025	5142	Organische Chemie für CIW/VT und BIW	2 SWS	Vorlesung (V) / 🗣	Levkin		
SS 2025	5143	Übungen zu Organische Chemie für CIW/VT und BIW	2 SWS	Übung (Ü) / 🗣	Levkin		
Prüfungsv	eranstaltungen			•	•		
SS 2025	7100017	Organische Chemie für CIW, BIW,	Organische Chemie für CIW, BIW, VT und MWT				
SS 2025	7100029	Organische Chemie für CIW, BIW,	Levkin, Podlech				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

gem. Modulbeschreibung

5.60 Teilleistung: Partikeltechnik Klausur [T-CIWVT-106028]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2244030	Partikeltechnik	2 SWS	Vorlesung (V) / 🗣	Dittler	
SS 2025	2244031	Übungen in kleinen Gruppen zu 2244030 Partikeltechnik	1 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende	
Prüfungsv	eranstaltungen					
SS 2025	7244030	Partikeltechnik Klausur			Dittler	
WS 25/26	7244030	Partikeltechnik Klausur			Dittler	

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

5.61 Teilleistung: Physikalische Grundlagen [T-PHYS-101577]

Verantwortung: Prof. Dr. Alexey Ustinov **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-100993 - Physikalische Grundlagen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich7 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen						
WS 25/26	4040321	Physikalische Grundlagen für die Studiengänge Chemie- und Bioingenieurwesen sowie Verfahrenstechnik	4 SWS	Vorlesung (V) / •	Ustinov		
WS 25/26	4040322	Übungen zu Physikalische Grundlagen für die Studiengänge Chemie- und Bioingenieurwesen sowie Verfahrenstechnik	2 SWS	Übung (Ü) / 🗣	Ustinov, Fischer		
Prüfungsv	eranstaltungen						
SS 2025	7800108	Physikalische Grundlagen			Wernsdorfer		
WS 25/26	7800108	Physikalische Grundlagen	Ustinov				

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen

keine

5.62 Teilleistung: Praktikum Allgemeine Chemie [T-CIWVT-113117]

Verantwortung: Prof. Dr. Harald Horn

Stephanie West

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106500 - Grundpraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung praktisch	2 LP	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2200350	Sicherheitsunterweisung und Einführung Praktika 1. Semester BIW und CIW	1 SWS	Vorlesung (V) / •	Dietrich, Sinanis, West, und Mitarbeitende	
WS 25/26	2233060	Grundpraktikum - Teil I: Allgemeine Chemie	2 SWS	Praktikum (P) / 🗣	Horn, West	
Prüfungsveranstaltungen						
WS 25/26	7233060	Praktikum Allgemeine Chemie (CIW)			Horn	

Legende: 🖥 Online, 💲 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Studienleistung.

Unter folgenden Voraussetzungen ist das Praktikum bestanden:

Teilnahme an allen Versuchen, Abgabe und Bestehen der Versuchsprotokolle.

Vor jedem Versuch ist ein schriftliches Antestat (15 min) zu bestehen;

bei nicht bestandenem Antestat besteht die Möglichkeit, den Versuch an einem anderen Versuchtag (falls organisatorisch möglich) oder im Folgemester zu wiederholen.

Voraussetzungen

Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Bitte beachten Sie, dass die Sicherheitsunterweisung im selben Prüfungszeitraum wie das Praktikum zu absolvieren ist.

Die Klausur "Allgemeine und Anorganische Chemie" muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CHEMBIO-101866 - Allgemeine und Anorganische Chemie muss erfolgreich abgeschlossen worden sein.

5.63 Teilleistung: Praktikum Elektrochemische Energietechnologien [T-ETIT-111376]

Verantwortung: Dr. Philipp Röse

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105703 - Praktikum Elektrochemische Energietechnologien

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art5 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2304303	Laboratory Electrochemical Energy Technologies	3 SWS	Praktikum (P) / 🗣	Röse	
Prüfungsveranstaltungen						
SS 2025	7300022	Praktikum Elektrochemische Energietechnologien			Röse	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Sie besteht aus vier Versuchen, bewertet wird jeweils das schriftliche Versuchsprotokoll. Die Modulnote wird aus dem Gesamteindruck gebildet.

Zum Bestehen des Moduls müssen alle Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen eine Prüfungseinheit. Bei Nichtbestehen ist das Praktikum komplett zu wiederholen.

Voraussetzungen

- Die Voraussetzung für die Zulassung zum Modul ist, dass die Studierenden die Modulprüfung "M-ETIT-105690 Electrochemical Energy Technologies" erfolgreich abgelegt haben.
- Die Teilnahme an der Sicherheitsunterweisung ist Pflicht. Die Teilnahme an der Sicherheitsunterweisung ist im selben Prüfungszeitraum wie das Praktikum erforderlich und muss bei Wiederholung des Praktikums erneut absolviert werden.

5.64 Teilleistung: Praktikum Numerik im Ingenieurwesen [T-CIWVT-101876]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-101956 - Programmieren und Numerische Methoden

Teilleistungsart	Leistungspunkte	Notenskala	Version
Studienleistung mündlich	3 LP	best./nicht best.	2

Lehrveranstaltungen						
WS 25/26	2232150	Praktikum Numerik im Ingenieurwesen	3 SWS	Praktikum (P) / 🗣	Stein, und Mitarbeitende	
Prüfungsveranstaltungen						
WS 25/26	7231108_Kolloquium	Praktikum Numerik im Ingenieurwesen			Habisreuther, Stein	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung nach § 4 Abs. 3 SPO Chemieingenieurwesen und Verfahrenstechnik: Unbenotete mündliche Prüfung mit einem Umfang von 10 Minuten. Die Studierenden müssen Kenntnisse zum Inhalt der Aufgabe und deren Lösung verstanden haben und mit eigenen Worten wiedergeben können.

Voraussetzungen

Die Klausur T-MATH-102250 - Einstieg in die Informatik und algorithmische Mathematik - Klausur muss begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102250 - Einstieg in die Informatik und algorithmische Mathematik - Klausur muss begonnen worden sein.

Empfehlungen

Kenntnisse in C++ sind erforderlich

5.65 Teilleistung: Praktikum Organische Chemie für Ingenieure [T-CHEMBIO-101868]

Verantwortung: Dr. Andreas Rapp

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101116 - Praktikum Organische Chemie

Teilleistungsart Studienleistung praktisch Leistungspunkte 5 LP Notenskala best./nicht best. Version 1

Lehrveranstaltungen						
WS 25/26	5123	Organisch-Chemisches Praktikum für Studierende des Chemie- und Bioingenieurwesens	Praktikum (P) / 🗣	Mitarbeiter, Rapp, Meier		
Prüfungsve	Prüfungsveranstaltungen					
WS 25/26	7100018	Praktikum Organische Chemie für Ingenieu	Rapp			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Voraussetzungen

Klausur/Modul s. Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CHEMBIO-101115 - Organische Chemie für Ingenieure muss erfolgreich abgeschlossen worden sein.

5.66 Teilleistung: Praktikum Prozess- und Anlagentechnik [T-CIWVT-106148]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung praktisch	0 LP	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 25/26	2231012	Praktikum Prozess- und Anlagentechnik	1 SWS	Praktikum (P) / 🗣	Scheiff, und Mitarbeitende
Prüfungsveranstaltungen					
WS 25/26	VS 25/26 7230101 Praktikum Prozess- und Anlagentechnik				Scheiff

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studinleistung: Praktikum.

Voraussetzungen

Eingangsklausur Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-106149 - Eingangsklausur Praktikum Prozess- und Anlagentechnik muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Das Praktikum dauert einen Tag und findet am Campus Nord statt.

5.67 Teilleistung: Praktikum Verfahrenstechnik [T-CIWVT-113118]

Verantwortung: Dr. Sokratis Sinanis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106500 - Grundpraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung praktisch	4 LP	best./nicht best.	Jedes Sommersemester	1

Lehrverans	staltungen				
SS 2025	2200305	Grundpraktikum - Teil II: Verfahrenstechnik	3 SWS	Praktikum (P) / 🗣	Bajohr, Sinanis, Dietrich, Hochstein, Horn, Meyer, Müller, West, Wetzel, Zeiner, und Mitarbeitende
WS 25/26	2200350	Sicherheitsunterweisung und Einführung Praktika 1. Semester BIW und CIW	1 SWS	Vorlesung (V) / 🗣	Dietrich, Sinanis, West, und Mitarbeitende
Prüfungsv	eranstaltungen				
SS 2025	7200305	Praktikum Verfahrenstechnik			Sinanis

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung/ Praktikum:

- · Das Praktikum ist bestanden, wenn alle Versuche bestanden sind.
- Ein Versuch ist bestanden, wenn sowohl Kolloquium als auch Protokoll bestanden sind.
- Ein nicht anerkanntes Protokoll darf einmal überarbeitet werden. Wird ein Versuch nicht bestanden, so darf er im selben Praktikumszeitraum wiederholt werden. Insgesamt dürfen maximal drei Versuche je einmal wiederholt werden.
- Unentschuldigtes Fehlen an einem Versuchstag führt zur Wiederholung des gesamten Praktikums.

Voraussetzungen

Die Teilnahme an der Sicherheitsunterweisung/ Einführungsveranstaltung ist Pflicht.

Die Klausur "Allgemeine und Anorganische Chemie" muss vor Beginn des Praktikums bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CHEMBIO-101866 - Allgemeine und Anorganische Chemie muss erfolgreich abgeschlossen worden sein.

5.68 Teilleistung: Prozess- und Anlagentechnik Klausur [T-CIWVT-106150]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	8 LP	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen				
SS 2025	2231011	Prozess - und Anlagentechnik II - Prozesse	3 SWS	Vorlesung (V) / 🗣	Scheiff, Bajohr
WS 25/26	2231010	Prozess- und Anlagentechnik I - Grundlagen der Ingenieurstechnik	2 SWS	Vorlesung (V) / 🗣	Scheiff, Bajohr
WS 25/26	2231012	Praktikum Prozess- und Anlagentechnik	1 SWS	Praktikum (P) / 🗣	Scheiff, und Mitarbeitende
Prüfungsv	eranstaltungen				
SS 2025	7230102	Prozess- und Anlagentechnik Klausur			Scheiff
WS 25/26	7230102	Prozess- und Anlagentechnik Klausur			Scheiff

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 180 Minuten.

Voraussetzungen

Keine

Empfehlungen

Die Inhalte des Praktikums Prozess und Anlagentechnik sind Klausurrelevant. Die Klausurteilnahme wird erst nach erfolgreich bestandenem Praktikum empfohlen!

5.69 Teilleistung: Prozessentwicklung und Scale-up [T-CIWVT-103530]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101153 - Prozessentwicklung und Scale-up

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	8 LP	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
WS 25/26	2231310	Prozessentwicklung und Scale-up	2 SWS	Vorlesung (V) / 🗣	Sauer	
WS 25/26	2231311	Übung zu 2231310 Prozessentwicklung und Scale-up	2 SWS	Übung (Ü) / 🗣	Sauer, und Mitarbeitende	
Prüfungsve	Prüfungsveranstaltungen					
SS 2025	7231310	Prozessentwicklung und Scale-up	·		Sauer	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten zu Vorlesung und Übung.

Voraussetzungen

Vorleistung: 4 von 5 der online Quick-Tests müssen bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-111005 - Vorleistung Prozessentwicklung und Scale-up muss erfolgreich abgeschlossen worden sein.

5.70 Teilleistung: Prozessentwicklung und Scale-up Projektarbeit [T-CIWVT-103556]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101153 - Prozessentwicklung und Scale-up

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen					
SS 2025	2231312	Projektarbeit im Profilfach "Prozessentwicklung und Scale-up"	2 SWS	Projekt (PRO) / 🗣	Sauer, und Mitarbeitende	
SS 2025	2231313	Vorstellung Profilfach "Prozessentwicklung und Scale-up"		Sonstige (sonst.) /	Sauer	
Prüfungsv	Prüfungsveranstaltungen					
SS 2025	7231312	Prozessentwicklung und Scale-up Projektarbeit			Sauer	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Erfolgskontrolle anderer Art: Projektarbeit, bewertet werden Gruppenvortrag und Bericht über die Projektarbeit.

Voraussetzungen

5.71 Teilleistung: Regelungstechnik und Systemdynamik [T-CIWVT-112787]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106308 - Regelungstechnik und Systemdynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2243010	Regelungstechnik und Systemdynamik	2 SWS	Vorlesung (V) / ♥	Meurer		
SS 2025	2243011	Übungen zu Regelungstechnik und Systemdynamik	1 SWS	Übung (Ü) / ♀ ⁴	Meurer, und Mitarbeiter		
SS 2025	2243012	Tutorium zu Regelungstechnik und Systemdynamik	1 SWS	Tutorium (Tu) / 🗣	Meurer, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7243010	Regelungstechnik und Systemdynamik			Meurer		
WS 25/26	7294000	Regelungstechnik und Systemdynar	Regelungstechnik und Systemdynamik				

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

5.72 Teilleistung: SmartMentoring - Gruppenleitung [T-CIWVT-111761]

Verantwortung: Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105848 - SmartMentoring

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best. Version 1

Prüfungsve	eranstaltungen		
WS 25/26	72000001	SmartMentoring - Gruppenleitung	

5.73 Teilleistung: Stoffkreisläufe [T-CIWVT-112372]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101149 - Ethik und Stoffkreisläufe

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1 LP	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2025	2231160	Ethik und Stoffkreisläufe	2 SWS	Vorlesung (V) / 🗣	Hillerbrand, Rauch
Prüfungsveranstaltungen					
SS 2025	7230000	Klausur Stoffkreisläufe			Rauch
WS 25/26	7230000	Klausur Stoffkreisläufe			Rauch

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Klausur mit einer Dauer von 60 Minuten.

Voraussetzungen

5.74 Teilleistung: Technische Mechanik: Dynamik, Klausur [T-CIWVT-101877]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101128 - Technische Mechanik: Dynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Semester	2

Lehrveranstaltungen					
WS 25/26	2241010	Technische Mechanik: Dynamik	2 SWS	Vorlesung (V) / 🗣	Klahn
WS 25/26	2241011	Übungen zu 2241010 Technische Mechanik: Dynamik	2 SWS	Übung (Ü) / 🗣	Klahn, Rentschler
WS 25/26	2241012	Tutorium zu 2241010 Technische Mechanik: Dynamik	1 SWS	Tutorium (Tu) / 🗣	Klahn
Prüfungsve	eranstaltungen			•	•
SS 2025	7210200	Technische Mechanik: Dynamik, Nachklausur			Klahn
WS 25/26	7210200	Technische Mechanik: Dynamik, Klausur		Klahn	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

Prüfungsvorleistung: 3 von 4 Hausaufgabenblättern müssen bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-106290 - Technische Mechanik: Dynamik, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.75 Teilleistung: Technische Mechanik: Dynamik, Vorleistung [T-CIWVT-106290]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101128 - Technische Mechanik: Dynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0 LP	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 25/26	2241010	Technische Mechanik: Dynamik	2 SWS	Vorlesung (V) / 🗣	Klahn
WS 25/26	2241011	Übungen zu 2241010 Technische Mechanik: Dynamik	2 SWS	Übung (Ü) / 🗣	Klahn, Rentschler
WS 25/26	2241012	Tutorium zu 2241010 Technische Mechanik: Dynamik	1 SWS	Tutorium (Tu) / 🗣	Klahn
Prüfungsveranstaltungen					
WS 25/26	7210201	Technische Mechanik: Dynamik, Vorleistung			Klahn

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung:

Mindestens 3 von insgesamt 4 Hausaufgabenblättern müssen erfolgreich bearbeitet sein.

Voraussetzungen

keine

5.76 Teilleistung: Technische Mechanik: Statik und Festigkeitslehre für CIW [T-CIWVT-103687]

Verantwortung: Dr.-Ing. Bernhard Hochstein

Dr.-Ing. Claude Oelschlaeger Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104006 - Technische Mechanik: Statik und Festigkeitslehre

TeilleistungsartPrüfungsleistung schriftlich

Leistungspunkte 10 LP Notenskala Drittelnoten

Turnus Jedes Semester Version 2

Lehrverans	staltungen				
SS 2025	2242220	Technische Mechanik - Festigkeitslehre	2 SWS	Vorlesung (V) / 🗣	Oelschlaeger, Hochstein
SS 2025	2242221	Übungen zu 2242220 Technische Mechanik - Festigkeitslehre	2 SWS	Übung (Ü) / •	Oelschlaeger, Hochstein, und Mitarbeitende
SS 2025	2242222	Seminar zur Technischen Mechanik – Festigkeitslehre	2 SWS	Seminar (S) / 🗣	Oelschlaeger, Hochstein, und Mitarbeitende
WS 25/26	2242210	Technische Mechanik: Statik	2 SWS	Vorlesung (V) / 🗣	Willenbacher, Oelschlaeger
WS 25/26	2242211	Übungen zu 2242210 Technische Mechanik: Statik	2 SWS	Übung (Ü) / 🗣	Oelschlaeger, und Mitarbeitende
Prüfungsv	eranstaltungen			_	•
SS 2025	7290002	Technische Mechanik: Statik und F	Technische Mechanik: Statik und Festigkeitslehre für CIW		
WS 25/26	7290002	Technische Mechanik: Statik und Festigkeitslehre für CIW			Hochstein, Oelschlaeger

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einem Umfang von 120 Minuten.

Voraussetzungen

keine

5.77 Teilleistung: Technische Thermodynamik I, Klausur [T-CIWVT-101879]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101129 - Technische Thermodynamik I

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	1

Lehrveranstaltungen					
WS 25/26	2250010	Technische Thermodynamik I	3 SWS	Vorlesung (V) /	Enders
WS 25/26	2250011	Übungen zu 2250010 Technische Thermodynamik I	2 SWS	Übung (Ü) / ♀	Enders, und Mitarbeitende
WS 25/26	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende
Prüfungsve	eranstaltungen			•	•
SS 2025	7250010	Technische Thermodynamik I, Klausur		Enders	
WS 25/26	7250010	Technische Thermodynamik I, Klausur		Enders	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Klausur im Umfang von 120 min.

Voraussetzungen

Prüfungsvorleistung muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-101878 - Technische Thermodynamik I, Vorleistung muss erfolgreich abgeschlossen worden sein.

5.78 Teilleistung: Technische Thermodynamik I, Vorleistung [T-CIWVT-101878]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101129 - Technische Thermodynamik I

Teilleistungsart
StudienleistungLeistungspunkte
0 LPNotenskala
best./nicht best.Version
1

Lehrveranstaltungen					
WS 25/26	2250010	Technische Thermodynamik I	3 SWS	Vorlesung (V) / 🗣	Enders
WS 25/26	2250011	Übungen zu 2250010 Technische Thermodynamik l	2 SWS	Übung (Ü) / €	Enders, und Mitarbeitende
WS 25/26	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende
Prüfungsveranstaltungen					
WS 25/26	7250011	Technische Thermodynamik I, Vorleistung		Enders	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine vorlesungsbegleitende Studienleistung. Mindestens 2 von 3 Übungsblättern müssen anerkannt sein.

Voraussetzungen

keine

5.79 Teilleistung: Technische Thermodynamik II, Klausur [T-CIWVT-101881]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101130 - Technische Thermodynamik II

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	7 LP	Drittelnoten	1

Lehrveranstaltungen						
SS 2025	2250020	Technische Thermodynamik II	3 SWS	Vorlesung (V) /	Enders	
SS 2025	2250021	Übungen zu 2250020 Technische Thermodynamik II	2 SWS	Übung (Ü) / 🗣	Enders, und Mitarbeitende	
SS 2025	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende	
Prüfungsve	eranstaltungen			•		
SS 2025	7250020	Technische Thermodynamik II, Klausur			Enders	
WS 25/26	7250020	Technische Thermodynamik II, Klau	Technische Thermodynamik II, Klausur			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Prüfungsvorleistung: 2 von 3 Pflichtübungsblätter müssen anerkannt sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-101880 - Technische Thermodynamik II, Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Technische Thermodynamik I

5.80 Teilleistung: Technische Thermodynamik II, Vorleistung [T-CIWVT-101880]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101130 - Technische Thermodynamik II

Teilleistungsart	Leistungspunkte	Notenskala	Version
Studienleistung	0 LP	best./nicht best.	1

Lehrveran	staltungen				
SS 2025	2250020	Technische Thermodynamik II	3 SWS	Vorlesung (V) / €	Enders
SS 2025	2250021	Übungen zu 2250020 Technische Thermodynamik II	2 SWS	Übung (Ü) / 🗣	Enders, und Mitarbeitende
SS 2025	2250022	Tutorium Technische Thermodynamik I und II	2 SWS	Tutorium (Tu) / 🗣	Enders, und Mitarbeitende
Prüfungsv	veranstaltunger	1			
SS 2025	7250021	Technische Thermodynamik II, Vorl	Technische Thermodynamik II, Vorleistung		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung;

Prüfungsvorleistung: 2 von 3 Pflichtübungsblätter müssen anerkannt sein

Voraussetzungen

5.81 Teilleistung: Technologie dünner Schichten - Projektarbeit [T-CIWVT-114692]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107495 - Technologie dünner Schichten

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen					
WS 25/26	2260242	9	2 SWS	Praktikum (P) / 🗣	Scharfer, Schabel
		Schichten			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Projektarbeit; Prüfungsleistung anderer Art.

Voraussetzungen

Siehe Voraussetzungen für das Modul.

5.82 Teilleistung: Technologie dünner Schichten - Übungsaufgaben und Praktikum [T-CIWVT-114693]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107495 - Technologie dünner Schichten

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 6 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen					
WS 25/26	2260240	Einführung in die Technologie dünner Schichten	2 SWS	Vorlesung (V) / €	Scharfer, Schabel
WS 25/26	2260241	Ausgewählte Kapitel der Technologie dünner Schichten	2 SWS	Seminar (S) / 🗣	Scharfer, Schabel
WS 25/26	2260242	Praktikum zu Technologie dünner Schichten	2 SWS	Praktikum (P) / 🗣	Scharfer, Schabel

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Bewertet werden die Übungsblätter (maximal 10 Punkte) und zwei Praktika (maximal 30 Punkte). Die Teilleistung ist bestanden,

wenn mindestens 13 Punkte erreicht wurden. Notenschlüssel auf Anfrage.

Voraussetzungen

Siehe Voraussetzungen für das Modul.

5.83 Teilleistung: Thermische Verfahrenstechnik [T-CIWVT-101885]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101134 - Thermische Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2260110	Thermische Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Zeiner	
WS 25/26	2260111	Übung zu 2260110 Thermische Verfahrenstechnik	2 SWS	Übung (Ü) / 🗣	Zeiner, und Mitarbeitende	
Prüfungsve	eranstaltungen					
SS 2025	7280002	Thermische Verfahrenstechnik			Zeiner	
WS 25/26	7280002	Thermische Verfahrenstechnik			Zeiner	

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

5.84 Teilleistung: Thermische Verfahrenstechnik II [T-CIWVT-114107]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2260150	Thermische Verfahrenstechnik II	2 SWS	Vorlesung (V) / 🗣	Zeiner	
SS 2025	2260151	Übungen zu 2260150 Thermische Verfahrenstechnik II	2 SWS	Übung (Ü) / 🗣	Zeiner, und Mitarbeitende	
Prüfungsve	eranstaltungen					
SS 2025	7260150	Thermische Verfahrenstechnik II		Zeiner		
WS 25/26	7260150	Thermische Verfahrenstechnik II			Zeiner	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Voraussetzungen

5.85 Teilleistung: Thermodynamik III [T-CIWVT-106033]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101992 - Erfolgskontrollen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2250030	Thermodynamik III	2 SWS	Vorlesung (V) / 🗣	Enders	
WS 25/26	2250031	Übungen zu 2250030 Thermodynamik III	1 SWS	Übung (Ü) / 🗣	Enders, und Mitarbeitende	
Prüfungsve	eranstaltungen					
SS 2025	7250030	Thermodynamik III			Enders	
WS 25/26	7250030	Thermodynamik III			Enders	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

5.86 Teilleistung: Übungen zu Höhere Mathematik I [T-MATH-100525]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-CIWVT-100874 - Orientierungsprüfung M-MATH-100280 - Höhere Mathematik I

TeilleistungsartLeistungspunkteNotenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
2

Lehrverans	Lehrveranstaltungen						
WS 25/26	0131100	Übungen zu 0131000	2 SWS	Übung (Ü)	Arens		
WS 25/26	0131300	Übungen zu 0131200	2 SWS	Übung (Ü)	Arens		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7700166	Übungen zu Höhere Mathematik I	Übungen zu Höhere Mathematik I		Arens		
WS 25/26	6700005	Übungen zu Höhere Mathematik I			Arens, Griesmaier, Hettlich		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

5.87 Teilleistung: Übungen zu Höhere Mathematik II [T-MATH-100526]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung schriftlich	0 LP	best./nicht best.	Jedes Sommersemester	3

Lehrveranstaltungen							
SS 2025	0180900	Übungen zu 0180800	2 SWS	Übung (Ü)	Arens		
SS 2025	0181100	Übungen zu 0181000	2 SWS	Übung (Ü)	Arens		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7700024	Übungen zu Höhere Mathematik II			Hettlich, Arens, Griesmaier		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

5.88 Teilleistung: Übungen zu Höhere Mathematik III [T-MATH-100527]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100282 - Höhere Mathematik III

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung schriftlich	0 LP	best./nicht best.	Jedes Wintersemester	2

Lehrveranstaltungen						
WS 25/26	0131500	Übungen zu 0131400	2 SWS	Übung (Ü)	Hettlich	
Prüfungsveranstaltungen						
WS 25/26	6700006	Übungen zu Höhere Mathematik	: III		Arens, Griesmaier, Hettlich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

5.89 Teilleistung: Verfahrenstechnische Maschinen [T-CIWVT-101903]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101139 - Verfahrenstechnische Maschinen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung praktisch5 LPbest./nicht best.Jedes Wintersemester4

Lehrverans	Lehrveranstaltungen						
WS 25/26	2200300	Praktikum Verfahrenstechnische Maschinen	3 SWS	Praktikum (P) / 🗣	Gleiß, Dietrich, Enders, Grohmann, Harth, Meyer, Nirschl, Stapf, van der Schaaf, Wetzel, Willenbacher, Zeiner, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
WS 25/26	7291999	Praktikum Verfahrenstechnische Ma	raktikum Verfahrenstechnische Maschinen				

Legende: Online, 🗱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung nach § 4 Abs. 3 SPO Bachelor Chemieingenieurwesen und Verfahrenstechnik:

Eingangskolloquium beim Praktikum für jeden Versuch mündlich/schriftlich muss bestanden sein; Versuchsberichte müssen anerkannt sein

Voraussetzungen

Die Klausur "Organische Chemie für Ingenieure" muss vor Beginn des Praktikums bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-CHEMBIO-101115 Organische Chemie für Ingenieure muss erfolgreich abgeschlossen worden sein.
- 2. Das Modul M-CHEMBIO-101116 Praktikum Organische Chemie darf nicht begonnen worden sein.

5.90 Teilleistung: Vorleistung Prozessentwicklung und Scale-up [T-CIWVT-111005]

Verantwortung: Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-101153 - Prozessentwicklung und Scale-up

Teilleistungsart
StudienleistungLeistungspunkte
0 LPNotenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Prüfungsve	Prüfungsveranstaltungen			
WS 25/26	7200027	Vorleistung Prozessentwicklung und Scale-up	Sauer	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung:

Teilnahme an Online-Quick-Tests begleitend zur Vorlesung. Die Vorleistung ist bestanden, wenn 4 von 5 der Tests bestanden sind

5.91 Teilleistung: Werkstoffkunde I & II [T-MACH-105148]

Verantwortung: Dr.-Ing. Johannes Schneider **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102567 - Werkstoffkunde

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich9 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen						
SS 2025	2182562	Werkstoffkunde II für ciw, vt, mit	4 SWS	Vorlesung / Übung (VÜ) / ♀	Schneider		
WS 25/26	2181555	Werkstoffkunde I für ciw, vt, MIT	4 SWS	Vorlesung / Übung (VÜ) / ♀	Schneider		
Prüfungsve	eranstaltungen						
SS 2025	76-T-MACH-105148	Werkstoffkunde I & II			Schneider		
WS 25/26	76-T-MACH-105148	Werkstoffkunde I und II	Werkstoffkunde I und II				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

mündlich; 30 bis 40 Minuten

Es sind keine Hilfsmittel zugelassen!

Voraussetzungen

keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

5.92 Teilleistung: Workshop zu Maschinenkonstruktionslehre A [T-MACH-112981]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106527 - Maschinenkonstruktionslehre A

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	2 LP	best./nicht best.	Jedes Wintersemester	1 Sem.	2

Lehrveranstaltungen						
WS 25/26	2145171	Maschinenkonstruktionslehre A - Workshop	1 SWS	Praktikum (P) / 🗣	Matthiesen, Düser	
Prüfungsve	eranstaltungen					
SS 2025	76-T-MACH-112981	Workshop zu Maschinenkonstrukt	Norkshop zu Maschinenkonstruktionslehre A			
WS 25/26	76-T-MACH-112981	Vorkshop zu Maschinenkonstruktionslehre A			Düser, Matthiesen	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt.

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

5.93 Teilleistung: Workshop zu Maschinenkonstruktionslehre B [T-MACH-112982]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106528 - Maschinenkonstruktionslehre B-C

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	3 LP	best./nicht best.	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2025 2146202 Workshop zu 2 SWS Praktikum (P) / 🗣 Matth					Matthiesen, Düser	
Prüfungsveranstaltungen						
SS 2025	2025 76-T-MACH-112982 Workshop zu Maschinenkonstruktionslehre B				Matthiesen, Düser	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt.

Aus dem Bereich der Maschinenkonstruktionslehre muss eine CAD-Aufgabe bearbeitet werden. Diese wird im Rahmen einer Abnahme geprüft.

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

5.94 Teilleistung: Workshop zu Maschinenkonstruktionslehre C [T-MACH-112983]

Verantwortung: Prof. Dr.-Ing. Tobias Düser

Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-106528 - Maschinenkonstruktionslehre B-C

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	3 LP	best./nicht best.	Jedes Wintersemester	1 Sem.	1

Lehrveranstaltungen							
WS 25/26	2145142	Workshop zu Maschinenkonstruktionslehre C	1.5 SWS	Praktikum (P) / 🗣	Matthiesen, Düser		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26 76-T-MACH-112983 Workshop zu Maschinenkonstruktionslehre C				Düser, Matthiesen			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist Pflicht und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzung das Wissen aus der Vorlesung abgefragt.

Aus dem Bereich der Maschinenkonstruktionslehre muss eine CAD-Aufgabe bearbeitet werden. Diese wird im Rahmen einer Abnahme geprüft.

Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

6 Anhang

6.1 Begriffsdefinitionen

Grundsätzlich gliedert sich das Studium in **Fächer** (zum Beispiel Ingenieurwissenschaftliche Grundlagen). Jedes Fach wiederum ist in **Module** aufgeteilt. Jedes Modul beinhaltet eine oder mehrere **Teilleistungen**, die durch eine Erfolgskontrolle (Studienleistung oder Prüfungsleistung) abgeschlossen werden.

Der Umfang jedes Moduls ist durch **Leistungspunkte** gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls gutgeschrieben werden. Im Bachelorstudium sind die meisten Module Pflicht. Einzelne Module (Profilfächer) bieten individuelle Wahl- und Vertiefungsmöglichkeiten.

Das Modulhandbuch beschreibt die zum Studiengang gehörigen Module. Dabei geht es ein auf die Zusammensetzung der Module, die Größe der Module (in LP), die Abhängigkeiten der Module untereinander, die Qualifikationsziele der Module, die Art der Erfolgskontrolle und die Bildung der Note eines Moduls. Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z. B. Zeit und Ort der Lehrveranstaltung) informiert.