

Modulhandbuch Bioingenieurwesen Master (Master of Science (M.Sc.))

SPO 2016 Wintersemester 2025/26 Stand 03.09.2025

KIT-FAKULTÄT FÜR CHEMIEINGENIEURWESEN UND VERFAHRENSTECHNIK

Inhaltsverzeichnis

1.	Allgemeine Information	9
	1.1. Studiengangdetails	9
	1.2. Qualifikationsziele	9
	1.3. Zulassungs-/Zugangsvoraussetzungen	9
	1.4. Ansprechpersonen	10
	1.5. Studien- und Prüfungsordnung	10
	1.6. Organisatorisches	10
2.	Studienplan	11
	Module in englischer Sprache	
	Aufbau des Studiengangs	
4.	4.1. Masterarbeit	
	4.2. Erweiterte Grundlagen	
	4.3. Technisches Ergänzungsfach	
	4.4. Vertiefungsfach I	
	4.4.1. Angewandte Rheologie	
	4.4.2. Automatisierung und Systemverfahrenstechnik	
	4.4.3. Biopharmazeutische Verfahrenstechnik	
	4.4.4. Chemische Energieträger - Brennstofftechnologie	
	4.4.5. Chemische Verfahrenstechnik	
	4.4.6. Energieverfahrenstechnik	
	4.4.7. Entreprevenanteristectrink	
	4.4.8. Gas-Partikel-Systeme	
	4.4.9. Lebensmittelverfahrenstechnik	
	4.4.10. Modellierung und Simulation	
	4.4.11. Neue Bioproduktionssysteme – Elektrobiotechnologie	
	4.4.12. Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe	
	4.4.13. Prozesse der Mechanischen Verfahrenstechnik	
	4.4.14. Technische Thermodynamik	
	4.4.15. Thermische Verfahrenstechnik	
	4.4.16. Umweltschutzverfahrenstechnik	
	4.4.17. Verbrennungstechnik	
	4.4.18. Wassertechnologie	
	4.5. Berufspraktikum	
	4.6. Zusatzleistungen	
5	Module	
J.	5.1. Molekularbiologie und Genetik - M-CHEMBIO-106204	
	5.2. Additive Manufacturing for Process Engineering - M-CIWVT-105407	
	5.3. Advanced Methods in Nonlinear Process Control - M-CIWVT-106715	
	5.4. Alternative Protein Technologies - M-CIWVT-106661	
	5.5. Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme - M-CIWVT-106823	
	5.6. Auslegung von Mikroreaktoren - M-CIWVT-104286	
	5.7. Batterie- und Brennstoffzellensysteme - M-ETIT-100377	
	5.8. Batteries, Fuel Cells, and Electrolysis - M-ETT-107005	
	5.9. Begleitstudium Wissenschaft, Technologie und Gesellschaft - M-FORUM-106753	
	5.10. Berufspraktikum - M-CIWVT-104527	
	5.11. Biobasierte Kunststoffe - M-CIWVT-104570	
	5.12. Biofilm Systems - M-CIWVT-103441	
	5.13. BioMEMS - Mikrosystemtechnik für Life-Science und Medizin I - M-MACH-100489	
	5.14. BioMEMS - Mikrosystemtechnik für Life-Science und Medizin II - M-MACH-100490	
	5.15. BioMEMS - Mikrosystemtechnik für Life-Science und Medizin III - M-MACH-100491	
	5.16. Biopharmazeutische Aufarbeitungsverfahren - M-CIWVT-103065	
	5.17. Bioprocess Development - M-CIWVT-106297	
	5.18. Bioprocess Scale-up - M-CIWVT-106837	
	5.19. Bioreaktorentwicklung - M-CIWVT-106595	
	5.20. Biosensors - M-CIWVT-106838	
	5.21. Biotechnologische Nutzung nachwachsender Rohstoffe - M-CIWVT-105295	
	5.22. Brennstofftechnik - M-CIWVT-104289	
	5.23. C1-Biotechnologie - M-CIWVT-106816	
	5.24. Chemical Hydrogen Storage - M-CIWVT-106566	
	, , , , , , , , , , , , , , , , , , , ,	

5.25. Chemische Verfahrenstechnik II - M-CIWVT-104281	65
5.26. Chem-Plant - M-CIWVT-104461	
5.27. Computational Fluid Dynamics and Simulation Lab - M-MATH-106634	
5.28. Computer-Aided Reactor Design - M-CIWVT-106809	
5.29. Cryogenic Engineering - M-CIWVT-104356	
5.30. Data-Based Modeling and Control - M-CIWVT-106319	
5.31. Datenanalyse und Statistik - M-CIWVT-104345	
5.32. Datengetriebene verfahrenstechnische Modelle in Python - M-CIWVT-106835	
5.33. Design of a Jet Engine Combustion Chamber - M-CIWVT-105206	
5.34. Digital Design in Process Engineering - M-CIWVT-105782	74
5.35. Digitalisierung in der Partikeltechnik - M-CIWVT-104973	
5.36. Dynamik verfahrenstechnischer Systeme - M-CIWVT-107037	
5.37. Einführung in die Sensorik - M-CIWVT-105933	
5.38. Electrocatalysis - M-ETIT-105883	
5.39. Elektrobiotechnologie - M-CIWVT-106518	
5.40. Elektrochemie - M-CHEMBIO-106697	
5.41. Energietechnik - M-CIWVT-104293	
5.42. Energieträger aus Biomasse - M-CIWVT-104288	
5.43. Entwicklung eines innovativen Lebensmittelprodukts - M-CIWVT-104388	
5.44. Environmental Biotechnology - M-CIWVT-104320	
5.45. Ersatz menschlicher Organe durch technische Systeme - M-MACH-102702	
5.46. Estimator and Observer Design - M-CIWVT-106320	
5.47. Extrusion Technology in Food Processing - M-CIWVT-105996	89
5.49. Formulierung und Darreichung biopharmazeutischer Wirkstoffe - M-CIWVT-104266	
5.50. Fundamentals of Water Quality - M-CIWV1-103438	
5.51. Gas-Partikel-Messtechnik - M-CIWVT-104337	
5.52. Gas-Partikel-Trefffiverfamer - M-CIWVT-104340	
5.54. Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie - M-CIWVT-104886	
5.55. Grundlagen der Lebensmittelchemie - M-CHEMBIO-104620	
5.56. Grundlagen der Medizin für Ingenieure - M-MACH-102720	
5.57. Grundlagen der Verbrennungstechnik - M-CIWVT-103069	
5.58. Herstellung und Entwicklung von Krebstherapeutika - M-CIWVT-106563	
5.59. Heterogene Katalyse im Ingenieurwesen - M-CIWVT-107025	
5.60. Hochtemperatur-Verfahrenstechnik - M-CIWVT-103075	
5.61. Industrial Wastewater Treatment - M-CIWVT-105903	
5.62. Industrielle Aspekte in der Bioprozesstechnologie - M-CIWVT-105412	
5.63. Industrielle Biokatalyse - M-CIWVT-106678	
5.64. Industrielle Bioprozesse - M-CIWVT-106501	
5.65. Innovationsmanagement für Produkte und Prozesse der chemischen Industrie - M-CIWVT-104397	108
5.66. Innovative Concepts for Formulation and Processing of Printable Materials - M-CIWVT-105993	110
5.67. Introduction to Numerical Simulation of Reacting Flows - M-CIWVT-106676	111
5.68. Journal Club - Neue Bioproduktionssysteme - M-CIWVT-106526	112
5.69. Kältetechnik B - Grundlagen der industriellen Gasgewinnung - M-CIWVT-104354	114
5.70. Katalyse für nachhaltige chemische Produkte und Energieträger - M-CIWVT-107131	115
5.71. Katalytische Mikroreaktoren - M-CIWVT-104451	
5.72. Katalytische Mikroreaktoren mit Praktikum - M-CIWVT-104491	
5.73. Katalytische Verfahren der Gastechnik - M-CIWVT-104287	
5.74. Kinetik und Katalyse - M-CIWVT-104383	
5.75. Kommerzielle Biotechnologie - M-CIWVT-104273	
5.76. Kreislaufwirtschaft - M-CIWVT-106881	
5.77. Liquid Transportation Fuels - M-CIWVT-105200	
5.78. Luftreinhaltung - Gesetze, Technologie und Anwendung - M-CIWVT-106314	
5.79. Materialien für elektrochemische Speicher und Wandler - M-CIWVT-104353	
5.80. Membrane Materials & Processes Research Masterclass - M-CIWVT-106529	
5.81. Membrane Technologies in Water Treatment - M-CIWVT-105380	
5.82. Messmethoden in der chemischen Verfahrenstechnik - M-CIWVT-104490	
5.83. Messmethoden in der Chemischen Verfahrenstechnik mit Praktikum - M-CIWVT-104450	
5.84. Messtechnik in der Thermofluiddynamik - M-CIWVT-104297	
5.85. Mikrofluidik - M-CIWVT-104350 5.86. Mikrofluidik mit Fallstudien - M-CIWVT-105205	
J.OU. IVIINTUITUIN THIL FAIISLUUIETT - IVI-UTVIV T-TUDZUD	132

5.87. Mikrorheologie und Hochfrequenzrheometrie - M-CIWVT-104395	
5.88. Mischen, Rühren, Agglomeration - M-CIWVT-105399	
5.89. Modeling Wastewater Treatment Processes - M-BGU-106113	
5.90. Modellbildung elektrochemischer Systeme - M-ETIT-100508	
5.91. Modellbildung und Simulation in der Thermischen Verfahrenstechnik - M-CIWVT-106832	
5.92. Modern Concepts in Catalysis: From Science to Engineering - M-CIWVT-107149	
5.93. Modul Masterarbeit - M-CIWVT-104526	
5.94. Nanopartikel - Struktur und Funktion - M-CIWVT-104339	
5.95. NMR im Ingenieurwesen - M-CIWVT-104401	141
5.96. NMR-Methoden zur Produkt- und Prozessanalyse - M-CIWVT-105890	
5.97. Nonlinear Process Control - M-CIWVT-106316	
5.98. Numerical Simulation of Reacting Multiphase Flows - M-CIWVT-107076	
5.99. Numerische Methoden in der Strömungsmechanik - M-MATH-102932	
5.100. Numerische Strömungssimulation - M-CIWVT-103072	
5.101. Optimal and Model Predictive Control - M-CIWVT-106317	
5.102. Paralleles Rechnen - M-MATH-101338	
5.103. Partikeltechnik - M-CIWVT-104378	
5.105. Polymerthermodynamik - M-CIWVT-106882	
5.107. Practical Course in Water Technology - M-CIWVT-103440	
5.108. Principles of Constrained Static Optimization - M-CIWVT-106313	
5.109. Process Engineering in Wastewater Treatment - M-BGU-103399	
5.110. Produktentstehung - Entwicklungsmethodik - M-MACH-102718	150
5.111. Prozess- und Anlagendesign in der Biotechnologie - M-CIWVT-107357	161
5.112. Prozess- und Anlagentechnik - M-CIWVT-104374	
5.113. Prozessanalyse: Modellierung, Data Mining, Machine Learning - M-ETIT-105594	
5.114. Prozessmodellierung in der Aufarbeitung - M-CIWVT-103066	
5.115. Raffinerietechnik - flüssige Energieträger - M-CIWVT-104291	
5.116. Reactor Modeling with CFD - M-CIWVT-106537	
5.117. Reaktionskinetik - M-CIWVT-104283	
5.118. Regelung verteilt-parametrischer Systeme - M-CIWVT-106318	
5.119. Rheologie Disperser Systeme - M-CIWVT-104391	
5.120. Rheologie komplexer Fluide und moderne rheologische Messmethoden - M-CIWVT-104331	
5.121. Rheologie von Polymeren - M-CIWVT-104329	174
5.122. Seminar - M-MATH-103276	
5.123. Seminar Lebensmittelverarbeitung in der Praxis - M-CIWVT-105932	
5.124. Sicherheitstechnik für Prozesse und Anlagen - M-CIWVT-104352	177
5.125. Simulationstechnik - M-CIWVT-107038	178
5.126. Single-Cell Technologies - M-CIWVT-106564	
5.127. Sol-Gel-Prozesse - M-CIWVT-104489	
5.128. Sol-Gel-Prozesse mit Praktikum - M-CIWVT-104284	
5.129. Stabilität disperser Systeme - M-CIWVT-104330	
5.130. Statistische Thermodynamik - M-CIWVT-103059	
5.131. Stoffübertragung II - M-CIWVT-104369	
5.132. Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen - M-CIWVT-104294	
5.133. Students Innovation Lab - M-CIWVT-106017	
5.134. Thermische Verfahrenstechnik II - M-CIWVT-107039	
5.135. Thermische Verfahrenstechnik III - M-CIWVT-107040	
5.136. Thermodynamik III - M-CIWVT-103058	
5.137. Trocknungstechnik - dünne Schichten und poröse Stoffe - M-CIWVT-104370	
5.138. Vakuumtechnik - M-CIWVT-104478	
5.139. Verarbeitung nanoskaliger Partikel - M-CIWVT-103073	
5.140. Verbrennung und Umwelt - M-CIWVT-104295	
5.141. Verbrennungstechnisches Praktikum - M-CIWVT-104321	
5.142. Verfahren und Prozessketten für nachwachsende Ronstoffe - M-CIWVT-104422	
5.144. Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen - M-CIWVT-106698	
5.145. Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen - M-CIWVT-106699	
5.146. Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration - M-CIWVT-104351	
5.147. Wärmeübertrager - M-CIWVT-104371	
5.148. Wärmeübertragung II - M-CIWVT-103051	
	200

	5.149. Wasserstoff in Materialien - Übungen und Laborkurs - M-MACH-107278	204
	5.150. Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung - M-MACH-107277	
	5.151. Wasserstoff- und Brennstoffzellentechnologien - M-CIWVT-104296	
	5.152. Wastewater Treatment Technologies - M-BGU-104917	208
	5.153. Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation - M-CIWVT-106680	210
	5.154. Water Technology - M-CIWVT-103407	
	5.155. Wirbelschichttechnik - M-CIWVT-104292	212
6.	Teilleistungen	
	6.1. Additive Manufacturing for Process Engineering - Examination - T-CIWVT-110902	213
	6.2. Advanced Methods in Nonlinear Process Control - T-CIWVT-113490	214
	6.3. Alternative Protein Technologies - T-CIWVT-113429	215
	6.4. Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme - T-CIWVT-113692	216
	6.5. Anmeldung zur Zertifikatsausstellung - Begleitstudium Wissenschaft, Technologie und Gesellschaft - T- FORUM-113587	217
	6.6. Auslegung von Mikroreaktoren - T-CIWVT-108826	
	6.7. Batterie- und Brennstoffzellensysteme - T-ETIT-100704	
	6.8. Batteries, Fuel Cells, and Electrolysis - T-ETIT-113986	
	6.9. Berufspraktikum - T-CIWVT-109276	
	6.10. Biobasierte Kunststoffe - T-CIWVT-109369	
	6.11. Biofilm Systems - T-CIWVT-106841	
	6.12. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I - T-MACH-100966	
	6.13. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II - T-MACH-100967	
	6.14. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III - T-MACH-100968	
	6.15. Biopharmazeutische Aufarbeitungsverfahren - T-CIWVT-106029	
	6.16. Bioprocess Development - T-CIWVT-112766	
	6.18. Bioreaktorentwicklung - T-CIWVT-113712	
	6.19. Biosensors - T-CIWVT-113714	
	6.20. Biotechnologische Nutzung nachwachsender Rohstoffe - T-CIWVT-113237	
	6.21. Brennstofftechnik - T-CIWVT-108829	
	6.22. C1-Biotechnologie mündliche Prüfung - T-CIWVT-113677	
	6.23. C1-Biotechnologie Präsentation - T-CIWVT-113678	
	6.24. Chemical Hydrogen Storage - T-CIWVT-113234	
	6.25. Chemische Verfahrenstechnik II - T-CIWVT-108817	
	6.26. Chem-Plant - T-CIWVT-109127	
	6.27. Computational Fluid Dynamics and Simulation Lab - T-MATH-113373	
	6.28. Computer-Aided Reactor Design - T-CIWVT-113667	
	6.29. Cryogenic Engineering - T-CIWVT-108915	
	6.30. Data-Based Modeling and Control - T-CIWVT-112827	
	6.31. Datenanalyse und Statistik - T-CIWVT-108900	243
	6.32. Datengetriebene Modellierung in Python - verfahrenstechnisches Projekt - T-CIWVT-113708	
	6.33. Datengetriebene verfahrenstechnische Modelle in Python - Prüfung - T-CIWVT-113709	
	6.34. Design of a Jet Engine Combustion Chamber - T-CIWVT-110571	246
	6.35. Digital Design in Process Engineering - Laboratory - T-CIWVT-111582	247
	6.36. Digital Design in Process Engineering - Oral Examination - T-CIWVT-111583	248
	6.37. Digitalisierung in der Partikeltechnik - T-CIWVT-110111	
	6.38. Digitalisierung in der Partikeltechnik - Projektarbeit - T-CIWVT-114694	
	6.39. Dynamik verfahrenstechnischer Systeme - Prüfung - T-CIWVT-114106	
	6.40. Dynamik verfahrenstechnischer Systeme - Vorleistung - T-CIWVT-114105	
	6.41. Einführung in die Sensorik mit Praktikum - T-CIWVT-109128	
	6.42. Eingangsklausur Praktikum Prozess- und Anlagentechnik - T-CIWVT-106149	
	6.43. Electrocatalysis - T-ETIT-111831	
	6.44. Elektrobiotechnologie - T-CIWVT-113148	
	6.45. Elektrobiotechnologie Seminar - T-CIWVT-113829	
	6.46. Elektrochemie - T-CHEMBIO-109773	
	6.47. Energietechnik - T-CIWVT-108833	
	6.48. Energieträger aus Biomasse - T-CIWVT-108828	
	6.49. Entrepreneurship - T-WIWI-102864	
	6.50. Entwicklung eines innovativen Lebensmittelprodukts - T-CIWVT-108960	
	6.51. Entwicklung eines innovativen Lebensmittelprodukts - Vortrag - T-CIWVT-111010	
	6.52. Environmental Biotechnology - T-CIWVT-106835	264

6.53.	Ersatz menschlicher Organe durch technische Systeme - T-MACH-105228	265
	Estimator and Observer Design - T-CIWVT-112828	
6.55.	Excercises: Membrane Technologies - T-CIWVT-113235	267
	Excursions: Water Supply - T-CIWVT-110866	
	Extrusion Technology in Food Processing - T-CIWVT-112174	
	Fest Flüssig Trennung - T-CIWVT-108897	
	Formulierung und Darreichung biopharmazeutischer Wirkstoffe - T-CIWVT-108805	
	Fundamentals of Water Quality - T-CIWVT-106838	
	Gas-Partikel-Messtechnik - T-CIWVT-108892	
	Gas-Partikel-Trennverfahren - T-CIWVT-108895	
	Grenzflächenthermodynamik - T-CIWVT-106100	
	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie - T-MACH-102111	
	Grundlagen der Lebensmittelchemie - T-CHEMBIO-109442	
	Grundlagen der Medizin für Ingenieure - T-MACH-105235	
	Grundlagen der Verbrennungstechnik - T-CIWVT-106104	
	Grundlagenseminar Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung - T-	280
0.00.	FORUM-113579	200
6.69	Herstellung und Entwicklung von Krebstherapeutika - T-CIWVT-113230	281
	Heterogene Katalyse im Ingenieurwesen - T-CIWVT-114085	
	Hochtemperatur-Verfahrenstechnik - T-CIWVT-106109	
	Hydrogen in Materials – Exercises and Lab Course - T-MACH-112159	
	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement - T-MACH-110923	
	Industrial Wastewater Treatment - T-CIWVT-111861	
	Industrielle Aspekte in der Bioprozesstechnologie - T-CIWVT-110935	
	Industrielle Biokatalyse - T-CIWVT-113432	
	Industrielle Bioprozesse - T-CIWVT-113120	
	Innovationsmanagement für Produkte und Prozesse der chemischen Industrie - T-CIWVT-108980	
	Innovationsprojekt Innovative Elektronik aus druckbaren, leitfähigen Materialien - T-CIWVT-113226	
	Innovationsprojekt poröse Keramik aus dem 3D Drucker - T-CIWVT-112201	
	Innovative Concepts for Formulation and Processing of Printable Materials - T-CIWVT-112170	
	Introduction to Numerical Simulation of Reacting Flows - T-CIWVT-113436	
	Introduction to Numerical Simulation of Reacting Flows - Prerequisite - T-CIWVT-113435	
	Journal Club - Neue Bioproduktionssysteme - T-CIWVT-113149	
	Kältetechnik B - Grundlagen der industriellen Gasgewinnung - T-CIWVT-108914	
	Katalyse für nachhaltige chemische Produkte und Energieträger - T-CIWVT-114167	
	Katalytische Mikroreaktoren - T-CIWVT-109087	
	Katalytische Verfahren der Gastechnik - T-CIWVT-108827	
	Kinetik und Katalyse - T-CIWVT-106032	
	Kommerzielle Biotechnologie - T-CIWVT-108811	
	Kreislaufwirtschaft - T-CIWVT-113815	
	Liquid Transportation Fuels - T-CIWVT-111095	
	Luftreinhaltung - Gesetze, Technologie und Anwendung - T-CIWVT-112812	
	Masterarbeit - T-CIWVT-109275	
	Materialien für elektrochemische Speicher und Wandler - T-CIWVT-108146	
	Membrane Materials & Processes Research Masterclass - T-CIWVT-113153	
	Membrane Technologies in Water Treatment - T-CIWVT-113236	
	Messmethoden in der chemischen Verfahrenstechnik - T-CIWVT-109086	
	Messtechnik in der Thermofluiddynamik - T-CIWVT-108837	
). Methoden und Prozesse der PGE - Produktgenerationsentwicklung - T-MACH-109192	
	. Mikrofluidik - T-CIWVT-108909	
	2. Mikrofluidik - Fallstudien - T-CIWVT-110549	
	3. Mikrorheologie und Hochfrequenzrheometrie - T-CIWVT-108977	
	Mischen, Rühren, Agglomeration - T-CIWVT-110895	
	5. Modeling Wastewater Treatment Processes - T-BGU-112371	
	S. Modellbildung elektrochemischer Systeme - T-ETIT-100781	
	7. Modellbildung und Simulation in der Thermischen Verfahrenstechnik - T-CIWVT-113702	
	8. Modern Concepts in Catalysis: From Science to Engineering - T-CIWVT-114168	
). Molekularbiologie und Genetik - T-CHEMBIO-103675	
	Nanopartikel - Struktur und Funktion - T-CIWVT-108894	
	. NMR im Ingenieurwesen - T-CIWVT-108984	
	NMR-Methoden zur Produkt- und Prozessanalyse - T-CIWVT-111843	
6.113	Nonlinear Process Control - T-CIWVT-112824	325

6.114.	Numerical Simulation of Reacting Multiphase Flows - T-CIWVT-114118	326
6.115.	Numerical Simulation of Reacting Multiphase Flows - Prerequisite - T-CIWVT-114117	327
	Numerische Methoden in der Strömungsmechanik - T-MATH-105902	
	Numerische Strömungssimulation - T-CIWVT-106035	
	Optimal and Model Predictive Control - T-CIWVT-112825	
	Paralleles Rechnen - T-MATH-102271	
	Partikeltechnik Klausur - T-CIWVT-106028	
	Physical Foundations of Cryogenics - T-CIWVT-106103	
	Polymerthermodynamik - T-CIWVT-113796	
	Power-to-X – Key Technology for the Energy Transition - T-CIWVT-111841	
	Practical Course in Water Technology - T-CIWVT-106840	
	Practical in Additive Manufacturing for Process Engineering - T-CIWVT-110903	
	Practical in Power-to-X: Key Technology for the Energy Transition - T-CIWVT-111842	
	Praktikum Messmethoden in der Chemischen Verfahrenstechnik - T-CIWVT-109181	
	Praktikum Prozess- und Anlagentechnik - T-CIWVT-106148	
	Praktikum zu Katalytische Mikroreaktoren - T-CIWVT-109182	
	Praktikum zu NMR im Ingenieurwesen - T-CIWVT-109144	
	Principles of Constrained Static Optimization - T-CIWVT-112811	
	Process Engineering in Wastewater Treatment - T-BGU-106787	
	Prozess- und Anlagentechnik Klausur - T-CIWVT-106150	
	Prozessanalyse: Modellierung, Data Mining, Machine Learning - T-ETIT-111214	
	Prozessmodellierung in der Aufarbeitung - T-CIWVT-106101	
	Raffinerietechnik - flüssige Energieträger - T-CIWVT-108831	
	Reactor Modeling with CFD - T-CIWVT-113224	
	Reaktionskinetik - T-CIWVT-108821	
	Regelung verteilt-parametrischer Systeme - T-CIWVT-112826	
	Rheologie Disperser Systeme - T-CIWVT-108963	
	Rheologie komplexer Fluide und moderne rheologische Messmethoden - T-CIWVT-108886	
	Rheologie von Polymeren - T-CIWVT-108884	
	Ringvorlesung Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung - T-FORUM-113578	355
	Schriftliche Prüfung Prozess- und Anlagendesign in der Biotechnologie - T-CIWVT-114499	
	Seminar Lebensmittelverarbeitung in der Praxis mit Exkursion - T-CIWVT-109129	
	Seminar Mathematik - T-MATH-106541	
	Seminar Prozess- und Anlagendesign in der Biotechnologie - T-CIWVT-114498	
	Sicherheitstechnik für Prozesse und Anlagen - T-CIWVT-108912	
	SIL Entrepreneurship Projekt - T-WIWI-110166	
	Simulationstechnik - Prüfung - T-CIWVT-114104	
	Simulationstechnik - Vorleistung - T-CIWVT-114141	
	Single-Cell Technologies - T-CIWVT-113231	
	Sol-Gel-Prozesse - T-CIWVT-108822	
	Sol-Gel-Prozesse Praktikum - T-CIWVT-108823	
	Stabilität disperser Systeme - T-CIWVT-108885	
	Statistische Thermodynamik - T-CIWVT-106098 Stoffübertragung II - T-CIWVT-108935	
	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen - T-CIWVT-108834	
	Thermische Verfahrenstechnik II - T-CIWVT-114107	
	Thermische Verfahrenstechnik III - T-CIWVT-114108	
	Thermodynamik III - T-CIWVT-106033	
	Trocknungstechnik - dünne Schichten und poröse Stoffe - T-CIWVT-108936	
	Vakuumtechnik - T-CIWVT-109154	
	Verarbeitung nanoskaliger Partikel - T-CIWVT-106107	
	Verbrennung und Umwelt - T-CIWVT-108835	
	Verbrennungstechnisches Praktikum - T-CIWVT-108873	
	Verfahren und Prozessketten für nachwachsende Rohstoffe - T-CIWVT-108997	
	Verfahrensentwicklung in der Chemischen Industrie - T-CIWVT-108961	
	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen - T-CIWVT-113476	
	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen - T-CIWVT-113477	
	Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration - T-CIWVT-108910	
	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Über Wissen und Wissenschaft - Selbstverbuchung - T-FORUM-113580	384
6.173.	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in der Gesellschaft - Selbstverbuchung - T-FORUM-113581	385

6.174. Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft i gesellschaftlichen Debatten - Selbstverbuchung - T-FORUM-113582	n 386
6.175. Wärmeübertrager - T-CIWVT-108937	387
6.176. Wärmeübertragung II - T-CIWVT-106067	388
6.177. Wasserstoff in Materialien - Übungen und Laborkurs - T-MACH-112942	389
6.178. Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung - T-MACH-110957	'390
6.179. Wasserstoff- und Brennstoffzellentechnologien - T-CIWVT-108836	391
6.180. Wastewater Treatment Technologies - T-BGU-109948	392
6.181. Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation - T-CIWVT-113433	393
6.182. Water Technology - T-CIWVT-106802	394
6.183. Wirbelschichttechnik - T-CIWVT-108832	395
7. Anhang	396
7.1. Begriffsdefinitionen	

1 Allgemeine Information

1.1 Studiengangdetails

KIT-Fakultät	KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Akademischer Grad	Master of Science (M.Sc.)
Prüfungsordnung Version	2016
Regelstudienzeit	4 Semester
Maximale Studiendauer	8 Semester
Leistungspunkte	120
Sprache	Deutsch, teilweise Englisch
Berechnungsschema	Gewichteter Durchschnitt nach Leistungspunkten
Weitere Informationen	Link zum Studiengang www.ciw.kit.edu
	Fakultät https://www.ciw.kit.edu/1630.php
	Dienstleistungseinheit Studium und Lehre https://www.sle.kit.edu/vorstudium/master-bioingenieurwesen.php

1.2 Qualifikationsziele

Bioingenieurwesen ist auf Verfahrenstechnik im Kontext einer industriellen, ingenieursgetriebenen Anwendung biologischer / biotechnologischer Prinzipien fokussiert. Dadurch unterscheidet es sich von den naturwissenschaftlichen Studiengängen, der Biotechnologie oder der molekularen Biotechnologie, die vor allem die Nutzbarmachung biologischer Prinzipien behandeln. Bioingenieurinnen und Bioingenieure leisten einen entscheidenden Beitrag zur Entwicklung interdisziplinärer Ansätze zur Schaffung einer energetisch und stofflich nachhaltigen, postfossilen Wirtschaft.

Im Masterstudium Bioingenieurwesen werden vertiefte und umfangreiche ingenieurwissenschaftliche sowie mathematische und naturwissenschaftliche Kenntnisse in Theorie und Praxis vermittelt, die es erlauben verfahrenstechnische Prinzipien auf biologische Stoffsysteme anzuwenden. Die Absolventinnen und Absolventen sollen so zu wissenschaftlicher Arbeit und verantwortlichem Handeln in Beruf und Gesellschaft befähigt werden.

Im Pflichtprogramm erwerben die Studierenden ein gegenüber dem Bachelorstudium wesentlich erweitertes methodisch qualifiziertes Grundlagenwissen, mit einem Hauptaugenmerk auf biotechnologische Verfahren und Prozesse, die eine industrielle Nutzbarmachung von biologischen Systemen umsetzen. Dieses Wissen wird exemplarisch in zwei frei zu wählenden Vertiefungsfächern weiterentwickelt. Eines dieser Vertiefungsfächer muss sich dezidiert mit Aspekten biotechnologischer Stoffsysteme befassen.

In der Masterarbeit erfolgt der Nachweis, dass die Absolventinnen und Absolventen ein Problem aus ihrem Fachgebiet selbstständig und in begrenzter Zeit mit wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen, bearbeiten können. Das Berufspraktikum soll eine Anschauung berufspraktischer Tätigkeit auf Ingenieursniveau vermitteln.

Die Absolventinnen und Absolventen sind in der Lage, Probleme mit wissenschaftlichen Methoden zu analysieren und zu lösen, komplexe Problemstellungen zu abstrahieren und zu formulieren sowie neue Methoden, Prozesse und Produkte zu entwickeln. Sie können Wissen aus verschiedenen Bereichen kombinieren und sich systematisch in neue Aufgaben einarbeiten sowie auch die nichttechnischen Auswirkungen der Ingenieurtätigkeit reflektieren und in ihr Handeln verantwortungsbewusst einbeziehen.

1.3 Zulassungs-/Zugangsvoraussetzungen

Ob eine Zulassung möglich ist, hängt von deinen akademischen Vorkenntnissen ab, also von den Inhalten des absolvierten Bachelorstudiums. Folgende Studienleistungen müssen aus dem vorherigen Studium nachgewiesen werden:

- Mathematische und naturwissenschaftliche Grundlagen 35 LP
- Ingenieurwissenschaftliche Grundlagen 15 LP
- Thermodynamik und Transportprozesse 15 LP
- · Verfahrenstechnische Grundlagen 12 LP
- Biologie und Biotechnologie 15 LP
- · Bachelor Thesis oder Vergleichbares 12 LP

Fehlen in maximal zwei dieser Bereiche insgesamt bis zu 15 LP, ist eine Zulassung unter der Auflage möglich, dass die fehlenden Leistungen innerhalb der ersten drei Mastersemester nachgeholt werden. Nähere Einzelheiten zur Bewerbung sind in der Zugangssatzung aufgeführt.

https://www.ciw.kit.edu/download/2024-07-29_MA-BIW-Zugangssatzung.pdf

1.4 Ansprechpersonen

- · Studiendekan: Prof. Dr.-Ing. Achim Dittler
- · Fachstudienberatung: Dr.-Ing. Barbara Freudig
- Masterprüfungsausschuss
 - Vorsitzender Prof. Dr. Reinhard Rauch
 - · Prüfungssekretariat Marion Gärtner
 - https://www.ciw.kit.edu/mpa.php
- Aktuelle Informationen zu den Studiengängen sowie Termine für Informationsveranstaltungen sind auf den Webseiten der Fakultät zu finden.

http://www.ciw.kit.edu/studium.php

1.5 Studien- und Prüfungsordnung

Rechtsgrundlage für den Studiengang sowie alle Prüfungen im Studiengang ist die "Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Bioingenieurwesen" vom 10. Mai 2016 geändert am 24. Februar 2020.

https://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2016_AB_032.pdf

1.6 Organisatorisches

Anerkennung von Leistungen gemäß § 19 SPO

Einen Antrag auf Anerkennung von Leistungen, die

- · An einer anderen Hochschule
- im Ausland
- · im Rahmen des Mastervorzugs

erbracht wurden, bzw. ein Antrag auf Anrechnung von Leistungen, die außerhalb des Hochschulsystems erbracht wurden,

kann innerhalb eines Semesters beim Masterprüfungsausschuss (Frau Gärtner) gestellt werden. Dort wird gegebenenfalls nach Rücksprache mit dem Fachvertreter festgestellt, ob die Leistung gleichwertig zu einer im Curriculum des Studiengangs vorgesehenen Leistung ist und anerkannt werden kann. Im Rahmen eines Auslandssemesters absolvierte Leistungen können auch noch zu einem späteren Zeitpunkt anerkannt werden. Haben Sie bereits ein Berufspraktikum oder ein Praxissemester absolviert, können Sie die Anerkennung direkt beim Praktikantenamt (Frau Gärtner) beantragen.

Anmeldung zu Prüfungen in den Vertiefungsfächern/ im Technischen Ergänzungsfach

Vor der Anmeldung zu Modulprüfungen in Vertiefungsfächern sowie im Technischen Ergänzungsfach muss dem Masterprüfungsausschuss (Frau Gärtner) ein Studienplan zur Genehmigung vorgelegt werden. Erst dann werden die Module dem Studienablaufplan hinzugefügt, und die Online-Anmeldung im Studierendenportal ist möglich. Nähere Informationen sind der Webseite der Fakultät unter https://www.ciw.kit.edu/1619.php zu entnehmen.

Nachträgliche Änderungen des Studienplans müssen ebenfalls bei Frau Gärtner beantragt werden.

Zusatzleistungen, Überfachliche Qualifikationen

Zusatzleistungen und Überfachliche Qualifikationen können nicht immer im CAS System direkt angemeldet werden (z.B. manche Module aus einer anderen Fakultät). Sie müssen sich in jedem Fall VOR der Prüfung mit dem Masterprüfungsausschuss (Frau Gärtner) in Verbindung setzen.

Ausnahme

Überfachliche Qualifikation am House of Competence (HoC), Sprachenzentrum (SPZ) oder Forum für Wissenschaft und Gesellschaft (FORUM)

Wenn die Überfachliche Qualifikation am HoC, SPZ oder FORUM erbracht wird, dann wird keine Zulassungsbescheinigung für eine Prüfungsleistung benötigt, da die Leistungen automatisch im CAS System unter "nicht zugeordnete Leistungsnachweise" gebucht werden. Soll eine Leistung angerechnet werden, die bei den "nicht zugeordneten Leistungsnachweisen" gelistet ist, dann muss ein Antrag an den Masterprüfungsausschuss (Frau Gärtner) gestellt werden.

Antragsformulare entnehmen Sie bitte der Webseite der KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik https://www.ciw.kit.edu/1619.php

Fach- und Modulübersicht

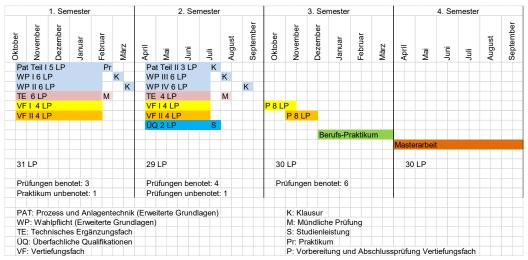
Fach	Modul	Lehrveranstaltung	Koordinator	LP						
Erweiterte	Pflicht: Prozess- und	Vorlesung/ Übung	Scheiff	8						
Grundlagen	Anlagentechnik	Praktikum								
	Wahlpflicht: 4 Module/ 24 LP aus:									
	Biopharmazeutische Aufarbeitungs-verfahren	Vorlesung/ Übung	Hubbuch	6						
	Bioprocess Development	Vorlesung/ Übung	Grünberger	6						
	Membrane Technologies in Water Treatment	Vorlesung/ Übung	Horn, Saravia	6						
	Prozess- und Anlagendesign in der Biotechnologie	Ab WS 25/26, Infos folgen	Holtmann							
	Alternativ: Maximal 2 Wahlpflichtmodule aus den Erweiterten Grundlagen Master Chemieingenieurwesen und Verfahrensteck Als Voraussetzung für das Vertiefungsfach in Hohenheim wird ebenfalls ein Wahlpflichtfach angeboten.									
	ehmigung des Prüfungsaussch ınd Modulen im Technischen E			in						
Vertiefungsfach I	3 Wahlpflichtmodule									
Vertiefungsfach II	3 Wahlpflichtmodule									
Technisches Ergänzungsfach	2 – 3 Wahlpflichtmodule									
Überfachliche Qualifikationen	z. B. Modulangebote HOC oder FORUM			2						
	Berufspraktikum			14						
	Masterarbeit			30						

LP: Leistungspunkte (ECTS), SWS: Semesterwochenstunden

Bevor Prüfungen in den Vertiefungsfächern abgelegt werden können, muss dem Masterprüfungsausschuss ein Prüfungsplan zur Genehmigung vorgelegt werden. Im Technischen Ergänzungsfach können ebenfalls Module aus dem Vertiefungsfachkatalog gewählt werden. Das benötigte Formular für die Genehmigung kann unter folgendem Link heruntergeladen werden:

http://www.ciw.kit.edu/1667.php

Eine übersichtliche Darstellung der Vertiefungsfächer mit allen enthaltenen Modulen finden Sie auf den Webseiten der Fakultät: http://www.ciw.kit.edu/1667.php


Empfohlener Studienablaufplan

Der Studienbeginn ist sowohl im Sommersemester als auch im Wintersemester möglich. Es wird empfohlen, in den ersten beiden Semestern die Module der Fächer "Erweiterte Grundlagen", "Technisches Ergänzungsfach" und "Überfachliche Qualifikationen" zu absolvieren sowie Vorlesungen in den Vertiefungsfächern zu besuchen. Die erste Hälfte des dritten Semesters dient dann der Vorbereitung zu den Vertiefungsfachprüfungen, die teilweise als Blockprüfungen angeboten werden (alle Module eines Vertiefungsfachs in einem gemeinsamen Termin). Im Anschluss an die Vertiefungsfachprüfungen kann das Berufspraktikum absolviert werden. Im vierten Semester wird die Masterarbeit angefertigt.

Beginn im Sommersemester

	1	. Sen	neste	r			2	2. Ser	neste	r			3	3. Ser	neste	r			4	I. Ser	neste	r	
April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Januar	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Januar	Februar	März
	AT Tei	I II 3	LP	Ť			AT Te			Pr		Ť									Ť		
W	PI6	LP		K		W	PI6	LP			K												
	PII6				K	W	PII6	LP			K												
_	E 6 LI		M				14 L			М													
	= 1 4 L						1 4					P 8 I											
	= II 4 I					VF	II 4 I	LP					P 8 L	.P									
U	Q 2 LI	•	S																				
														Вє	erufs-l	Prakti	kum						
-											-							Mast	erarb	eit			
31	LP					29	LP					30	LP					30	LP				
Pr	üfung	en be	enote	t: 4		Pr	üfunc	en b	enote	t: 3		Pı	üfunc	en be	enote	t: 6							
	üfung								beno														
PA	AT: Pr	ozess	s und	Anla	gente	chnik	(Erw	eitert	e Gru	ndlag	en)		K: KI	ausur	r								
	P: Wa												M: M	ündli	che P	rüfun	g						
TE	: Tec	hnisc	hes E	rgän	zungs	sfach							S: St	udien	ıleistu	ing							
Ü	Q: Üb	erfach	nliche	Qua	lifikati	onen							Pr: P	raktik	um								
VF	: Ver	tiefun	gsfac	h									P: Vo	orbere	eitung	und	Absc	hluss	prüfui	ng Ve	ertiefu	ngsfa	ch

Beginn im Wintersemester

MODULE IN ENGLISCHER SPRACHE

(English Courses)

	Additive Manufacturing for Draces Chairsoning	CLD	cc
•	Additive Manufacturing for Process Engineering	6 LP	SS SS
	Advanced Methods in Nonlinear Control	4 LP	
•	Alternative Protein Technologies	4 LP	SS
•	Batteries, Fuel Cells and Electrolysis	6 LP 4 LP	WS SS
•	Biofilm Systems		
•	Bioprocess Scale-Up	4 LP	WS
•	Biosensors Chamical Livingson Storage	4 LP	SS/WS
•	Chemical Hydrogen Storage	4 LP	WS
•	Circular Economy Water, Energy, Environment:	5 L D	00
	Research Proposal Preparation	5 LP	SS
•	Computational Fluid Dynamics and Simulation Lab	4 LP	SS
•	Computer-Aided Reactor Design	6 LP	WS
•	Computer-Assisted Modeling and Control	4 LP	SS
•	Cryogenic Engineering	6 LP	WS
•	Data-Based Modeling and Control	6 LP	WS
•	Design of a Jet Engine Combustion Chamber	6 LP	WS
•	Digital Design in Process Engineering	6 LP	WS
•	Electrocatalysis	6 LP	SS
•	Electromagnetic Energy in Process Engineering	6 LP	WS
•	Energy from Biomass	6 LP	WS
•	Environmental Biotechnology	4 LP	WS
•	Estimator and Observer Design	6 LP	WS
•	Extrusion Technology in Food Processing	4 LP	WS
•	Fundamentals of Water Quality	6 LP	WS
•	Industrial Wastewater Treatment	4 LP	SS
•	Innovation Management for Products and Processes	4 LP	SS
	in the Chemical Industry	CLD	MC
•	Innovative Concepts for Formulation and Processing of Printable Materials	6 LP	WS
	Introduction to Numerical Simulation of Reacting Flows	8 LP	WS
•	Laboratory Work in Combustion Technology	4 LP	SS
•	Liquid Transportation Fuels	6 LP	WS
•	Membrane Materials & Processes Research Masterclass	6 LP	WS
•	Membrane Technologies in Water Treatment	6 LP	SS
•	Microsystems in Bioprocess Engineering	4 LP	WS
•	Modern Concepts in Catalysis: From Science to Engineering	4 LP	SS
•	Nonlinear Process Control	6 LP	WS
•	Numerical Methods in Fluidmechanics	4 LP	SS
•	Numerical Simulation of Reacting Multiphase Flows	8 LP	SS
•	Optimal and Model Predictive Control	6 LP	SS
•	Physical Foundations of Cryogenics	6 LP	SS
•	Power-to-X – Key Technology for the Energy Transition	6 LP	SS/WS
•	Practical Course in Water Technology	4 LP	WS
•	Principles of Constrained Static Optimization	4 LP	WS
•	Reactor Modeling with CFD	6 LP	SS
•	Single-Cell Technologies	4 LP	WS
•	Water Technology	6 LP	WS
<u>Bach</u>	elor-Courses		
•	Catalysts for the Energy Transition	5 LP	SS
•	Electrochemical Energy Technologies	5 LP	WS
•	Laboratory Electrochemical Energy Technologies	5 LP	SS

4 Aufbau des Studiengangs

Pflichtbestandteile	
Masterarbeit	30 LP
Erweiterte Grundlagen	32 LP
Technisches Ergänzungsfach	10 LP
Vertiefungsfach I	16 LP
Berufspraktikum	14 LP
Freiwillige Bestandteile	•
Zusatzleistungen Dieser Bereich fließt nicht in die Notenberechnung des übergeordneten Bereichs ein.	

4.1 Masterarbeit

Leistungspunkte
30

Pflichtbestandteile				
M-CIWVT-104526	Modul Masterarbeit	DE/EN	WS+SS	30
				LP

4.2 Erweiterte Grundlagen

Leistungspunkte

32

Wahlinformationen

Pflichtmodul:

• Prozess- und Anlagentechnik (8 LP)

Wahlpflichtmodule:

- · Vier weitere Module im Umfang von je 6 LP aus dem Wahlpflichtblock: BIW-Block
- Alternative: Bis zu zwei Module aus dem Wahlpflichtblock: CIW-Block

Pflichtbestandteil	Pflichtbestandteile				
M-CIWVT-104374	Prozess- und Anlagentechnik	DE	WS+SS	8 LP	
BIW (Wahl: mindestens 2 Bestandteile)					
M-CIWVT-103065	Biopharmazeutische Aufarbeitungsverfahren	DE	WS	6 LP	
M-CIWVT-105380	Membrane Technologies in Water Treatment	EN	SS	6 LP	
M-CIWVT-106297	Bioprocess Development	EN	SS	6 LP	
M-CIWVT-107357	Prozess- und Anlagendesign in der Biotechnologie	DE	WS	6 LP	
CIW (Wahl: höchs	tens 2 Bestandteile)				
M-CIWVT-103058	Thermodynamik III	DE	WS	6 LP	
M-CIWVT-103072	Numerische Strömungssimulation	DE	WS	6 LP	
M-CIWVT-104378	Partikeltechnik	DE	SS	6 LP	
M-CIWVT-104383	Kinetik und Katalyse	DE	SS	6 LP	
M-CIWVT-107039	Thermische Verfahrenstechnik II	DE	SS	6 LP	

4.3 Technisches Ergänzungsfach

Leistungspunkte

10

Leistungsnachweise/Prüfungen

Erfolgskontrolle in allen Modulen ist in der Regel eine mündliche Prüfung gemäß § 4 Abs. 2 Nr. 2 der Studien- und Prüfungsordnung im Umfang von ca. 30 Minuten. Genauere Informationen zur Prüfungsform entnehmen Sie bitte den betreffenden Modulbeschreibungen.

<u>Wichtig:</u> Für Module der Vertiefungsfächer ist teilweise eine abweichende Prüfungsdauer angegeben. Insbesondere in Vertiefungsfächern, die mit einer Blockprüfung über alle Module abgeschlossen werden, ist die Prüfungsdauer für die einzelnen Module häufig geringer. Im Technischen Ergänzungsfach beträgt die Prüfungsdauer in der Regel 30 Minuten!

Wahlinformationen

Im Technischen Ergänzungsfach sollten zwei Module gewählt werden. Neben Modulen, die im Folgenden aufgeführt sind, können mit Genehmigung des Masterprüfungsausschusses auch Module von anderen KIT-Fakultäten belegt werden.

Es wird empfohlen Module aus Vertiefungsfächern zu belegen, die NICHT Bestandteil der zwei gewählten Vertiefungsfächer sind.

Besonderheiten zur Wahl

Wahlen in diesem Bereich sind genehmigungspflichtig.

Technisches Ergänzu	ıngsfach (Wahl: mind. 10 LP)			
M-CIWVT-105407	Additive Manufacturing for Process Engineering	EN	SS	6 LP
M-CIWVT-106715	Advanced Methods in Nonlinear Process Control	DE	SS	4 LP
M-CIWVT-106661	Alternative Protein Technologies	EN	SS	4 LP
M-CIWVT-106823	Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme	DE	WS	8 LP
M-CIWVT-104286	Auslegung von Mikroreaktoren	DE	WS	6 LP
M-ETIT-107005	Batteries, Fuel Cells, and Electrolysis	EN	WS	6 LP
M-CIWVT-104570	Biobasierte Kunststoffe	DE	WS	4 LP
M-CIWVT-104676	Biofilm Systems	EN	SS	4 LP
M-MACH-100489	BioMEMS - Mikrosystemtechnik für Life-Science und Medizin I	DE	WS	4 LP
M-MACH-100490	BioMEMS - Mikrosystemtechnik für Life-Science und Medizin II	DE	SS	4 LP
M-MACH-100491	BioMEMS - Mikrosystemtechnik für Life-Science und Medizin III	DE	SS	4 LP
M-CIWVT-103065	Biopharmazeutische Aufarbeitungsverfahren	DE	WS	6 LP
M-CIWVT-106297	Bioprocess Development	EN	SS	6 LP
M-CIWVT-106837	Bioprocess Scale-up	EN	WS	6 LP
M-CIWVT-106595	Bioreaktorentwicklung	DE	SS	4 LP
M-CIWVT-106393	Biosensors	EN	WS+SS	4 LP
M-CIWVT-10638	Biotechnologische Nutzung nachwachsender Rohstoffe	DE	WS	4 LP
M-CIWVT-103293	Brennstofftechnik	DE	WS	6 LP
M-CIWVT-104289	C1-Biotechnologie	DE	WS	6 LP
M-CIWVT-100816	Chem-Plant	DE	SS	4 LP
M-CIWVT-104461 M-CIWVT-106566		EN	WS	4 LP
	Chemical Hydrogen Storage	DE/EN	SS	4 LP
M-MATH-106634	Computational Fluid Dynamics and Simulation Lab		WS	
M-CIWVT-104356	Cryogenic Engineering	EN		6 LP
M-CIWVT-106319	Data-Based Modeling and Control	EN	WS	6 LP
M-CIWVT-104345	Datenanalyse und Statistik	DE	SS	4 LP
M-CIWVT-106835	Datengetriebene verfahrenstechnische Modelle in Python	DE	WS	4 LP
M-CIWVT-105206	Design of a Jet Engine Combustion Chamber	EN	WS	6 LP
M-CIWVT-105782	Digital Design in Process Engineering	EN	WS	6 LP
M-CIWVT-104973	Digitalisierung in der Partikeltechnik	DE	WS	6 LP
M-CIWVT-107037	Dynamik verfahrenstechnischer Systeme	DE	SS	6 LP
M-CIWVT-105933	Einführung in die Sensorik	DE	SS	2 LP
M-ETIT-105883	Electrocatalysis	EN	SS	5 LP
M-CIWVT-106518	Elektrobiotechnologie	DE	WS	6 LP
M-CIWVT-104293	Energietechnik	DE	WS	4 LP
M-CIWVT-104288	Energieträger aus Biomasse	DE	WS	6 LP
M-CIWVT-104388	Entwicklung eines innovativen Lebensmittelprodukts	DE	WS+SS	6 LP
M-CIWVT-104320	Environmental Biotechnology	EN	WS	4 LP
M-MACH-102702	Ersatz menschlicher Organe durch technische Systeme	DE	SS	4 LP
M-CIWVT-106320	Estimator and Observer Design	EN	WS	6 LP
M-CIWVT-105996	Extrusion Technology in Food Processing	EN	WS	4 LP
M-CIWVT-104342	Fest Flüssig Trennung	DE	WS	8 LP
M-CIWVT-104266	Formulierung und Darreichung biopharmazeutischer Wirkstoffe	DE	WS	4 LP
M-CIWVT-103438	Fundamentals of Water Quality	EN	WS	6 LP
M-CIWVT-104337	Gas-Partikel-Messtechnik	DE	WS	6 LP
M-CIWVT-104340	Gas-Partikel-Trennverfahren	DE	WS	6 LP
M-CIWVT-103063	Grenzflächenthermodynamik	DE/EN	SS	4 LP
M-CIWVT-104886	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	DE	WS	4 LP
M-CHEMBIO-104620	Grundlagen der Lebensmittelchemie	DE	SS	4 LP
M-MACH-102720	Grundlagen der Medizin für Ingenieure	DE	WS	4 LP
M-CIWVT-103069	Grundlagen der Verbrennungstechnik	DE	WS	6 LP
M-CIWVT-106563	Herstellung und Entwicklung von Krebstherapeutika	DE	WS	4 LP

M-CIWVT-103075	Hochtemperatur-Verfahrenstechnik	DE	SS	6 LP
M-CIWVT-105903	Industrial Wastewater Treatment	EN	SS	4 LP
M-CIWVT-106501	Industrielle Bioprozesse	DE	WS	4 LP
M-CIWVT-104397	Innovationsmanagement für Produkte und Prozesse der chemischen	DE/EN	WS	4 LP
	Industrie			
M-CIWVT-105993	Innovative Concepts for Formulation and Processing of Printable Materials	EN	WS	4 LP
M-CIWVT-106676	Introduction to Numerical Simulation of Reacting Flows	EN	WS	8 LP
M-CIWVT-104354	Kältetechnik B - Grundlagen der industriellen Gasgewinnung	DE	SS	6 LP
M-CIWVT-107131	Katalyse für nachhaltige chemische Produkte und Energieträger	DE	SS	4 LP
M-CIWVT-104451	Katalytische Mikroreaktoren	DE	SS	4 LP
M-CIWVT-104491	Katalytische Mikroreaktoren mit Praktikum	DE	SS	6 LP
M-CIWVT-104287	Katalytische Verfahren der Gastechnik	DE	SS	4 LP
M-CIWVT-104383	Kinetik und Katalyse	DE	SS	6 LP
M-CIWVT-104273	Kommerzielle Biotechnologie	DE	SS	4 LP
M-CIWVT-106881	Kreislaufwirtschaft	DE	WS	6 LP
M-CIWVT-105200	Liquid Transportation Fuels	EN	WS	6 LP
M-CIWVT-106314	Luftreinhaltung - Gesetze, Technologie und Anwendung	DE	SS	4 LP
M-CIWVT-104353	Materialien für elektrochemische Speicher und Wandler	DE	WS+SS	4 LP
M-CIWVT-106529	Membrane Materials & Processes Research Masterclass	EN	WS	6 LP
M-CIWVT-105380	Membrane Technologies in Water Treatment	EN	SS	6 LP
M-CIWVT-104490	Messmethoden in der chemischen Verfahrenstechnik	DE	SS	4 LP
M-CIWVT-104450	Messmethoden in der Chemischen Verfahrenstechnik mit Praktikum	DE	SS	6 LP
M-CIWVT-104297	Messtechnik in der Thermofluiddynamik	DE	WS	6 LP
M-CIWVT-104350	Mikrofluidik	DE	WS	4 LP
M-CIWVT-105205	Mikrofluidik mit Fallstudien	DE	WS	6 LP
M-CIWVT-104395	Mikrorheologie und Hochfrequenzrheometrie	DE	SS	2 LP
M-CIWVT-105399	Mischen, Rühren, Agglomeration	DE	SS	6 LP
M-BGU-106113	Modeling Wastewater Treatment Processes	EN	SS	6 LP
M-CIWVT-106832	Modellbildung und Simulation in der Thermischen Verfahrenstechnik	DE	WS	6 LP
M-CIWVT-107149	Modern Concepts in Catalysis: From Science to Engineering	EN	SS	4 LP
M-CIWVT-104339	Nanopartikel - Struktur und Funktion	DE	SS	6 LP
M-CIWVT-104401	NMR im Ingenieurwesen	DE	WS	6 LP
M-CIWVT-105890	NMR-Methoden zur Produkt- und Prozessanalyse	DE/EN	WS	4 LP
M-CIWVT-106316	Nonlinear Process Control	DE/EN	WS	6 LP
M-CIWVT-107076	Numerical Simulation of Reacting Multiphase Flows	DE/EN	SS	8 LP
M-MATH-102932	Numerische Methoden in der Strömungsmechanik	EN	SS	4 LP
M-CIWVT-103072	Numerische Strömungssimulation	DE	WS	6 LP
M-CIWVT-106317	Optimal and Model Predictive Control	EN	SS	6 LP
M-MATH-101338	Paralleles Rechnen		Unregelm.	5 LP
M-CIWVT-104378	Partikeltechnik	DE	SS	6 LP
M-CIWVT-103068	Physical Foundations of Cryogenics	EN	SS	6 LP
M-CIWVT-106882	Polymerthermodynamik	DE/EN	WS	6 LP
M-CIWVT-105891	Power-to-X – Key Technology for the Energy Transition	EN EN	WS+SS	6 LP 4 LP
M-CIWVT-103440	Principles of Constrained Static Optimization		WS	
M-CIWVT-106313 M-BGU-103399	Principles of Constrained Static Optimization	EN	WS WS	4 LP 6 LP
	Process Engineering in Wastewater Treatment	EN DE/EN		
M-MACH-102718	Produktentstehung - Entwicklungsmethodik Die Erstverwendung ist bis 31.03.2026 möglich.	DE/EN	SS	6 LP
M-CIWVT-104374	Prozess- und Anlagentechnik	DE	WS+SS	8 LP
M-ETIT-105594	Prozessanalyse: Modellierung, Data Mining, Machine Learning	DE	SS	4 LP
M-CIWVT-103066	Prozessmodellierung in der Aufarbeitung	DE	SS	4 LP
M-CIWVT-104291	Raffinerietechnik - flüssige Energieträger	DE	SS	6 LP
M-CIWVT-106537	Reactor Modeling with CFD	EN	SS	4 LP

M-CIWVT-106318	Regelung verteilt-parametrischer Systeme	DE/EN	SS	6 LP
M-CIWVT-104391	Rheologie Disperser Systeme	DE	SS	2 LP
M-CIWVT-104331	Rheologie komplexer Fluide und moderne rheologische Messmethoden	DE	SS	4 LP
M-CIWVT-104329	Rheologie von Polymeren	DE	SS	4 LP
M-MATH-103276	Seminar	DE	WS+SS	3 LP
M-CIWVT-105932	Seminar Lebensmittelverarbeitung in der Praxis	DE	WS	2 LP
M-CIWVT-104352	Sicherheitstechnik für Prozesse und Anlagen	DE	SS	4 LP
M-CIWVT-107038	Simulationstechnik	DE	SS	6 LP
M-CIWVT-106564	Single-Cell Technologies	EN	WS	4 LP
M-CIWVT-104489	Sol-Gel-Prozesse	DE	WS	4 LP
M-CIWVT-104284	Sol-Gel-Prozesse mit Praktikum	DE	WS	6 LP
M-CIWVT-104330	Stabilität disperser Systeme	DE	WS	4 LP
M-CIWVT-103059	Statistische Thermodynamik	DE/EN	SS	6 LP
M-CIWVT-104369	Stoffübertragung II	DE	WS	6 LP
M-CIWVT-104294	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen	DE	SS	4 LP
M-CIWVT-107039	Thermische Verfahrenstechnik II	DE	SS	6 LP
M-CIWVT-107040	Thermische Verfahrenstechnik III	DE	WS	6 LP
M-CIWVT-103058	Thermodynamik III	DE	WS	6 LP
M-CIWVT-104370	Trocknungstechnik - dünne Schichten und poröse Stoffe	DE	SS	6 LP
M-CIWVT-104478	Vakuumtechnik	DE	WS	6 LP
M-CIWVT-103073	Verarbeitung nanoskaliger Partikel	DE	WS	6 LP
M-CIWVT-104295	Verbrennung und Umwelt	DE	SS	4 LP
M-CIWVT-104321	Verbrennungstechnisches Praktikum	DE/EN	SS	4 LP
M-CIWVT-104422	Verfahren und Prozessketten für nachwachsende Rohstoffe	DE	SS	6 LP
M-CIWVT-106698	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen	DE	WS	4 LP
M-CIWVT-106699	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen	DE	SS	4 LP
M-CIWVT-104351	Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration	DE	WS	4 LP
M-CIWVT-104371	Wärmeübertrager	DE	WS	6 LP
M-CIWVT-103051	Wärmeübertragung II	DE	WS	6 LP
M-MACH-107278	Wasserstoff in Materialien - Übungen und Laborkurs	DE	WS+SS	4 LP
M-MACH-107277	Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung	DE	WS+SS	4 LP
M-CIWVT-104296	Wasserstoff- und Brennstoffzellentechnologien	DE	SS	4 LP
M-BGU-104917	Wastewater Treatment Technologies	EN	WS	6 LP
M-CIWVT-106680	Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation	EN	SS	5 LP
M-CIWVT-103407	Water Technology	EN	WS	6 LP
M-CIWVT-104292	Wirbelschichttechnik	DE	SS	4 LP

4.4 Vertiefungsfach I

Leistungspunkte

16

WICHTIG: Bevor Sie Prüfungen im Vertiefungsfach ablegen können, müssen Sie einen Prüfungsplan beim Masterprüfungsausschuss genehmigen lassen. In Anschluss werden die Wahlen im Studierendenportal durch den Leistungskoordinator/die Leistungskoordinatorin der Fakultät getroffen, sodass Sie sich für Prüfungen anmelden können.

Leistungsnachweise/Prüfungen

Erfolgskontrolle für jedes Modul des Vertiefungsfachs ist eine mündliche Prüfung nach § 4 Abs. 2 Nr. 2 SPO. In Ausnahmefällen, die bei dem jeweiligen Modul beschrieben sind, ist die Prüfung schriftlich.

Einige Vertiefungsfächer werden mit einer Blockprüfung abgeschlossen:

Alle Module werden in einer gemeinsamen mündlichen Prüfung (Dauer ca. 1 h) geprüft, für jedes Modul wird eine separate Note vergeben.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

Wahlinformationen

Gewählt werden zwei Vertiefungsfächer (Vertiefungsfach I und Vertiefugnsfach II*) mit einem Umfang von je 16 LP. Im Studiengang Master Bioingenieurwesen muss mindestens eines der folgenden Vertiefungsfächer gewählt werden:

- · Biopharmazeutische Verfahrenstechnik
- Lebensmittelverfahrenstechnik
- · Neue Bioproduktionssysteme-Elektrobiotechnologie
- · Produktionsprozesse zur stofflichen Nutzung nachwachsender Rohstoffe
- · Wassertechnologie

^{*} Im Modulhandbuch wird wegen der Übersichtlichkeit ausschließlich Vertiefungsfach I dargestellt. In Vertiefungsfach II werden die gleichen Wahlmöglichkeiten angeboten.

Vertiefungsfach I (Wahl: 1 Bestandteil)	
Angewandte Rheologie	16 LP
Automatisierung und Systemverfahrenstechnik	16 LP
Biopharmazeutische Verfahrenstechnik	16 LP
Chemische Energieträger - Brennstofftechnologie	16 LP
Chemische Verfahrenstechnik	16 LP
Energieverfahrenstechnik	16 LP
Entrepreneurship in der Verfahrenstechnik	16 LP
Gas-Partikel-Systeme	16 LP
Lebensmittelverfahrenstechnik	16 LP
Modellierung und Simulation	16 LP
Neue Bioproduktionssysteme – Elektrobiotechnologie	16 LP
Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe	16 LP
Prozesse der Mechanischen Verfahrenstechnik	16 LP
Technische Thermodynamik	16 LP
Thermische Verfahrenstechnik	16 LP
Umweltschutzverfahrenstechnik	16 LP
Verbrennungstechnik	16 LP
Wassertechnologie	16 LP

4.4.1 Angewandte Rheologie

Leistungspunkte 16

Bestandteil von: Vertiefungsfach I

Prüfungsmodus: Mündliche Gesamtprüfung der Modulkombination

Wahlinformationen

Eines der folgenden Module muss gewählt werden:

- · Rheologie von Polymeren
- · Stabilität disperser Systeme

Das Modul Innovative Concepts for Formulation and Processing of Printable Materials kann nur gewählt werden, wenn nicht eines der Module

- · Stabilität disperser Systeme
- · Rheologie komplexer Fluide und moderne rheologische Messmethoden

gewählt wurde.

Fallstudien in Modul Mikrofluidik können abgewählt werden, für das Modul werden dann 4 LP vergeben In Absprache mit Prof. Willenbacher sind auch andere Module kombinierbar.

Angewandte Rheologie (Wahl: mind. 16 LP)				
M-CIWVT-104329	Rheologie von Polymeren	DE	SS	4 LP
M-CIWVT-104330	Stabilität disperser Systeme	DE	WS	4 LP
M-CIWVT-104331	Rheologie komplexer Fluide und moderne rheologische Messmethoden	DE	SS	4 LP
M-CIWVT-105993	Innovative Concepts for Formulation and Processing of Printable Materials	EN	WS	4 LP
M-CIWVT-105399	Mischen, Rühren, Agglomeration	DE	SS	6 LP
M-CIWVT-104886	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	DE	WS	4 LP
M-CIWVT-104370	Trocknungstechnik - dünne Schichten und poröse Stoffe	DE	SS	6 LP
M-CIWVT-104350	Mikrofluidik	DE	WS	4 LP
M-CIWVT-105205	Mikrofluidik mit Fallstudien	DE	WS	6 LP

4.4.2 Automatisierung und Systemverfahrenstechnik Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

bestandten von. vertierungsrach i

Prüfungsmodus: mündliche Prüfung der einzelnen Module

Wahlinformationen

Pflichtmodul:

· Nonlinear Process Control

Zusätzlich muss mindestens eines der folgenden Module gewählt werden:

- · Optimal and Model Predictive Control
- Data-Based Modeling and Control
- · Regelung verteilt-parametrischer Systeme
- Estimator and Observer Design

Automatisierung und Systemverfahrenstechnik (Wahl: mind. 16 LP)				
M-CIWVT-106316	Nonlinear Process Control	DE/EN	WS	6 LP
M-CIWVT-106313	Principles of Constrained Static Optimization	EN	WS	4 LP
M-CIWVT-106317	Optimal and Model Predictive Control	EN	SS	6 LP
M-CIWVT-106319	Data-Based Modeling and Control	EN	WS	6 LP
M-CIWVT-106318	Regelung verteilt-parametrischer Systeme	DE/EN	SS	6 LP
M-CIWVT-106320	Estimator and Observer Design	EN	WS	6 LP
M-CIWVT-106715	Advanced Methods in Nonlinear Process Control	DE	SS	4 LP
M-ETIT-105594	Prozessanalyse: Modellierung, Data Mining, Machine Learning	DE	SS	4 LP
M-CIWVT-104973	Digitalisierung in der Partikeltechnik	DE	WS	6 LP
M-CIWVT-107038	Simulationstechnik	DE	SS	6 LP
M-CIWVT-107037	Dynamik verfahrenstechnischer Systeme	DE	SS	6 LP

4.4.3 Biopharmazeutische Verfahrenstechnik

Leistungspunkte 16

Bestandteil von: Vertiefungsfach I

Prüfungsmodus: mündliche/schriftliche Prüfung der einzelnen Module

Wahlinformationen

Voraussetzung:

· Wahlpflichtmodul "Biopharmazeutische Aufarbeitungsverfahren"

Es ist eines der folgenden Module zu wählen:

- · Formulierung und Darreichung biopharmazeutischer Wirkstoffe
- · Prozessmodellierung in der Aufarbeitung
- · Industrielle Aspekte in der Bioprozesstechnologie

Biopharmazeutisc	che Verfahrenstechnik (Wahl: mind. 16 LP)			
M-CIWVT-103066	Prozessmodellierung in der Aufarbeitung	DE	SS	4 LP
M-CIWVT-104266	Formulierung und Darreichung biopharmazeutischer Wirkstoffe	DE	WS	4 LP
M-CIWVT-104273	Kommerzielle Biotechnologie	DE	SS	4 LP
M-MACH-100489	BioMEMS - Mikrosystemtechnik für Life-Science und Medizin I	DE	WS	4 LP
M-MACH-100490	BioMEMS - Mikrosystemtechnik für Life-Science und Medizin II	DE	SS	4 LP
M-MACH-100491	BioMEMS - Mikrosystemtechnik für Life-Science und Medizin III	DE	SS	4 LP
M-MACH-102702	Ersatz menschlicher Organe durch technische Systeme	DE	SS	4 LP
M-MACH-102720	Grundlagen der Medizin für Ingenieure	DE	WS	4 LP
M-CIWVT-105412	Industrielle Aspekte in der Bioprozesstechnologie	DE	SS	4 LP
M-CIWVT-105890	NMR-Methoden zur Produkt- und Prozessanalyse	DE/EN	WS	4 LP
M-CIWVT-106501	Industrielle Bioprozesse	DE	WS	4 LP
M-CIWVT-106563	Herstellung und Entwicklung von Krebstherapeutika	DE	WS	4 LP
M-CIWVT-106835	Datengetriebene verfahrenstechnische Modelle in Python	DE	WS	4 LP

4.4.4 Chemische Energieträger - Brennstofftechnologie Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfungsmodus: mündliche Prüfung der einzelnen Module

Wahlinformationen

- Das Modul "Brennstofftechnik" muss gewählt werden.
- Das Modul "Raffinerietechnik flüssige Energieträger" kann nicht gewählt werden, wenn in einem anderen Fach das Modul "Liquid Transportation Fuels" gewählt wurde.

Chemische Energ	ieträger - Brennstofftechnologie (Wahl: mind. 16 LP)			
M-CIWVT-103069	Grundlagen der Verbrennungstechnik	DE	WS	6 LP
M-CIWVT-103075	Hochtemperatur-Verfahrenstechnik	DE	SS	6 LP
M-CIWVT-104287	Katalytische Verfahren der Gastechnik	DE	SS	4 LP
M-CIWVT-104288	Energieträger aus Biomasse	DE	WS	6 LP
M-CIWVT-104289	Brennstofftechnik	DE	WS	6 LP
M-CIWVT-104291	Raffinerietechnik - flüssige Energieträger	DE	SS	6 LP
M-CIWVT-104292	Wirbelschichttechnik	DE	SS	4 LP
M-CIWVT-104352	Sicherheitstechnik für Prozesse und Anlagen	DE	SS	4 LP
M-CIWVT-104296	Wasserstoff- und Brennstoffzellentechnologien	DE	SS	4 LP
M-CIWVT-106566	Chemical Hydrogen Storage	EN	WS	4 LP
M-CIWVT-107076	Numerical Simulation of Reacting Multiphase Flows	DE/EN	SS	8 LP
M-CIWVT-106676	Introduction to Numerical Simulation of Reacting Flows	EN	WS	8 LP

4.4.5 Chemische Verfahrenstechnik Bestandteil von: Vertiefungsfach I

Leistungspunkte

16

Prüfungsmodus:

- mündliche Prüfung der einzelnen Module
- Ausnahme: Modul "Reaktormodellierung mit CFD": Prüfungsleistung anderer Art (schriftliche Ausarbeitung)

Wahlinformationen

Das Modul "Chemische Verfahrenstechnik II" ist Pflichtmodul.

Folgende Module sind nicht kombinierbar:

- · Katalytische Mikroreaktoren
- Auslegung von Mikroreaktoren

Chemische Verfah	nrenstechnik (Wahl: mind. 16 LP)			
M-CIWVT-104283	Reaktionskinetik	DE	WS	6 LP
M-CIWVT-104284	Sol-Gel-Prozesse mit Praktikum	DE	WS	6 LP
M-CIWVT-104286	Auslegung von Mikroreaktoren	DE	WS	6 LP
M-CIWVT-104450	Messmethoden in der Chemischen Verfahrenstechnik mit Praktikum	DE	SS	6 LP
M-CIWVT-104451	Katalytische Mikroreaktoren	DE	SS	4 LP
M-CIWVT-104489	Sol-Gel-Prozesse	DE	WS	4 LP
M-CIWVT-104490	Messmethoden in der chemischen Verfahrenstechnik	DE	SS	4 LP
M-CIWVT-104491	Katalytische Mikroreaktoren mit Praktikum	DE	SS	6 LP
M-CIWVT-104281	Chemische Verfahrenstechnik II	DE	WS	6 LP
M-CIWVT-106537	Reactor Modeling with CFD	EN	SS	4 LP
M-CIWVT-106566	Chemical Hydrogen Storage	EN	WS	4 LP
M-CIWVT-106809	Computer-Aided Reactor Design	DE/EN	WS	6 LP
M-CIWVT-107025	Heterogene Katalyse im Ingenieurwesen	DE	SS	6 LP

4.4.6 Energieverfahrenstechnik

Leistungspunkte

Bestandteil von: Vertiefungsfach I

16

Prüfungsmodus: Mündliche Prüfung der einzelnen Module

Wahlinformationen

Das Modul "Brennstofftechnik" muss gewählt werden, sofern nicht als weiteres Vertiefungsfach "Chemische Energieträger - Brennstofftechnologie" gewählt wurde.

Zusätzlich muss eines der folgenden Module gewählt werden:

- Grundlagen der Verbrennungstechnik
- · Hochtemperatur-Verfahrenstechnik

Energieverfahrens	stechnik (Wahl: mind. 16 LP)			
M-CIWVT-103069	Grundlagen der Verbrennungstechnik	DE	WS	6 LP
M-CIWVT-103075	Hochtemperatur-Verfahrenstechnik	DE	SS	6 LP
M-CIWVT-104288	Energieträger aus Biomasse	DE	WS	6 LP
M-CIWVT-104289	Brennstofftechnik	DE	WS	6 LP
M-CIWVT-104292	Wirbelschichttechnik	DE	SS	4 LP
M-CIWVT-104293	Energietechnik	DE	WS	4 LP
M-CIWVT-104295	Verbrennung und Umwelt	DE	SS	4 LP
M-CIWVT-104296	Wasserstoff- und Brennstoffzellentechnologien	DE	SS	4 LP
M-CIWVT-104297	Messtechnik in der Thermofluiddynamik	DE	WS	6 LP
M-CIWVT-105206	Design of a Jet Engine Combustion Chamber	EN	WS	6 LP
M-CIWVT-104352	Sicherheitstechnik für Prozesse und Anlagen	DE	SS	4 LP
M-CIWVT-106676	Introduction to Numerical Simulation of Reacting Flows	EN	WS	8 LP
M-CIWVT-107076	Numerical Simulation of Reacting Multiphase Flows	DE/EN	SS	8 LP

4.4.7 Entrepreneurship in der Verfahrenstechnik

Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfungsmodus: schriftliche/mündliche Prüfung der einzelnen Module

Die Erfolgskontrolle im Modul "Students Innovation Lab" umfasst eine schriftliche Prüfung sowie eine Prüfungsleitsung anderer Art. Die Prüfungen in allen anderen Modulen sind mündlich.

Wahlinformationen

Das Modul "Students Innovation Lab" ist Pflichtmodul.

Innerhalb des Moduls "Students Innovation Lab" kann zwischen zwei unterschiedlichen Projekten gewählt

- Projekt 1: Innovation Project Porous Ceramics from the 3D Printer
- Projekt 2: Innovation Project Electronic Devices from Printable Conductive Materials

Besonderheiten zur Wahl

Wahlen in diesem Bereich sind genehmigungspflichtig.

Entrepreneurship in der Verfahrenstechnik (Wahl: mind. 16 LP)				
M-CIWVT-104330	Stabilität disperser Systeme	DE	WS	4 LP
M-CIWVT-105993	Innovative Concepts for Formulation and Processing of Printable Materials	EN	WS	4 LP
M-CIWVT-106017	Students Innovation Lab	DE/EN	WS	12
				LP

4.4.8 Gas-Partikel-Systeme

Leistungspunkte

16

Bestandteil von: Vertiefungsfach I

<u>Prüfungsmodus:</u> Es ist sowohl eine mündliche Gesamtprüfung der Modulkombination als auch die Prüfung der einzelnen Module möglich.

Wahlinformationen

Pflichtmodul:

· Gas-Partikel-Messtechnik

Folgende Module dürfen nicht kombiniert werden:

- Dimensionsanalyse strömungsmechanischer Fragestellungen
- Datenanalyse und Statistik

Gas-Partikel-Systeme (Wahl: mind. 16 LP)				
M-CIWVT-104292	Wirbelschichttechnik	DE	SS	4 LP
M-CIWVT-104337	Gas-Partikel-Messtechnik	DE	WS	6 LP
M-CIWVT-104339	Nanopartikel - Struktur und Funktion	DE	SS	6 LP
M-CIWVT-104340	Gas-Partikel-Trennverfahren	DE	WS	6 LP
M-CIWVT-104345	Datenanalyse und Statistik	DE	SS	4 LP
M-CIWVT-104973	Digitalisierung in der Partikeltechnik	DE	WS	6 LP
M-CIWVT-106314	Luftreinhaltung - Gesetze, Technologie und Anwendung	DE	SS	4 LP

4.4.9 Lebensmittelverfahrenstechnik

Bestandteil von: Vertiefungsfach I

Leistungspunkte

16

Prüfungsmodus: Mündliche Prüfung der einzelnen Module; auf Wunsch auch als Block.

Ausnahme: Die Prüfung im Modul "Membrane Technologies in Water Treatment" ist schriftlich.

Wahlinformationen

Pflichtmodule:

- · Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen
- Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen

Lebensmittelverfahrenstechnik (Wahl: mind. 16 LP)				
M-CIWVT-103407	Water Technology	EN	WS	6 LP
M-CIWVT-104370	Trocknungstechnik - dünne Schichten und poröse Stoffe	DE	SS	6 LP
M-CHEMBIO-104620	Grundlagen der Lebensmittelchemie	DE	SS	4 LP
M-CIWVT-105380	Membrane Technologies in Water Treatment	EN	SS	6 LP
M-CIWVT-105399	Mischen, Rühren, Agglomeration	DE	SS	6 LP
M-CIWVT-105932	Seminar Lebensmittelverarbeitung in der Praxis	DE	WS	2 LP
M-CIWVT-105933	Einführung in die Sensorik	DE	SS	2 LP
M-CIWVT-105996	Extrusion Technology in Food Processing	EN	WS	4 LP
M-CIWVT-106661	Alternative Protein Technologies	EN	SS	4 LP
M-CIWVT-106698	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen	DE	WS	4 LP
M-CIWVT-106699	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen	DE	SS	4 LP
M-CIWVT-104388	Entwicklung eines innovativen Lebensmittelprodukts	DE	WS+SS	6 LP

4.4.10 Modellierung und Simulation Bestandteil von: Vertiefungsfach I

Leistungspunkte

16

Prüfung der einzelnen Module gemäß Modulbeschreibung (mündliche Prüfung bzw. Prüfungsleistung anderer Art).

Wahlinformationen

Prüfungsmodus:

Pflichtmodul: Introduction to Numericfal Simulation of Reacting Flows

Es darf nur eines der beiden Module Simulationstechnik oder Modellbildung und Simulation in der Thermischen Verfahrenstechnik gewählt werden

Modellierung und Simulation (Wahl: mind. 16 LP)				
M-CIWVT-106676	Introduction to Numerical Simulation of Reacting Flows	EN	WS	8 LP
M-CIWVT-107076	Numerical Simulation of Reacting Multiphase Flows	DE/EN	SS	8 LP
M-CIWVT-106537	Reactor Modeling with CFD	EN	SS	4 LP
M-CIWVT-106809	Computer-Aided Reactor Design	DE/EN	WS	6 LP
M-CIWVT-106835	Datengetriebene verfahrenstechnische Modelle in Python	DE	WS	4 LP
M-MATH-101338	Paralleles Rechnen		Unregelm.	5 LP
M-MATH-106634	Computational Fluid Dynamics and Simulation Lab	DE/EN	SS	4 LP
M-CIWVT-106319	Data-Based Modeling and Control	EN	WS	6 LP
M-CIWVT-107038	Simulationstechnik	DE	SS	6 LP
M-CIWVT-106832	Modellbildung und Simulation in der Thermischen Verfahrenstechnik	DE	WS	6 LP
M-CIWVT-107040	Thermische Verfahrenstechnik III	DE	WS	6 LP

4.4.11 Neue Bioproduktionssysteme – Elektrobiotechnologie Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfung der einzelnen Module gemäß Modulhandbuch (schriftliche Prüfung, mündliche Prüfung bzw. Prüfungsleistung anderer Art).

Auf Wunsch ist auch eine Blockprüfung möglich, sofern Module gewählt wurden, in denen eine mündliche Prüfung angeboten wird.

Wahlinformationen

Pflichtmodul:

· Elektrobiotechnologie

Es darf nur eines der beiden folgenden Module gewählt werden:

- · Batterien und Brennstoffzellen
- · Batterie- und Brennstoffzellensysteme

Es wird empfohlen, das Modul "Modellbildung elektrochemischer Systeme" nur in Kombination mit einem der beiden Module "Batterien und Brennstoffzellen" bzw. "Batterie- und Brennstoffzellensysteme" zu belegen.

Neue Bioproduktions	Neue Bioproduktionssysteme – Elektrobiotechnologie (Wahl: mind. 16 LP)				
M-CIWVT-106518	Elektrobiotechnologie	DE	WS	6 LP	
M-CIWVT-106816	C1-Biotechnologie	DE	WS	6 LP	
M-CIWVT-105295	Biotechnologische Nutzung nachwachsender Rohstoffe	DE	WS	4 LP	
M-CIWVT-106678	Industrielle Biokatalyse	DE	SS	4 LP	
M-CIWVT-103441	Biofilm Systems	EN	SS	4 LP	
M-CIWVT-104570	Biobasierte Kunststoffe	DE	WS	4 LP	
M-CIWVT-104273	Kommerzielle Biotechnologie	DE	SS	4 LP	
M-CIWVT-106838	Biosensors	EN	WS+SS	4 LP	
M-CHEMBIO-106204	Molekularbiologie und Genetik	DE	WS	5 LP	
M-ETIT-105883	Electrocatalysis	EN	SS	5 LP	
M-CHEMBIO-106697	Elektrochemie	DE	Unregelm.	3 LP	
M-ETIT-107005	Batteries, Fuel Cells, and Electrolysis	EN	WS	6 LP	
M-ETIT-100377	Batterie- und Brennstoffzellensysteme	DE	SS	3 LP	
M-ETIT-100508	Modellbildung elektrochemischer Systeme	DE	SS	3 LP	
M-CIWVT-106526	Journal Club - Neue Bioproduktionssysteme Die Erstverwendung ist nur zwischen 01.04.2024 und 31.03.2026 möglich.	DE/EN	WS	4 LP	

Bestandteil von: Vertiefungsfach I

4.4.12 Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte

16

Prüfungsmodus:

Prüfung der einzelnen Module gemäß Modulhandbuch (schriftliche Prüfung, mündliche Prüfung bzw. Prüfungsleistung anderer Art).

Nach Absprache ist eine mündliche Gesamtprüfung über alle Module möglich.

Wahlinformationen

Pflichtmodul: Verfahren und Prozessketten für nachwachsende Rohstoffe

Das Modul Membrane Technologies in Water Treatment kann nicht gewählt werden, wenn esbereits im Bereich Erweiterte Grundlagen gewählt wurde.

Produktionsprozesse	e zur Stofflichen Nutzung Nachwachsender Rohstoffe (Wahl: mind. 1	16 LP)		
M-CIWVT-104273	Kommerzielle Biotechnologie	DE	SS	4 LP
M-CIWVT-104288	Energieträger aus Biomasse	DE	WS	6 LP
M-CIWVT-104397	Innovationsmanagement für Produkte und Prozesse der chemischen Industrie	DE/EN	WS	4 LP
M-CIWVT-104422	Verfahren und Prozessketten für nachwachsende Rohstoffe	DE	SS	6 LP
M-CIWVT-104570	Biobasierte Kunststoffe	DE	WS	4 LP
M-CIWVT-103441	Biofilm Systems	EN	SS	4 LP
M-CHEMBIO-104620	Grundlagen der Lebensmittelchemie	DE	SS	4 LP
M-CIWVT-104266	Formulierung und Darreichung biopharmazeutischer Wirkstoffe	DE	WS	4 LP
M-CIWVT-104342	Fest Flüssig Trennung	DE	WS	8 LP
M-CIWVT-105380	Membrane Technologies in Water Treatment	EN	SS	6 LP
M-CIWVT-105399	Mischen, Rühren, Agglomeration	DE	SS	6 LP
M-CIWVT-105295	Biotechnologische Nutzung nachwachsender Rohstoffe	DE	WS	4 LP
M-CIWVT-106698	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen	DE	WS	4 LP
M-CIWVT-106699	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen	DE	SS	4 LP
M-CIWVT-106837	Bioprocess Scale-up	EN	WS	6 LP

4.4.13 Prozesse der Mechanischen Verfahrenstechnik Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfungsmodus: mündliche Prüfung der einzelnen Module

Ausnahme: Die Prüfung im Modul ausgewählte Formulierungstechnologien ist schriftlich.

Wahlinformationen

- Module/Lehrveranstaltungen, die bereits während des Bachelorstudiums im Rahmen eines Profilfachs gehört wurden, sollten nicht gewählt werden.
- Die Fallstudien im Modul "Mikrofluidik" können abgewählt werden, für das Modul werden dann 4 LP vergeben.
- Das Praktikum Sol-Gel-Prozesse kann abgewählt werden, für das Modul werden dann 4 LP vergeben.
- Es darf nur eines der Module "NMR im Ingenieurwesen" oder "NMR-Methoden zur Produkt- und Prozessanalyse" gewählt werden. Beide Module beinhalten dieselbe Lehrveranstaltung. Das Modul "NMR im Ingenieurwesen" beinhaltet zusätzlich noch ein Praktikum.

Prozesse der Med	chanischen Verfahrenstechnik (Wahl: mind. 16 LP)			
M-CIWVT-103073	Verarbeitung nanoskaliger Partikel	DE	WS	6 LP
M-CIWVT-104284	Sol-Gel-Prozesse mit Praktikum	DE	WS	6 LP
M-CIWVT-104339	Nanopartikel - Struktur und Funktion	DE	SS	6 LP
M-CIWVT-104340	Gas-Partikel-Trennverfahren	DE	WS	6 LP
M-CIWVT-104342	Fest Flüssig Trennung	DE	WS	8 LP
M-CIWVT-104345	Datenanalyse und Statistik	DE	SS	4 LP
M-CIWVT-104350	Mikrofluidik	DE	WS	4 LP
M-CIWVT-104351	Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration	DE	WS	4 LP
M-CIWVT-104353	Materialien für elektrochemische Speicher und Wandler	DE	WS+SS	4 LP
M-CIWVT-104401	NMR im Ingenieurwesen	DE	WS	6 LP
M-MATH-102932	Numerische Methoden in der Strömungsmechanik	EN	SS	4 LP
M-CIWVT-104489	Sol-Gel-Prozesse	DE	WS	4 LP
M-CIWVT-104337	Gas-Partikel-Messtechnik	DE	WS	6 LP
M-CIWVT-104973	Digitalisierung in der Partikeltechnik	DE	WS	6 LP
M-CIWVT-105205	Mikrofluidik mit Fallstudien	DE	WS	6 LP
M-CIWVT-105399	Mischen, Rühren, Agglomeration	DE	SS	6 LP
M-MATH-103276	Seminar	DE	WS+SS	3 LP
M-CIWVT-105890	NMR-Methoden zur Produkt- und Prozessanalyse	DE/EN	WS	4 LP
M-CIWVT-106314	Luftreinhaltung - Gesetze, Technologie und Anwendung	DE	SS	4 LP
M-CIWVT-106501	Industrielle Bioprozesse	DE	WS	4 LP
M-MATH-106634	Computational Fluid Dynamics and Simulation Lab	DE/EN	SS	4 LP
M-CIWVT-106835	Datengetriebene verfahrenstechnische Modelle in Python	DE	WS	4 LP
M-MATH-101338	Paralleles Rechnen		Unregelm.	5 LP
M-CIWVT-106676	Introduction to Numerical Simulation of Reacting Flows	EN	WS	8 LP
M-CIWVT-107037	Dynamik verfahrenstechnischer Systeme	DE	SS	6 LP
M-CIWVT-107076	Numerical Simulation of Reacting Multiphase Flows	DE/EN	SS	8 LP

4.4.14 Technische Thermodynamik Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfungsmodus: mündliche Prüfung der einzelnen Module

Wahlinformationen

Voraussetzung:

· Wahlpflichtmodul "Thermodynamik III"

Es müssen mindestens zwei der folgenden Module gewählt werden:

- · Statistische Thermodynamik
- Kältetechnik B Grundlagen der industriellen Gasgewinnung Physical Foundations of Cryogenics
- · Cryogenic Engineering
- Grenzflächenthermodynamik
- · Komplexe Phasengleichgewiche

Das Praktikum Sol-Gel-Prozesse kann abgewählt werden, für das Modul werden dann 4 LP vergeben.

Technische Thern	nodynamik (Wahl: mind. 16 LP)			
M-CIWVT-103059	Statistische Thermodynamik	DE/EN	SS	6 LP
M-CIWVT-103063	Grenzflächenthermodynamik	DE/EN	SS	4 LP
M-CIWVT-103068	Physical Foundations of Cryogenics	EN	SS	6 LP
M-CIWVT-104284	Sol-Gel-Prozesse mit Praktikum	DE	WS	6 LP
M-CIWVT-104354	Kältetechnik B - Grundlagen der industriellen Gasgewinnung	DE	SS	6 LP
M-CIWVT-104356	Cryogenic Engineering	EN	WS	6 LP
M-CIWVT-104478	Vakuumtechnik	DE	WS	6 LP
M-CIWVT-104489	Sol-Gel-Prozesse	DE	WS	4 LP
M-CIWVT-104461	Chem-Plant	DE	SS	4 LP
M-CIWVT-104297	Messtechnik in der Thermofluiddynamik	DE	WS	6 LP
M-CIWVT-104283	Reaktionskinetik	DE	WS	6 LP
M-CIWVT-106882	Polymerthermodynamik	DE/EN	WS	6 LP
M-CIWVT-106832	Modellbildung und Simulation in der Thermischen Verfahrenstechnik	DE	WS	6 LP

4.4.15 Thermische Verfahrenstechnik

Bestandteil von: Vertiefungsfach I

Leistungspunkte

16

Prüfungsmodus:

- · mündliche Einzelfachprüfung
- · bei den folgenden Modulen ist auch eine Gesamtfachprüfung möglich
 - Wärmeübertragung II
 - Stoffübertragung II
 - Wärmeübertrager

Wahlinformationen

Mindestens eines der folgenden Module muss gewählt werden:

- Thermische Verfahrenstechnik III
- Wärmeübertragung II
- Stoffübertragung II
- · Modellbildung und Simulation in der Thermischen Verfahrenstechnik
- Wärmeübertrager
- · Trocknungstechnik dünne Schichten und poröse Stoffe

Außerdem muss mindestens ein weiteres Modul aus folgender Liste gewählt werden:

- · Thermische Verfahrenstechnik III
- Wärmeübertragung II
- Stoffübertragung II
- · Modellbildung und Simulation in der Thermischen Verfahrenstechnik
- Wärmeübertrager
- Trocknungstechnik dünne Schichten und poröse Stoffe
- · Angewandte Stoffübertragung Energie- und Dünnschichtsysteme
- Hochtemperatur-Verfahrenstechnik
- Messtechnik in der Thermofluiddynamik

Es darf nur eines der beiden folgenden Module gewählt werden:

- Trocknungstechnik dünnes Schichten und poröse Stoffe
- · Angewandte Stoffübertragung Energie- und Dünnschichtsysteme

Thermische Verfa	Thermische Verfahrenstechnik (Wahl: mind. 16 LP)				
M-CIWVT-107040	Thermische Verfahrenstechnik III	DE	WS	6 LP	
M-CIWVT-103051	Wärmeübertragung II	DE	WS	6 LP	
M-CIWVT-104369	Stoffübertragung II	DE	WS	6 LP	
M-CIWVT-104371	Wärmeübertrager	DE	WS	6 LP	
M-CIWVT-106832	Modellbildung und Simulation in der Thermischen Verfahrenstechnik	DE	WS	6 LP	
M-CIWVT-104370	Trocknungstechnik - dünne Schichten und poröse Stoffe	DE	SS	6 LP	
M-CIWVT-106823	Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme	DE	WS	8 LP	
M-CIWVT-103075	Hochtemperatur-Verfahrenstechnik	DE	SS	6 LP	
M-CIWVT-104297	Messtechnik in der Thermofluiddynamik	DE	WS	6 LP	
M-CIWVT-103059	Statistische Thermodynamik	DE/EN	SS	6 LP	
M-CIWVT-104352	Sicherheitstechnik für Prozesse und Anlagen	DE	SS	4 LP	
M-CIWVT-104354	Kältetechnik B - Grundlagen der industriellen Gasgewinnung	DE	SS	6 LP	
M-CIWVT-104461	Chem-Plant	DE	SS	4 LP	

4.4.16 Umweltschutzverfahrenstechnik

Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfungsmodus: mündliche Prüfung der einzelnen Module

Wahlinformationen

Mindestens eines der folgenden Module muss gewählt werden:

- Water Technology
- · Gas-Partikel-Trennverfahren
- · Verbrennung und Umwelt
- · Applied Combustion Technology

Das Modul "Liquid Transportation Fuels" kann nicht gewählt werden, wenn in einem anderen Fach das Modul "Raffinerietechnik – flüssige Energieträger" gewählt wurde.

Umweltschutzverfahrenstechnik (Wahl: mind. 16 LP)				
M-CIWVT-103407	Water Technology	EN	WS	6 LP
M-CIWVT-104289	Brennstofftechnik	DE	WS	6 LP
M-CIWVT-104340	Gas-Partikel-Trennverfahren	DE	WS	6 LP
M-CIWVT-104352	Sicherheitstechnik für Prozesse und Anlagen	DE	SS	4 LP
M-CIWVT-105200	Liquid Transportation Fuels	EN	WS	6 LP
M-CIWVT-105903	Industrial Wastewater Treatment	EN	SS	4 LP
M-CIWVT-106314	Luftreinhaltung - Gesetze, Technologie und Anwendung	DE	SS	4 LP
M-CIWVT-104295	Verbrennung und Umwelt	DE	SS	4 LP

4.4.17 Verbrennungstechnik

Leistungspunkte

16

Bestandteil von: Vertiefungsfach I

Prüfungsmodus: Es ist sowohl eine mündliche mündliche Gesamtprüfung der Modulkombination als auch die Prüfung der einzelnen Module möglich.

Wahlinformationen

Pflichtmodul:

• Grundlagen der Verbrennungstechnik

Verbrennungstecl	Verbrennungstechnik (Wahl: mind. 16 LP)				
M-CIWVT-103069	Grundlagen der Verbrennungstechnik	DE	WS	6 LP	
M-CIWVT-103075	Hochtemperatur-Verfahrenstechnik	DE	SS	6 LP	
M-CIWVT-104288	Energieträger aus Biomasse	DE	WS	6 LP	
M-CIWVT-104289	Brennstofftechnik	DE	WS	6 LP	
M-CIWVT-104293	Energietechnik	DE	WS	4 LP	
M-CIWVT-104294	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen	DE	SS	4 LP	
M-CIWVT-104295	Verbrennung und Umwelt	DE	SS	4 LP	
M-CIWVT-104296	Wasserstoff- und Brennstoffzellentechnologien	DE	SS	4 LP	
M-CIWVT-104297	Messtechnik in der Thermofluiddynamik	DE	WS	6 LP	
M-CIWVT-105206	Design of a Jet Engine Combustion Chamber	EN	WS	6 LP	
M-CIWVT-104321	Verbrennungstechnisches Praktikum	DE/EN	SS	4 LP	
M-CIWVT-106676	Introduction to Numerical Simulation of Reacting Flows	EN	WS	8 LP	
M-CIWVT-107076	Numerical Simulation of Reacting Multiphase Flows	DE/EN	SS	8 LP	

4.4.18 Wassertechnologie Bestandteil von: Vertiefungsfach I

Leistungspunkte 16

Prüfungsmodus: mündliche Gesamtprüfung der Modulkombination

Ausnahme: Die Prüfung in den Modulen Membrane Technologies in Water Treatment und Fundamentals of Water Quality ist schriftlich.

Wahlinformationen

Pflichtmodul:

· Water Technology

Zusätzlich muss mindestens eines der folgenden Module gewählt werden:

- · Fundamentals of Water Quality
- · Industrial Wastewater Treatment
- · Membrane Technologies in Water Treatment

Weitere Vorgaben:

- Es darf nur eines der Module "NMR im Ingenieurwesen" oder "NMR-Methoden zur Produkt- und Prozessanalyse" gewählt werden.
- Das Modul "Wasserbeurteilung" sollte nicht gewählt werden, wenn im Bachelor das Profilfach "Wasserqualität und Verfahren zur Wasser-/Abwasserbehandlung" belegt wurde.

Wassertechnologie (Wahl: mind. 16 LP)				
M-CIWVT-103407	Water Technology	EN	WS	6 LP
M-CIWVT-103441	Biofilm Systems	EN	SS	4 LP
M-CIWVT-104401	NMR im Ingenieurwesen	DE	WS	6 LP
M-CIWVT-103440	Practical Course in Water Technology	EN	WS	4 LP
M-CIWVT-105380	Membrane Technologies in Water Treatment	EN	SS	6 LP
M-CIWVT-105890	NMR-Methoden zur Produkt- und Prozessanalyse	DE/EN	WS	4 LP
M-CIWVT-105903	Industrial Wastewater Treatment	EN	SS	4 LP
M-CIWVT-103438	Fundamentals of Water Quality	EN	WS	6 LP

4.5 Berufspraktikum

Leistungspunkte

14

Pflichtbestandteile						
M-CIWVT-104527	Berufspraktikum	DE	WS+SS	14		
				LP		

4.6 Zusatzleistungen

Zusatzleistungen (Zusatzleistungen (Wahl: max. 30 LP)							
M-CIWVT-104389	Verfahrensentwicklung in der Chemischen Industrie	DE	SS	2 LP				
M-FORUM-106753	Begleitstudium Wissenschaft, Technologie und Gesellschaft	DE	WS+SS	16 LP				

5 Module

5.1 Modul: Molekularbiologie und Genetik [M-CHEMBIO-106204]

Verantwortung: Prof. Dr. Jörg Kämper

Prof. Dr. Natalia Requena Sanchez

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Vertiefungsfach I / Neue Bioproduktionssysteme – Elektrobiotechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile						
T-CHEMBIO-103675	Molekularbiologie und Genetik	5 LP	Kämper, Requena Sanchez			

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 Minuten über die Inhalte der Vorlesungsteile Molekularbiologie (3 LP) und Genetik (2 LP) (Insgesamt 5LP)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden vertiefen ihr Wissen um die molekularen Grundlagen des Lebens und die technischen Möglichkeiten, Lebewesen über Veränderung ihrer Gene oder deren Expression zu manipulieren. Dies umfasst ein tieferes theoretisches Verständnis folgender Bereiche:
Mikrobiologie, Genetik, Molekularbiologie

Inhalt

VL Genetik:

DNA, DNA-Struktur, DNA-Topologie, Chromosomen, Chromatin, DNA-Replikation, Mutationen, Reparatur, Transponierbare Elemente, Aufbau von Genen, Transkription, RNA Prozessierung, Regulation der Genexpression bei Pro-und Eukaryonten (transkriptionell, posttranskriptionell, posttranskriptionell, posttranslatio-nal), Proteinsynthese, Epigenetik: Methylierung, Histonmodifikationen, Humangenetik, Tumorgenetik, Genomprojekte, Funktionelle Geno-mik/Proteomik/Bioinformatik, Immungenetik (Einleitung), Entwicklungsgenetik (Einleitung).

VL Molekularbiologie:

Molekularbiologie Einleitung, DNA Extraktion, Restriktionsenzyme, Klonie-rung in Vektoren, Bibliothek screening, Bioinformatik, Sequenzierung, Ge-nome sequencing, RNA, Northern-blot, RT-PCR, Real time PCR, cDNA Bib-liothek, Microarrays, Rekombinante Proteine, Western blot, Affinity chroma-tography, Mutagenesis, Transformation

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur

Arbeitsaufwand

Präsenzzeit: 75 h

Nachbereitung und Prüfungsvorbereitung: 75 h

Summe: 150 h

5 LP

Lehr- und Lernformen

Vorlesungen

Literatur

VL Genetik:

Inhalt der Vorlesung in Stichworten

Lehrbücher der Genetik, z.B. Knippers, Molekulare Genetik, 9. Auflage; Watson, Molecular Biology of the Gene, 5. Auflage; Griffiths, Introduction to Genetic Analysis, 9. Auflage

VL Molekularbiologie:

Lehrbücher der Molekularbiologie, z.B. Molekulare Zellbiologie-Lodish (Spektrum), Watson-Molekularbiologie (Pearson)

5.2 Modul: Additive Manufacturing for Process Engineering [M-CIWVT-105407]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	5	2

Pflichtbestandteile					
T-CIWVT-110902	Additive Manufacturing for Process Engineering - Examination	5 LP	Klahn		
T-CIWVT-110903	Practical in Additive Manufacturing for Process Engineering	1 LP	Klahn		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Praktikum; Studienleistung nach § 4 Abs. 3 SPO.
- 2. mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Die Anmeldung zur mündlichen Prüfung ist erst nach der erfolgreichen Teilnahme am Praktikum möglich.

Qualifikationsziele

Students are familiar with the concept of a fully digital fabrication chain using and linking together modeling and simulation, computer aided design and 3D printing. They know the most important 3D printing methods suitable for process engineering applications. Moreover, they are able to use standard tools for 3D data generation and they already own hands on practical experience with the use of a metal 3D printer for fabrication of highly precise parts with complex shape.

Inhalt

The rationale for additive manufacturing and key aspects of this approach are explained. An overview of different methods and materials for 3D printing is given with a focus on the use of 3D printed parts or fully functional devices in chemical and process engineering. Tools for 3D data generation for additive manufacturing are introduced and design rules for selected 3D printing methods are explained. Illustrative examples for 3D printed components and functional devices in process engineering are presented and discussed based on literature and own research. In the practical, students will work together in small groups on a fully digital fabrication of functional parts by selective laser melting of metal powder going through a cycle of 3D data generation, 3D printing, and finishing of the printed parts.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Veranstaltung ist auf 25 Teilnehmer begrenzt. Die Anmeldung zu der Veranstaltung erfolgt über ILIAS. Sollten sich mehr als 25 Studierende zu der Veranstaltung anmelden, werden die Plätze nach folgenden Kriterien vergeben:

- Zunächst werden Studierende der Studiengänge Bioingenieurwesen bzw. Chemieingenieurwesen und Verfahrenstechnik berücksichtigt.
- Reichen die Plätze für Studierende der o. g. Studiengänge nicht aus, wird per Los entschieden.
- Freie Plätze werden an Studierende anderer Studiengänge vergeben, bei Bedarf per Los.

Arbeitsaufwand

Präsenszeit:

Vorlesung: 30 h

Praktikum 16 h (8 Termine, Zeit nach Vereinbarung, Ort: IMVT, KIT Campus Nord, Geb. 605)

Selbststudium: 90 h

Prüfungsvorbereitung: 44 h

Summe: 180 h

Literatur

- Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani: Additive Manufacturing Technologies, Springer Nature Switzerland, 2021, DOI: 10.1007/978-3-030-56127-7
- Christoph Klahn, Mirko Meboldt, Filippo Fontana, Bastian Leutenecker-Twelsiek, Jasmin Jansen, Daniel Omidvarkarjan: Entwicklung und Konstruktion für die Additive Fertigung, Vogel Business Media, Würzburg, 2021, ISBN 978-3-8343-3469-5

5.3 Modul: Advanced Methods in Nonlinear Process Control [M-CIWVT-106715]

Verantwortung: Dr.-Ing. Pascal Jerono

Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
4

Pflichtbestandteile			
T-CIWVT-113490	Advanced Methods in Nonlinear Process Control	4 LP	Jerono, Meurer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 45 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verfügen über ein vertieftes Verständnis von Methoden und Konzepte zur Analyse und Regelung nichtlinearer dynamischer Systeme. Sie verstehen die zugrundeliegenden mathematischen Konzepte und können diese auf neue Problemstellungen anwenden. Sie sind in der Lage, nichtlineare Regelungen für konkrete Problemstellungen selbstständig zu entwerfen und die Stabilität des geschlossenen Regelkreises zu analysieren.

Inhalt

The module covers selected advanced methods in nonlinear control of finite-dimensional systems that directly exploit the nonlinear system dynamics and result in control concepts relevant for different applications. This includes in particular:

- Lvapunov theory and Lvapunov-based design methods
- Disspativity and passivity-based control concepts
- · Input-to-state stability

Problem sets are considered in the exercises to apply the developed methods using analytical tools as well as computer algebra systems to realize the design approaches.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 30 h
- · Selbststudium: 30 h
- · Prüfungsvorbereitung: 60 h

Literatur

- T. Meurer, P. Jerono: Advanced Methods in Nonlinear Control, Lecture Notes.
- T. Meurer: Nonlinear Process Control, Lecture Notes.
- B. Brogliato, R. Lozano, B. Maschke, O. Egeland: Dissipative systems analysis and control, Springer, 2007.
- · H.K. Khalil: Nonlinear Systems, Prentice Hall, 2002.
- M. Krstic, I. Kanellakopoulos, P. Kokotovic: Nonlinear and Adaptive Control Design, John Wiley & Sons, 1995.
- R. Sepulchre, M. Jankovic, P.V. Kokotovic: Constructive Nonlinear Control, Springer-Verlag, 1997.
- A.J. van der Schaft: L2-gain and passivity techniques in nonlinear control, Springer, 2016.
- M. Vidyasagar: Nonlinear Systems Analysis, SIAM, 2002.

5.4 Modul: Alternative Protein Technologies [M-CIWVT-106661]

Verantwortung: PD Dr.-Ing. Azad Emin

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	4	1

Pflichtbestandteile				
T-CIWVT-113429	Alternative Protein Technologies	4 LP	Emin	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einem Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Upon successful completion of this module, students will be able to:

- Understand and describe the fundamental aspects of various alternative proteins, including plant-based, fermentationderived, and cultivated meat and dairy alternatives.
- 2. Evaluate the nutritional profiles and sensory properties of meat and dairy substitutes.
- 3. Grasp the basic principles of material science that are applicable to the development of alternative proteins.
- 4. Gain familiarity with precision fermentation processes and their practical applications in creating alternative proteins.
- 5. Recognize the significance and methodology of extrusion technology in enhancing the texture and structure of plantbased proteins.
- 6. Develop a basic understanding of product design and marketing strategies tailored for alternative proteins.
- 7. Identify the key technological processes in alternative protein production and their environmental implications.
- 8. Acquire a foundational awareness of the market dynamics and emerging trends within the alternative protein sector.
- 9. Participate in practical projects and engage with industry professionals to apply learned concepts in real-world contexts.

Inhalt

This course is designed to offer an academic and technical exploration into the field of alternative protein technologies. It encompasses a detailed study of the science, engineering, and technological aspects behind the development of plant-based, fermentation-derived, and cultivated protein products. Key focus areas include the sustainability challenges associated with conventional meat and dairy production, and the potential of alternative proteins to address these issues.

Participants will delve into the material science principles that guide the development of meat and dairy substitutes, examining texture, structure, and sensory properties. The course will cover advanced topics such as precision fermentation and its role in alternative protein production, the technology behind cultivated meat, and the application of extrusion technology in creating plant-based protein structures.

The curriculum also includes a comprehensive study of the production processes, nutritional profiles, and environmental impacts of various alternative protein sources such as legumes, insects, algae, and mycoprotein. Through this course, students will gain a thorough understanding of the current technologies, challenges, and innovations in the field, equipping them with the knowledge to contribute to the future advancements in the alternative protein sector.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Course location: Seminar room, nexnoa GmbH, Durmersheimerstr. 188A, 76189 Karlsruhe

Arbeitsaufwand

- · Präsenzzeit: Vorlesung 2 SWS, 30 h
- · Vor- und Nachbereitung: 30 h
- · Prüfungsvorbereitung: 60 h

5.5 Modul: Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme [M-CIWVT-106823]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Dr. Philip Scharfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik

Leistungspunkte
8 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-113692	Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme	8 LP	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten über die Vorlesungsinhalte und die Erkenntnisse aus der Versuchsauswertung.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden sind in der Lage, zu anwendungsnahen Stoffübertragungsprozessen mit grundlegenden Beispielen aus dem Bereich der Energie- und Dünnschichttechnik Berechnungen durchzuführen und eine Analyse der eigenen Versuchsergebnisse mit den eigenen Modellrechnungen im kleinen Team von 4 - 5 Personen zu bewerten.

Das Qualifikationsziel ist es, diese anwendungsnahen Erkenntnisse von grundlegenden Fragestellungen in der Stoffübertragung und Prozesstechnik eigenständig abzuleiten und diese Erkenntnisse auf neue zukünftige Fragen der Energietechnik zu übertragen.

Inhalt

Die Vorlesung richtet sich an alle, die sich für **grundlegende Fragestellungen** in der **Stoffübertragung** mit Bezug zu **erneuerbare Energien** und Themen im Bereich der Batterie- und Wasserstofftechnologie, sowie neueste Dünnschichttechnologien interessieren.

Es werden anwendungsnahe Themen der Stoffübertragung mit Bezug zu aktueller Forschung im Bereich der Energie- und Dünnschichtverfahrenstechnik behandelt. Berechnungen und Ausarbeitung werden in Gruppenarbeit und Teams durchgeführt, Diskussion und Bewertung zu aktuellen Themen der Stoffübertragung und der Vorlesungsinhalte sowie dem Stand es Wissens in der Literatur werden in Kolloquien diskutiert. Versuche zu grundlegenden Themen wie Hertz-Knudsen-Diffusion, Selektive Verdunstung und Trocknung, oberflächenspannungsgetrieben Stoffströme (Marangoni-Stoffströme), Filmtrocknung mit polymeren Zusätzen und Bindern, flüssig- und filmseitig dominierte Stoffübertragung. Die Themen Adsorption, Absorption und Chemiesorption mit Diffusion-, Absorption-, Reaktion- und Relaxationskinetik werden phänomenologisch behandelt. Die Versuche werden zusammen mit den wissenschaftlichen Betreuern in Kolloquien besprochen. Die Ausarbeitung von Ergebnissen werden im Team von der Gruppe und engem Austausch und unter wissenschaftlicher Anleitung der Doktorand(inn)en geführt.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Teilnehmendenzahl ist auf max. 20 Personen beschränkt.

Anmeldeprozedere: Informationen siehe Merkblatt zu Angewandte Stoffübertragung (ASÜ) in ILIAS und auf der Homepage.

Arbeitsaufwand

- Präsenzzeit: 60 h (2 SWS Vorlesung und 2 SWS Übung)
- Versuchsvorbereitung und Durchführung: 30 h (ca. 7 8 h pro Versuch)
- Versuchsauswertung: 50 h (ca. 12 h pro Versuch)
- Selbststudium: Vor- und Nachbereitung der Lehrveranstaltung: 50 h
- Prüfungsvorbereitung: 50 h

5.6 Modul: Auslegung von Mikroreaktoren [M-CIWVT-104286]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile			
T-CIWVT-108826	Auslegung von Mikroreaktoren	6 LP	Pfeifer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen

Keine

Qualifikationsziele

Die Studentinnen und Studenten können die Methoden der Prozessintensivierung durch Mikrostrukturierung des Reaktionsraumes anwenden und sind in der Lage die Vorteile und Nachteile einer Übertragung von gegebenen Prozessen in mikroverfahrenstechnische Apparate zu analysieren. Mit Kenntnis über spezielle Herstellverfahren für Mikroreaktoren sind die Studentinnen und Studenten in der Lage Auslegungsmethoden auf mikrostrukturierte Systeme hinsichtlich des Wärmetauschs anzuwenden und die Möglichkeiten zur Übertragung von Prozessen aus konventioneller Verfahrenstechnik in den Mikroreaktor hinsichtlich der Wärmeübertragungsleistung zu analysieren. Sie verstehen außerdem, wie die Mechanismen von Stofftransport und Mischung in strukturierten Strömungsmischern zusammenspielen, und sind in der Lage diese Kenntnisse auf die Kombination von Mischung und Reaktion anzuwenden. Darüber hinaus können sie mögliche Limitierungen bei der Prozessumstellung analysieren und so mikrostrukturierten Reaktoren für homogene Reaktionen angemessen auslegen. Die Studentinnen und Studenten verstehen die Bedeutung der Verweilzeitverteilung für Umsatz und Selektivität und sind in der Lage das Zusammenspiel von Stofftransport durch Diffusion und hydrodynamischer Verweilzeit in mikroverfahrenstechnischen Apparaten in gegebenen Anwendungsfällen zu analysieren.

Inhalt

Basiswissen zu mikroverfahrenstechnischen Systemen: Herstellung von mikrostrukturierten Systemen und Wechselwirkung mit Prozessen, Intensivierung von Wärmetausch und spezielle Effekte durch Wärmeleitung, Verweilzeitverteilung in Reaktoren und Besonderheiten in mikrostrukturierten Systemen, strukturierte Strömungsmischer (Bauformen und Charakterisierung) und Auslegung von strukturierten Reaktoren hinsichtlich Stoff- und Wärmetransport.

Arbeitsaufwand

Präsenzzeit: 45 h Selbststudium: 75 h

Prüfungsorbereitung: 60 h (ca. 1,5 Wochen)

Literatur

- Skript (Foliensammlung), Fachbücher:
- Kockmann, Norbert (Hrsg.), Micro Process Engineering, Fundamentals, Devices, Fabrication, and Applications, ISBN-10: 3-527-31246-3
- Micro Process Engineering A Comprehens (Hardcover), Volker Hessel (Editor), Jaap C. Schouten (Editor), Albert Renken (Editor), Yong Wang (Editor), Junichi Yoshida (Editor), 3 Bände, 1500 Seiten, Wiley VCH, ISBN-10: 3527315500
- Winnacker-Küchler: Chemische Technik, Prozesse und Produkte, BAND 2: NEUE TECHNOLOGIEN, Kapitel Mikroverfahrenstechnik S. 759-819, ISBN-10: 3-527-30430-4
- Emig, Gerhard, Klemm, Elias, Technische Chemie, Einführung in die chemische Reaktionstechnik, Springer-Lehrbuch,
 5., aktual. u. erg. Aufl., 2005, 568 Seiten, ISBN-10: 3-540-23452-7 (Kapitel Mikroreaktionstechnik S. 444-467)
- Chemical Kinetics, ISBN 978-953-51-0132-1 "Application of Catalysts to Metal Microreactor Systems", P. Pfeifer, http://www.intechopen.com/books/chemical-kinetics/application-of-catalysts-to-metal-microreactor-systems

5.7 Modul: Batterie- und Brennstoffzellensysteme [M-ETIT-100377]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Vertiefungsfach I / Neue Bioproduktionssysteme – Elektrobiotechnologie

Leistungspunkte
3 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

 Pflichtbestandteile

 T-ETIT-100704
 Batterie- und Brennstoffzellensysteme
 3 LP Weber

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Moduls beherrschen die Studierenden die an praktischen Beispielen vermittelten Grundlagen, die zur Entwicklung eines Batterie- oder Brennstoffzellensystems erforderlich sind.

Inhalt

In der Vorlesung Batterie- und Brennstoffzellensysteme werden die in der Vorlesung Batterien und Brennstoffzellen behandelten Themen vertieft, aktuelle Entwicklungen vorgestellt und speziell die systemrelevanten Aspekte der Technologien behandelt. Im ersten Teil der Vorlesung werden Brennstoffzellensysteme und deren Komponenten diskutiert. Es wird auf die Integration der verschiedenen Nieder- und Hochtemperaturbrennstoffzellentypen in Systeme eingegangen, die unterschiedlichen Anforderungen an die Brennstoffaufbereitung vorgestellt und die bisher umgesetzten Systemkonzepte verglichen. Im zweiten Teil der Vorlesung werden Batteriesysteme für Hybrid- und Elektrofahrzeuge vorgestellt und auf die in diesen verwendeten Batterien und Zellen eingegangen. Den Schwerpunkt bilden Lithium-Ionen Batteriesysteme, dabei werden Ladestrategien und Schaltungen für den Ladungsausgleich, Sicherheitskonzepte auf Zell- und Batterieebene sowie BMS-Systeme diskutiert. Im letzten Teil der Vorlesung werden alternative elektrochemische Energiespeicher wie Redox-Flow Batterien und Elektrolyseure vorgestellt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

1. Präsenszeit Vorlesung: 15 * 2 h = 30 h

2. Vor- und Nachbereitungszeit Vorlesung: 15 * 2 h = 30 h

3. Prüfungsvorbereitung und Präsens in selbiger: 30 h

Insgesamt: 90 h = 3 LP

Empfehlungen

Die Inhalte der Vorlesung "Batterien und Brennstoffzellen" werden als bekannt vorausgesetzt. Studierenden, die diese Vorlesung (noch) nicht gehört haben, wird empfohlen das Skript zu dieser Vorlesung vorab durchzuarbeiten.

5.8 Modul: Batteries, Fuel Cells, and Electrolysis [M-ETIT-107005]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-ETIT-113986	Batteries, Fuel Cells, and Electrolysis	6 LP	Krewer

Erfolgskontrolle(n)

Success control takes place in the form of a written examination lasting 120 minutes.

Voraussetzungen

none

Qualifikationsziele

Students gain an understanding of batteries, fuel cells and electrolysis including their application, design, and behavior. They acquire in-depth knowledge of the transport and charge transfer processes in them, their impact on performance and design, and the characteristics of the most frequent types of batteries, fuel and electrolysis cells. They understand how to analyze and characterize them using measurement methods and modeling. A practical insight into current areas of application and research topics of electrochemical energy storage and conversion allows them to relate the course work to demands of the society and for R&D. They are able to communicate with specialists from related disciplines in the field of (application of) batteries, fuel cells and electrolysis and can actively contribute to the opinion-forming process in society with regard to energy technology issues.

Inhalt

The course introduces batteries, fuel cells and electrolysis and their use for sustainable mobile and stationary energy supply and storage. The course is divided into five sections. The first part covers the role of batteries, fuel cells and electrolysis for renewable energy storage and electrification of the energy system and the present applications. This is followed by a fundamentals part, where the processes in electrochemical cells at open circuit and during operation and their relation to cell performance and behavior are discussed. It contains thermodynamics, kinetics, transport and performance measures. The third part deals with the working principle, design and operation of fuel cells and electrolysis and the particularities of the different cell types. This is followed by a similar part for batteries. Finally, dynamic and stationary methods for characterizing the cells are covered.

Group project

As part of the coursework, student groups work on the design of a battery, fuel cell or electrolyser for a given application during the semester. This includes literature research on cell type, materials and material data as well as the dimensioning and energetic evaluation of the cell. The results are documented in a short technical report.

Zusammensetzung der Modulnote

The module grade is the grade of the written examination.

Arbeitsaufwand

- 1. Lecture attendance time: 15 * 2 h = 30 h
- 2. Preparation and follow-up time for lecture: 15 * 5 h = 75 h
- 3. Exercise attendance time: 7 * 2 h = 14 h
- 4. Preparation and follow-up time for exercise: 7 * 4 h = 28 h
- 5. Group work including writing of a report: 33 h
- 6. Exam preparation and attendance: included in preparation and follow-up time.

Total: 180 h = 6 CP

5.9 Modul: Begleitstudium Wissenschaft, Technologie und Gesellschaft [M-FORUM-106753]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: Zusatzleistungen

Leistungspunkte 16 LP Notenskala Zehntelnoten **Turnus** Jedes Semester **Dauer** 3 Semester Sprache Deutsch Level 3 Version 1

Wahlinformationen

Die im Begleitstudium Wissenschaft, Technologie und Gesellschaft erworbenen Leistungen werden von den Studierenden selbstständig im Studienablaufplan verbucht. Im Campus-Management-System werden diese Leistungen durch das FORUM (ehemals ZAK) zunächst als "nicht zugeordnete Leistungen" verbucht. Anleitungen zur Selbstverbuchung von Leistungen finden Sie in den FAQ unter https://campus.studium.kit.edu/ sowie auf der Homepage des FORUM unter https://www.forum.kit.edu/ begleitstudium-wtg.php. Prüfungstitel und Leistungspunkte der verbuchten Leistung überschreiben die Platzhalter-Angaben im Modul.

Sofern Sie Leistungen des FORUM für die Überfachlichen Qualifikationen und das Begleitstudium nutzen wollen, ordnen Sie diese unbedingt zuerst den Überfachlichen Qualifikationen zu und wenden sich für eine Verbuchung im Begleitstudium an das Sekretariat Lehre des FORUM (stg@forum.kit.edu).

Im Vertiefungsbereich können Leistungen in den drei Gegenstandsbereichen "Über Wissen und Wissenschaft", "Wissenschaft in der Gesellschaft" und "Wissenschaft in gesellschaftlichen Debatten" abgelegt werden. Es wird empfohlen, in der Vertiefungseinheit aus jedem der drei Gegenstandsbereiche Veranstaltungen zu absolvieren.

Für die Selbstverbuchung im Vertiefungsbereich ist zunächst eine freie Teilleistung zu wählen. Die Titel der Platzhalter haben dabei *keine* Auswirkung darauf, welche Leistungen des Begleitstudiums dort zugeordnet werden können!

Pflichtbestandteile					
T-FORUM-113578	Ringvorlesung Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung	2 LP	Mielke, Myglas		
T-FORUM-113579	Grundlagenseminar Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung	2 LP	Mielke, Myglas		
Vertiefungseinheit	Vertiefungseinheit Begleitstudium Wissenschaft, Technologie und Gesellschaft (Wahl: mind. 12 LP)				
T-FORUM-113580	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Über Wissen und Wissenschaft - Selbstverbuchung	3 LP	Mielke, Myglas		
T-FORUM-113581	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in der Gesellschaft - Selbstverbuchung	3 LP	Mielke, Myglas		
T-FORUM-113582	Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in gesellschaftlichen Debatten - Selbstverbuchung	3 LP	Mielke, Myglas		
Pflichtbestandteile	Pflichtbestandteile				
T-FORUM-113587	Anmeldung zur Zertifikatsausstellung - Begleitstudium Wissenschaft, Technologie und Gesellschaft	0 LP	Mielke, Myglas		

Erfolgskontrolle(n)

Die Erfolgskontrollen sind im Rahmen der jeweiligen Teilleistung erläutert.

Sie können bestehen aus:

- Protokollen
- Reflexionsberichten
- Referaten
- Präsentationen
- Ausarbeitung einer Projektarbeit
- einer individuellen Hausarbeit
- einer mündlichen Prüfung
- einer Klausur

Nach dem erfolgreichen Abschluss des Begleitstudiums erhalten die Absolvierenden ein benotetes Zeugnis und ein Zertifikat, die vom FORUM ausgestellt werden.

Voraussetzungen

Das Angebot ist studienbegleitend und muss nicht innerhalb eines definierten Zeitraums abgeschlossen werden. Für alle Erfolgskontrollen der Module des Begleitstudiums ist eine Immatrikulation erforderlich.

Die Teilnahme am Begleitstudium wird durch § 3 der Satzung geregelt. Die Anmeldung zum Begleitstudium erfolgt für KIT-Studierende durch Wahl dieses Moduls im Studierendenportal und Selbstverbuchung einer Leistung. Die Anmeldung zu Lehrveranstaltungen, Erfolgskontrollen und Prüfungen ist in § 8 der Satzung geregelt und ist in der Regel kurz vor Semesterbeginn möglich.

Vorlesungsverzeichnis, Modulbeschreibung (Modulhandbuch), Satzung (Studienordnung) und Leitfäden zum Erstellen der verschiedenen schriftlichen Leistungsanforderungen sind als Download auf der Homepage des FORUM unter https://www.forum.kit.edu/begleitstudium-wtg zu finden.

Anmeldung und Prüfungsmodalitäten:

BITTE BEACHTEN SIE:

Eine Anmeldung am FORUM, also zusätzlich über die Modulwahl im Studierendenportal, ermöglicht, dass Studierende aktuelle Informationen über Lehrveranstaltungen oder Studienmodalitäten erhalten. Außerdem sichert die Anmeldung am FORUM den Nachweis der erworbenen Leistungen. Da es momentan (Stand WS 24-25) noch nicht möglich ist, im Bachelorstudium erworbene Zusatzleistungen im Masterstudium elektronisch weiterzuführen, raten wir dringend dazu, die erbrachten Leistungen selbst durch Archivierung des Bachelor-Transcript of Records sowie durch die Anmeldung am FORUM digital zu sichern. Für den Fall, dass kein Transcript of Records des Bachelorzeugnisses mehr vorliegt – können von uns nur die Leistungen angemeldeter Studierender zugeordnet und damit beim Ausstellen des Zeugnisses berücksichtigt werden.

Qualifikationsziele

Absolventinnen und Absolventen des Begleitstudiums Wissenschaft, Technologie und Gesellschaft weisen ein fundiertes Grundlagenwissen über das Verhältnis zwischen Wissenschaft, Öffentlichkeit, Wirtschaft und Politik auf und eignen sich praktische Fertigkeiten an, die sie auf den Umgang mit Medien, auf die Politikberatung oder das Forschungsmanagement vorbereiten sollen. Um Innovationen anzustoßen, gesellschaftliche Prozesse mitgestalten und in den Dialog mit Politik und Gesellschaft treten zu können, erhalten die Teilnehmenden Einblicke in disziplinäre sozial- und geisteswissenschaftliche Auseinandersetzungen mit dem Gegenstand Wissenschaft, Technologie und Gesellschaft und lernen, interdisziplinär zu denken. Ziel der Lehre im Begleitstudium ist es deshalb, dass Teilnehmende neben ihren fachspezifischen Kenntnissen auch erkenntnistheoretische, wirtschafts-, sozial-, kulturwissenschaftliche sowie psychologische Perspektiven auf wissenschaftliche Erkenntnis sowie ihre Verarbeitung in Wissenschaft, Wirtschaft, Politik und Öffentlichkeit erwerben. Sie können die Folgen ihres Handelns an der Schnittstelle zwischen Wissenschaft und Gesellschaft als Studierende, Forschende und spätere Entscheidungstragende ebenso wie als Individuum und Teil der Gesellschaft auf Basis ihrer disziplinären Fachausbildung und der fachübergreifenden Lehre im Begleitstudium einschätzen und abwägen.

Teilnehmende können die im Begleitstudium gewählten vertiefenden Inhalte in den Grundlagenkontext einordnen sowie die Inhalte der gewählten Lehrveranstaltungen selbständig und exemplarisch analysieren, bewerten und sich darüber in schriftlicher und mündlicher Form wissenschaftlich äußern. Absolventinnen und Absolventen können gesellschaftliche Themen- und Problemfelder analysieren und in einer gesellschaftlich verantwortungsvollen und nachhaltigen Perspektive kritisch reflektieren.

Inhalt

Das Begleitstudium Wissenschaft, Technologie und Gesellschaft kann ab dem 1. Fachsemester begonnen werden und ist zeitlich nicht eingeschränkt. Das breite Angebot an Lehrveranstaltungen des FORUM ermöglicht es, das Studium in der Regel innerhalb von drei Semestern abzuschließen. Das Begleitstudium umfasst 16 oder mehr Leistungspunkte (LP). Es besteht aus zwei Einheiten: Grundlageneinheit (4 LP) und Vertiefungseinheit (12 LP).

Die **Grundlageneinheit** umfasst die Pflichtveranstaltungen "Ringvorlesung Wissenschaft in der Gesellschaft" und ein Grundlagenseminar mit insgesamt 4 LP.

Die **Vertiefungseinheit** umfasst Lehrveranstaltungen im Umfang von 12 LP zu den geistes- und sozialwissenschaftlichen Gegenstandsbereichen "Über Wissen und Wissenschaft", "Wissenschaft in der Gesellschaft" sowie "Wissenschaft in gesellschaftlichen Debatten". Die Zuordnungen von Lehrveranstaltungen zum Begleitstudium sind auf der Homepage https://www.forum.kit.edu/wtg-aktuell und im gedruckten Vorlesungsverzeichnis des FORUM zu finden.

Gegenstandsbereich 1: Über Wissen und Wissenschaft

Hier geht es um die Innenperspektive von Wissenschaft: Studierende beschäftigen sich mit der Entstehung von Wissen, mit der Unterscheidung von wissenschaftlichen und nicht-wissenschaftlichen Aussagen (z. B. Glaubenssätze, Pseudowissenschaftliche Aussagen, ideologische Aussagen), mit den Voraussetzungen, Zielen und Methoden der Wissensgenerierung. Dabei beleuchten Studierende zum Beispiel den Umgang Forschender mit den eigenen Vorurteilen im Erkenntnisprozess, analysieren die Struktur wissenschaftlicher Erklärungs- und Prognosemodelle in einzelnen Fachdisziplinen oder lernen die Mechanismen der wissenschaftlichen Qualitätssicherung kennen.

Nach dem Besuch der Lehrveranstaltungen im Bereich "Wissen und Wissenschaft" sind Studierende in der Lage, Ideal und Wirklichkeit der gegenwärtigen Wissenschaft sachkundig zu reflektieren, zum Beispiel anhand der Fragen: Wie robust ist wissenschaftliches Wissen? Was können Vorhersagemodelle leisten, was können sie nicht leisten? Wie gut funktioniert die Qualitätssicherung in der Wissenschaft und wie kann sie verbessert werden? Welche Arten von Fragen kann Wissenschaft beantworten, welche Fragen kann sie nicht beantworten?

Gegenstandsbereich 2: Wissenschaft in der Gesellschaft

Hier geht es um Wechselwirkungen zwischen Wissenschaft und verschiedenen Gesellschaftsbereichen – zum Beispiel um die Frage, wie wissenschaftliches Wissen in gesellschaftliche Willensbildungsprozesse und wie gesellschaftliche Ansprüche in die wissenschaftliche Forschung einfließen. Studierende lernen die spezifischen Funktionslogiken unterschiedlicher Gesellschaftsbereiche kennen und lernen auf dieser Grundlage abzuschätzen, wo es zu Ziel- und Handlungskonflikten in Transferprozessen kommt – zum Beispiel zwischen der Wissenschaft und der Wirtschaft, der Wissenschaft und der Politik oder der Wissenschaft und dem Journalismus. Typische Fragen in diesem Gegenstandsbereich sind: Wie und unter welchen Bedingungen entsteht aus einer wissenschaftlichen Entdeckung eine Innovation? Wie läuft wissenschaftliche Politikberatung ab? Wie beeinflussen Wirtschaft und Politik die Wissenschaft und wann ist das problematisch? Nach welchen Kriterien greifen Journalisten wissenschaftliche Erkenntnisse in der Medienberichterstattung auf? Woher kommt Wissenschaftsfeindlichkeit und wie kann gesellschaftliches Vertrauen in Wissenschaft gestärkt werden?

Nach dem Besuch von Lehrveranstaltungen im Gegenstandsbereich "Wissenschaft in der Gesellschaft" können Studierende die Handlungsziele und Handlungsrestriktionen von Akteuren in unterschiedlichen Gesellschaftsbereichen verstehen und einschätzen. Dies soll sie im Berufsleben in die Lage versetzen, die unterschiedlichen Perspektiven von Kommunikations- und Handlungspartnern in Transferprozessen einzunehmen und kompetent an verschiedenen gesellschaftlichen Schnittstellen zur Forschung zu agieren.

Gegenstandsbereich 3: Wissenschaft in gesellschaftlichen Debatten

Die Lehrveranstaltungen im Gegenstandsbereich geben Einblicke in aktuelle Debatten zu gesellschaftlichen Großthemen wie Nachhaltigkeit, Digitalisierung/Künstliche Intelligenz oder Geschlechtergerechtigkeit/soziale Gerechtigkeit/Bildungschancen. Öffentliche Debatten mit komplexen Herausforderungen verlaufen häufig polarisiert und begünstigen Vereinfachungen, Diffamierungen oder ideologisches Denken. Dies kann sachgerechte gesellschaftliche Lösungsfindungsprozesse erheblich erschweren und Menschen vom politischen Prozess sowie von der Wissenschaft entfremden. Auseinandersetzungen um eine nachhaltige Entwicklung sind hiervon in besonderer Weise betroffen, weil sie eine besondere Breite wissenschaftlichen und technologischen Wissens berühren – dies sowohl bei den Problemdiagnosen (z. B. Verlust der Biodiversität, Klimawandel, Ressourcenverbrauch) als auch bei der Entwicklung von Lösungsoptionen (z. B. Naturschutz, CCS, Kreislaufwirtschaft).

Durch den Besuch von Lehrveranstaltungen im Gegenstandsbereich "Wissenschaft in gesellschaftlichen Debatten" sollen Studierende im Umgang mit Sachdebatten anwendungsorientiert geschult werden – im Austausch von Argumenten, im Umgang mit eigenen Vorurteilen, im Umgang mit widersprüchlichen Informationen usw. Sie erfahren, dass Sachdebatte häufig tiefer und differenzierter geführt werden können als das in Teilen der Öffentlichkeit häufig der Fall ist. Dies soll sie befähigen, sich auch im Berufsleben möglichst unabhängig von eigenen Vorurteilen und offen für differenzierte und faktenreiche Argumente sich mit konkreten Sachfragen zu beschäftigen.

Ergänzungsleistungen:

Es können auch weitere LP (Ergänzungsleistungen) im Umfang von höchstens 12 LP aus dem Begleitstudienangebot erworben werden (siehe Satzung Begleitstudium WTG § 7). § 4 und § 5 der Satzung bleiben davon unberührt. Diese Ergänzungsleistungen gehen nicht in die Festsetzung der Gesamtnote des Begleitstudiums ein. Auf Antrag der*des Teilnehmenden werden die Ergänzungsleistungen in das Zeugnis des Begleitstudiums aufgenommen und als solche gekennzeichnet. Ergänzungsleistungen werden mit den nach § 9 vorgesehenen Noten gelistet.

Zusammensetzung der Modulnote

Die Gesamtnote des Begleitstudiums errechnet sich als ein mit Leistungspunkten gewichteter Durchschnitt der Noten der Prüfungsleistungen, die in der Vertiefungseinheit erbracht wurden.

Anmerkungen

Klimawandel, Biodiversitätskrise und Antibiotikaresistenzen, Künstliche Intelligenz, Carbon Capture and Storage und Genschere – Wissenschaft und Technologie können zur Diagnose und Bewältigung zahlreicher gesellschaftlicher Probleme und globaler Herausforderungen beitragen. Inwieweit wissenschaftliche Ergebnisse in Politik und Gesellschaft Berücksichtigung finden, hängt von zahlreichen Faktoren ab, etwa vom Verständnis und Vertrauen der Menschen, von wahrgenommenen Chancen und Risiken von ethischen, sozialen oder juristischen Aspekten usw.

Damit Studierende sich als Entscheidungstragende von morgen mit ihren Sachkenntnissen konstruktiv an der Lösung gesellschaftlicher und globaler Herausforderungen beteiligen können, möchten wir sie befähigen, an den Schnittstellen zwischen Wissenschaft, Wirtschaft und Politik kompetent und reflektiert zu navigieren.

Dazu erwerben sie im Begleitstudium Grundwissen über die Wechselwirkungen zwischen Wissenschaft, Technologie und Gesellschaft.

Sie lernen

- wie verlässliches wissenschaftliches Wissen entstehen kann,
- wie gesellschaftliche Erwartungen und Ansprüche wissenschaftliche Forschung beeinflussen

und

- wie wissenschaftliches Wissen gesellschaftlich aufgegriffen, diskutiert und verwertet wird

Zu diesen Fragestellungen integriert das Begleitstudium grundlegende Erkenntnisse aus der Psychologie, der Philosophie, Wirtschafts-, Sozial- und Kulturwissenschaft.

Nach dem Abschluss des Begleitstudium können die Studierenden die Inhalte ihres Fachstudiums in einen weiteren gesellschaftlichen Kontext einordnen. Dies bildet die Grundlage dafür, dass sie als Entscheidungsträger von morgen kompetent und reflektiert an den Schnittstellen zwischen Wissenschaft und verschiedenen Gesellschaftsbereichen – wie der Politik, der Wirtschaft oder dem Journalismus – navigieren und sich versiert etwa in Innovationsprozesse, öffentliche Debatten oder die politische Entscheidungsfindung einbringen.

Arbeitsaufwand

Der Arbeitsaufwand setzt sich aus der Stundenanzahl von Grundlagen- und Vertiefungseinheit zusammen:

- Grundlageneinheit ca. 120 h
- Vertiefungseinheit ca. 360 h
- > Summe: ca. 480 h

In Form von Ergänzungsleistungen können bis zu ca. 360 h Arbeitsaufwand hinzukommen.

Empfehlungen

Es wird empfohlen, das Begleitstudium in drei oder mehr Semestern zu absolvieren und mit der Ringvorlesung desBegleitstudiums Wissenschaft, Technologie und Gesellschaft im Sommersemester zu beginnen. Alternativ kann im Wintersemester mit dem Besuch des Grundlagenseminars begonnen werden und anschließend im Sommersemester die Ringvorlesung besucht werden. Parallel können bereits Veranstaltungen aus der Vertiefungseinheit absolviert werden.

Es wird zudem empfohlen, in der Vertiefungseinheit aus jedem der drei Gegenstandsbereiche Veranstaltungen zu absolvieren.

Lehr- und Lernformen

- Vorlesungen
- Seminare/Projektseminare
- Workshops

5.10 Modul: Berufspraktikum [M-CIWVT-104527]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Berufspraktikum

Leistungspunkte
14 LPNotenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-109276	Berufspraktikum	14 LP	Bajohr, Freudig

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung.

Zur Prüfung und Anerkennung des Berufspraktikums sind dem Praktikantenamt der Fakultät nach Abschluss der Tätigkeit die vorab erteilte Genehmigung für das Praktikum, und das Arbeitszeugnis vorzulegen.

WICHTIG: Die geleisteten Tätigkeiten müssen aus dem Arbeitszeugnis eindeutig hervorgehen. Ist dies nicht der Fall, hat der Studierende eine Tätigkeitsbeschreibung zu erstellen und von dem Betrieb gegenzeichnen zu lassen.

Voraussetzungen

Für Berufspraktika, die während des Masterstudiums absolviert werden, gibt es keine Voraussetzungen. Für Berufspraktika, die vor dem Masterstudium oder schon während des Bachelorstudiums absolviert wurden, gilt folgende Regel: Die Anerkennugn ist möglich, wenn im Bachelorstudium vor Beginn des Praktikums mindestens 120 LP erworben wurden.

Qualifikationsziele

Die angehenden Ingenieurinnen und Ingenieure haben einen ersten Einblick in die industrielle Praxis gewonnen. Bisher erlernte Fähigkeiten können sie auf Problemstellungen in der Praxis anwenden. Die Studierenden haben unterschiedliche Tätigkeitsfelder eines Unternehmens kennengelernt. Dadurch können Sie die Anforderungen unterschiedlicher Aufgaben beurteilen und können dieses Wissen für ihre spätere Berufswahl gezielt einsetzen

Inhalt

Das Berufspraktikum ist ein Fachpraktikum, bei dem die in der bisherigen Ausbildung erlernten Fähigkeiten angewendet und vertieft werden. Ein Mindestmaß an Kenntnissen und Fähigkeiten aus der angewandten Laborforschung, der Entwicklung, Projektierung und/oder der Herstellung von Produkten soll vermittelt werden. Dabei soll möglichst Einblick in mehrere verschiedene Tätigkeiten gewährt werden. Das Berufspraktikum soll über rein fachliche Inhalte hinaus Verständnis für betriebliche Zusammenhänge (Kommunikation, Arbeitssicherheit...) wecken.

Anmerkungen

Die Suche eines Betriebes ist Sache der Praktikantinnen und Praktikanten. Das Praktikum kann beispielsweise in folgenden Branchen durchgeführt werden:

- · Chemische Industrie
- · Verfahrenstechnischer Anlagenbau
- Automobilzulieferer
- · Agrar- und Lebensmitteltechnik,
- · Pharmazeutische und Kosmetik-Industrie
- · Bio- und Umwelttechnologie

Eine abgeschlossene Berufsausbildung (z. B. MTA/PTA) wird als Berufspraktikum anerkannt.

Folgende Tätigkeiten werden nicht anerkannt:

- · Ausschließliche Bürotätigkeiten
- · Programmieren in allgemeiner Form
- Literaturstudien
- Praktika an Hochschulen (insbesondere an Instituten des KIT),

In begründeten Fällen kann das Praktikantenamt eine Ausnahme genehmigen

Rechtliche Stellung des Praktikanten

Die hier gegebene Auskunft ist unverbindlich. Verbindlich sind die Bestimmungen der jeweiligen Versicherungsträger sowie der Vertrag mit dem Ausbildungsbetrieb. Die Praktikanten unterliegen der Betriebsordnung des Ausbildungsbetriebes. Ein Anspruch auf Entgelt besteht nicht. Sie sind nicht berufsschulpflichtig.

Während des Praktikums genießen die Praktikanten den Schutz der gesetzlichen Unfallversicherung des für den Ausbildungsbetrieb zuständigen Versicherungsträgers (Berufsgenossenschaft). Der Schutz schließt den Weg von und zu der Ausbildungsstätte ein.

Die Praktikanten unterliegen als Studierende der Krankenversicherungspflicht, das heißt sie müssen entweder im Rahmen ihrer Familie oder selbst bei einer privaten Krankenversicherung oder einer Krankenkasse versichert sein.

Für Praktika im Ausland obliegt es der Praktikantin bzw. dem Praktikanten, sich über die jeweiligen nationalen Regelungen zu informieren.

Arbeitsaufwand

12 Wochen (420 h - 480 h)

5.11 Modul: Biobasierte Kunststoffe [M-CIWVT-104570]

Verantwortung: Prof. Dr. Ralf Kindervater

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Vertiefungsfach I / Neue Bioproduktionssysteme – Elektrobiotechnologie

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

 Pflichtbestandteile

 T-CIWVT-109369
 Biobasierte Kunststoffe
 4 LP Kindervater

Erfolgskontrolle(n)

Vertiefungsfach: Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Technisches Ergänzungsfach bzw. große Teilnehmerzahl im Vertiefungsfach: schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind fähig, unterschiedliche Wertschöpfungsketten-basierte Biokunststoffsysteme herzuleiten und die technologischen, wirtschaftlichen und ökologischen Zusammenhänge zu bewerten.

Inhalt

Polymerchemische Grundlagen, kunststofftechnische Grundlagen, Rohstoffauswahl, Konversionsmethoden, Zwischenproduktszenarien, Monomergestaltung, Polymerstrukturen, Compounds und Blends, Formgebungsverfahren, Produktbeispiele, Abläufe in Wertschöpfungketten, Wirtschaftlichkeitsrechnung, Life Cycle Analysen, Kreislaufwirtschaft.

Arbeitsaufwand

120 h:

Präsenzzeit: 30 h

• Selbststudium: 60 h

· Prüfungsvorbereitung: 30 h

5.12 Modul: Biofilm Systems [M-CIWVT-103441]

Verantwortung: Dr. Andrea Hille-Reichel

Dr. Michael Wagner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Wassertechnologie

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106841	Biofilm Systems	4 LP	Hille-Reichel, Wagner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 20 min.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, den Aufbau und die Funktion von Biofilmen in natürlichen Lebensräumen und technischen Anwendungen zu beschreiben und die wesentlichen Einflussfaktoren und Prozesse für die Bildung bestimmter Biofilme zu erklären. Sie kennen die Methoden zur Visualisierung der Biofilmstrukturen.

Inhalt

Ziel der Vorlesung ist es, einen Überblick über Biofilmsysteme, ihre Entstehung, Funktion und Anwendung sowie die zu ihrer Untersuchung eingesetzten Techniken zu geben. Dabei werden die Grundlagen der (Biofilm-)Mikrobiologie, natürliche (Umwelt-)Biofilmsysteme, deren Anwendung in technischen Systemen (Reaktoren) und Methoden zur Quantifizierung der Biofilmentwicklung und -leistung (z.B. bildgebende Verfahren, digitale Bildanalyse) behandelt.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 h Vor-/Nachbereitung: 30h

Prüfung + Prüfungsvorbereitung: 60 h

5.13 Modul: BioMEMS - Mikrosystemtechnik für Life-Science und Medizin I [M-MACH-100489]

Verantwortung: Prof. Dr. Andreas Guber

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte

4 LP

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester Sprache Deutsch

Level 4 Version 1

Pflichtbestandteile

T-MACH-100966 BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I 4 LP Guber

Erfolgskontrolle(n)

Schriftliche Prüfung (75 min)

Voraussetzungen

keine

Qualifikationsziele

Fachliche Qualifikationsziele:

Die Studierenden können grundlegende mikrotechnische Fertigungsverfahren (z.B. LIGA, Silizium-Mikrotechnik, Laser-Mikrobearbeitung) beschreiben und hinsichtlich ihrer Eignung für biomedizinische Anwendungen analysieren.

Sie sind in der Lage, unterschiedliche mikrofluidische Komponenten (z.B. Mikrokanäle, Mikropumpen, Mikrofilter) zu vergleichen und deren Funktion im Kontext von µTAS- und Lab-on-Chip-Systemen zu erklären.

Die Studierenden können die Eigenschaften und Einsatzmöglichkeiten von Biomaterialien und Sterilisationsverfahren für Mikrosysteme in der Medizintechnik erläutern.

Des Weiteren können sie die Wechselwirkungen zwischen mikrotechnischer Fertigung und biomedizinischer Anwendung bewerten und auf ausgewählte Fallbeispiele aus den Life-Sciences übertragen.

Überfachliche Qualifikationsziele:

Die Studierenden können interdisziplinäre Zusammenhänge zwischen Technik, Biologie und Medizin erkennen und in Diskussionen strukturiert argumentieren. Weiterhin sind sie in der Lage, aktuelle Entwicklungen und Literatur im Bereich der Mikrosystemtechnik für Life-Science-Anwendungen kritisch zu reflektieren und auf deren Relevanz für Forschung und Industrie zu beurteilen.

Inhalt

Im Rahmen der Vorlesung wird zunächst auf die relevanten mikrotechnischen

Fertigungsmethoden eingegangen und anschließend werden ausgewählte biomedizinische

Anwendungen vorgestellt, da der zunehmende Einsatz von Mikrostrukturen und Mikrosystemen

in den Life-Sciences und der Medizin zu verbesserten medizintechnischen Produkten, Instrumentarien sowie Operations- und Analysesystemen führt.

Einführung in die verschiedenen mikrotechnischen Fertigungsverfahren: LIGA, Zerspanen, Silizium-Mikrotechnik, Laser-Mikromaterialbearbeitung, µEDM-Technik, Elektrochemisches Metallätzen

Biomaterialien, Sterilisationsverfahren.

Beispiele aus dem Life-Science-Bereich: mikrofluidische Grundstrukturen: Mikrokanäle, Mikrofilter, Mikrovermischer, Mikropumpen- und Mikroventile, Mikro- und Nanotiterplatten,

Mikroanalysesysteme (µTAS), Lab-on-Chip-Anwendungen.

Zusammensetzung der Modulnote

Schriftliche Prüfung

Arbeitsaufwand

Literaturarbeit: 20 Stunden Präsenz: 21 Stunden

Vor- und Nachbearbeitung: 50 Stunden Prüfungsvorbereitung: 30 Stunden

Lehr- und Lernformen

Vorlesung

Literatur

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

M. Madou

Fundamentals of Microfabrication

Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011

5.14 Modul: BioMEMS - Mikrosystemtechnik für Life-Science und Medizin II [M-MACH-100490]

Verantwortung: Prof. Dr. Andreas Guber

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-MACH-100967	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II	4 LP	Guber

Erfolgskontrolle(n)

Schriftliche Prüfung (75 min)

Voraussetzungen

Keine

Qualifikationsziele

Fachliche Qualifikationsziele:

Die Studierenden können moderne mikrofluidische Systeme (z. B. Lab-CD, Microarrays, BioChips) beschreiben und deren Funktionsprinzipien im Kontext biomedizinischer Anwendungen analysieren. Sie sind in der Lage, biohybride Zell-Chip-Systeme sowie deren Einsatz im Tissue Engineering und in der Medikamententestung zu erklären und zu bewerten.

Die Studierenden können den Aufbau und die Funktionsweise mikroverfahrenstechnischer Komponenten (z. B. Mikroreaktoren, mikrofluidische Messzellen) erläutern und deren Einsatz in spektroskopischen Untersuchungen beurteilen.

Sie können konkrete mikrosystemtechnische Lösungen für medizinische Anwendungen in Anästhesie, Intensivmedizin und Infusionstherapie untersuchen und deren Wirkprinzipien vergleichen.

Sie können mikro- und nanoskalige Technologien (z.B. in der Nano-Chirurgie oder Neuroprothetik) differenziert beschreiben und deren Bedeutung für zukünftige Therapiekonzepte bewerten.

Überfachliche Qualifikationsziele:

Die Studierenden können interdisziplinäre Zusammenhänge zwischen Technik, Biologie und Medizin erkennen, reflektieren und in wissenschaftlichen Diskussionen argumentativ vertreten.

Weiterhin sind sie in der Lage, aktuelle wissenschaftliche Publikationen zu Anwendungen der Mikrosystemtechnik in den Life-Sciences zu analysieren und deren Relevanz kritisch zu diskutieren.

Technologische Entwicklungen können sie im Bereich Mikrosystemtechnik hinsichtlich ethischer, gesellschaftlicher und regulatorischer Aspekte reflektieren.

Inhalt

Im Rahmen der Vorlesung werden zunächst auf die relevanten mikrotechnischen

Fertigungsmethoden kurz umrissen und anschließend werden ausgewählte biomedizinische

Anwendungen vorgestellt, da der zunehmende Einsatz von Mikrostrukturen und Mikrosystemen

in den Life-Sciences und der Medizin zu verbesserten medizintechnischen Produkten, Instrumentarien sowie Operations- und Analysesystemen führt.

Einsatzbeispiele aus den Life-Sciences und der Medizin: Mikrofuidische Systeme:

Lab-CD, Proteinkristallisation,

Microarray, BioChips

Tissue Engineering

Biohybride Zell-Chip-Systeme

Drug Delivery Systeme

Mikroverfahrenstechnik, Mikroreaktoren

Mikrofluidische Messzellen für FTIR-spektroskopische Untersuchungen

in der Mikroverfahrenstechnik und in der Biologie

Mikrosystemtechnik für Anästhesie, Intensivmedizin (Monitoring)

und Infusionstherapie

Atemgas-Analyse / Atemluft-Diagnostik

Neurobionik / Neuroprothetik

Nano-Chirurgie

Zusammensetzung der Modulnote

Schriftliche Prüfung

Arbeitsaufwand

Literaturarbeit: 20 Stunden Präsenz: 21 Stunden

Vor- und Nachbearbeitung: 50 Stunden Prüfungsvorbereitung: 30 Stunden

Lehr- und Lernformen

Vorlesung

Literatur

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou

Fundamentals of Microfabrication

5.15 Modul: BioMEMS - Mikrosystemtechnik für Life-Science und Medizin III [M-MACH-100491]

Verantwortung: Prof. Dr. Andreas Guber

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
4

Pflichtbestandteile			
T-MACH-100968	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III	4 LP	Guber

Erfolgskontrolle(n)

Schriftliche Prüfung (75 min)

Voraussetzungen

keine

Qualifikationsziele

Im Rahmen der Vorlesung werden zunächst die relevanten mikrotechnischen

Fertigungsmethoden umrissen und anschließend werden ausgewählte biomedizinische

Anwendungen vorgestellt, da der zunehmende Einsatz von Mikrostrukturen und Mikrosystemen

in den Life-Sciences und der Medizin zu verbesserten medizintechnischen Produkten, Instrumentarien sowie Operations- und Analysesystemen führt.

Inhalt

Einsatzbeispiele aus dem Bereich der operativen Minimal Invasiven

Therapie (MIT):

Minimal Invasive Chirurgie (MIC)

Neurochirurgie / Neuroendoskopie

Interventionelle Kardiologie / Interventionelle Gefäßtherapie

NOTES

Operationsroboter und Endosysteme

Zulassung von Medizinprodukten (Medizinproduktgesetz)

und Qualitätsmanagement

Arbeitsaufwand

Literaturarbeit: 20 Stunden

Präsenz: 21 Stunden

Vor- und Nachbearbeitung: 50 Stunden Prüfungsvorbereitung: 30 Stunden

Literatur

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II;

Springer-Verlag, 1994

M. Madou

Fundamentals of Microfabrication

5.16 Modul: Biopharmazeutische Aufarbeitungsverfahren [M-CIWVT-103065]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (BIW)
Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106029	Biopharmazeutische Aufarbeitungsverfahren	6 LP	Hubbuch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von ca. 120 Minuten (Gesamtprüfung im nach § 4 Abs. 2 Nr. 1 SPO. Modulnote ist die Note der schriftlichen Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Prozessentwicklung biopharmazeutischer Aufarbeitungsprozesse

Inhalt

Detaillierte Diskussion biopharmazeutischer Aufarbeitungsprozesse

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

· Präsenzzeit: 60 h

Selbststudium: 90 h

• Prüfungsvorbereitung: 30 h

Lehr- und Lernformen

- · 22705 Biopharmazeutische Aufarbeitungsverfahren, 3V
- 22706 Übung zu Biopharmazeutische Aufarbeitungsverfahren, 1Ü

Literatur

Vorlesungsskript

5.17 Modul: Bioprocess Development [M-CIWVT-106297]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (BIW)
Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-112766	Bioprocess Development	6 LP	Grünberger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

This course aims to provide students with a comprehensive understanding of the principles, techniques and application of bioprocess development regarding the production of biologically based products. Through a combination of lectures, discussions, and exercises, students will gain knowledge and experience about the various stages of bioprocess development. Upon completion of this module, students should have/be able to:

- 1. Developed an in-depth understanding of the principles and fundamentals of bioprocess development.
- 2. Developed a thorough understanding of the different types of bioprocesses and their applications.
- 3. Gained insight into the development of a successfully established industrial bioprocess.
- 4. Gained insight into cost and sustainability evaluation of bioprocesses.
- 5. Gained the ability to combine theoretical understanding and practical application.
- Developed critical thinking and problem-solving skills necessary for identifying and addressing challenges that arise during bioprocess development.
- 7. Developed skills and knowledge to evaluate the potential of new methods and tools for accelerated bioprocess development.
- 8. Developed effective communication and teamwork skills necessary for success in a multidisciplinary bioprocess development environment.

Inhalt

The lecture course covers and discusses various topics and their impact onto efficient bioprocess development. This includes:

- · Identification and selection of biocatalyst
- · Growth and microbial physiology
- Strain engineering
- · Strain and process parameter screening
- · Bioprocess optimization
- Bioprocess-scale-up
- Cost and sustainability estimation
- Case studies: Discussion of real-world examples of bioprocess development, including case studies of successful and unsuccessful bioprocess development efforts.

Optional topics include:

- · Regulatory and quality control requirements for bioprocess development.
- Computational and mathematical modelling tools to simulate, support and optimize bioprocesses development.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung und Übung 60 h
- Selbststudium: Vor- und Nachbereitung der Lehrveranstaltungen: 80 h
- Prüfungsvorbereitung: 40 h

Literatur

- Lecture script
- Pauline M. Doran, Bioprocess Engineering Principles, Academic Press; 2nd edition, ISBN: 012220851X
 Winfried Storhas, Bioverfahrensentwicklung, Wiley-VCH, 2. Aufl. 2014, ISBN: 978-3-527-32542-5

5.18 Modul: Bioprocess Scale-up [M-CIWVT-106837]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
2

Pflichtbestandteile			
T-CIWVT-113712	Bioprocess Scale-up	6 LP	Grünberger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Nach Abschluss des Kurses sind die Studierenden in der Lage:

Fachliche und methodische Kompetenzen

- Die Grundlagen von Skalierungsgesetzen zu verstehen.
- Kenntnisse über zentrale Scale-up-Strategien nachzuweisen.
- Wesentliches Wissen und die notwendigen Werkzeuge für das Scale-up von Bioprozessen anzuwenden.
- Potenzielle Fallstricke und Herausforderungen während des Scale-up-Prozesses zu erkennen.
- Best Practices für das Scale-up von Bioprozessen zu identifizieren und umzusetzen.
- Die Lücke zwischen Laborforschung und industrieller Produktion zu überbrücken.

Soziale und Selbstkompetenz

- Die Schlüsselaspekte des Scale-up von Bioprozessen zu identifizieren und zusammenzufassen.
- Effektiv zu kommunizieren und mit Expertinnen und Experten aus verschiedenen Disziplinen im Bereich des Bioprozess-Scale-up zusammenzuarbeiten.
- Kritisches Denken, Kreativität und Problemlösungsfähigkeiten zu zeigen, die für das Scale-up neuartiger Bioprozesse erforderlich sind.

Inhalt

Biopharmazeutika, Enzyme und biologische Materialien für die Anwendung in Pharma- und Lebensmittelbereich, werden üblicherweise durch die Kultivierung von Bakterien, Hefen, Pilzen, Pflanzen- oder tierischen Zellen in Bioreaktoren hergestellt. Unabhängig vom spezifischen Bioprozess sind Effizienz in Bezug auf Zeit, Kosten und Ressourcennutzung von entscheidender Bedeutung. In der Regel werden diese Bioprozesse zunächst im kleinen Labormaßstab entwickelt und anschließend schrittweise auf größere Volumina übertragen, bis die kommerzielle industrielle Produktion erreicht ist. Dieser entscheidende Übergang wird als Scale-up von Bioprozessen bezeichnet.

Ziel dieses Kurses ist es, den Studierenden das grundlegende Wissen und die praktischen Fähigkeiten zu vermitteln, die für eine erfolgreiche Hochskalierung biotechnologischer Prozesse vom Labor- in den Industriemaßstab erforderlich sind. Dazu werden im Kurs zentrale Methoden, Konzepte und Werkzeuge vorgestellt, die die Basis für ein effektives Scale-up biochemischer Prozesse bilden.

Der Kurs beginnt mit einer Einführung in Skalierungsgesetze, die wesentlich sind, um zu verstehen, wie sich Prozessparameter mit dem Maßstab verändern. Es werden Beispiele aus der Biologie gegeben. Anschließend werden allgemeine Scale-up-Methoden präsentiert, die es ermöglichen, Prozesse unter Beibehaltung von Leistung und Produktqualität zu übertragen. Danach werden industrielle Strategien und Verfahren behandelt, die durch Praxisbeispiele und Fallstudien aus der realen Welt unterstützt werden. Abschließend werden aktuelle Trends und Herausforderungen im Scale-up von Bioprozessen beleuchtet, wobei innovative Technologien und zukünftige Hürden in diesem Bereich thematisiert werden.

Zusammensetzung der Modulnote

Modulnote is tdie Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung 2 SWS, Übung 1 SWS/ 45 h
- Selbststudium: 95 h
- Prüfungsvorbereitung: 40 h

Empfehlungen Grundlagen der Bioverfahrenstechnik.

Literatur

No specific textbook is recommended.

5.19 Modul: Bioreaktorentwicklung [M-CIWVT-106595]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	2

Pflichtbestandteile			
T-CIWVT-113315	Bioreaktorentwicklung	4 LP	Holtmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Bewertet werden die Projektarbeit (75%) sowie die Abschlusspräsentation (25%). Die Teilleistung ist nur bestanden, wenn sowohl Projektarbeit als auch Abschlusspräsentation mindestens mit der Note 4,0 bewertet wurden.

Qualifikationsziele

Die Studierenden können ihr bisher erworbenes Wissen in Bioverfahrenstechnik, Regelungstechnik und Mikrobiologie anwenden, um selbst ein Reaktorkonzept zu entwickeln. Die Studierenden können die Grundlagen des Projektmanagements am Beispiel der Reaktorentwicklung anwenden und bewerten. Sie können ihre Konzepte präsentieren und diskutieren.

Inhalt

Tüfteln, Bauen, Kultivieren! - Unter diesem Motto findet jedes Jahr der Wettbewerb um den besten 99€-Bioreaktor an der Technischen Universität Dresden unter der Leitung des Vereins "Netzwerk Bioverfahrenstechnik Dresden e.V." statt. Jedes Jahr gibt es eine neue Herausforderung: Von anaeroben Batch-Prozessen zur Ethanolproduktion über Fed-Batch-Kultivierungen zur Herstellung von rotem Farbstoff bis hin zur Kultivierung extremophiler Organismen. Kreative Teams, bestehend aus drei bis vier Studierenden und einer Doktorand*in oder Postdoc, aus ganz Deutschland stellen sich der Herausforderung und bauen mit maximal 99,- € unter den vorgegebenen Rahmenbedingungen einen funktionsfähigen Bioreaktor, der im anschließenden Wettbewerb bestehen muss. Neben viel Spaß und tüftlerischen Highlights gibt es auch immer einen Preis für die Besten der Besten.

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Anmerkungen

Teilnahme an dem Wettbewerb 99 € Bioreaktor.

Die maximale Teilnehmerzahl ist auf 12 Studierende beschränkt. Vorrang haben Personen, die das Modul im Rahmen der Vertiefung im Master Bioingenieurwesen gewählt haben.

Arbeitsaufwand

- Präsenzzeit: Teilnahme an dem Wettbewerb: 30 h
- · Selbststudium: Vorbereitung, Konstruktion und Testung eines selbstgebauten Bioreaktors
- · Seminar und eigene Präsentation: 30 Stunden

5.20 Modul: Biosensors [M-CIWVT-106838]

Verantwortung: Dr. Gözde Kabay

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Semester	1 Semester	Englisch	4	1

Pflichtbestandteile			
T-CIWVT-113714	Biosensors	4 LP	Kabay

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden können die grundlegenden Prinzipien von Biosensoren und deren Anwendungen in der medizinischen Diagnostik und biotechnologischen Forschung erläutern. Sie kennen die Bauelemente und Konfigurationsmöglichkeiten von Biosensoren, können sie nach Wandlertypen klassifizieren, verstehen die Prinzipien der Signaltransduktion und wählen geeignete Detektionsmethoden aus. Leistungsparameter werden definiert und bewertet, neue Trends kritisch betrachtet. Nach erfolgreichem Abschluss dieses Kurses sind die Studierenden in der Lage, Biosensortypen zu unterscheiden, die sie bildenden Komponenten zu benennen und die Parameter der Sensorleistung zu bewerten.

Inhalt

Dieser Kurs behandelt die Prinzipien, Technologien, Methoden und Anwendungen von Biosensoren, die auf verschiedenen Signaltransduktionswegen basieren. Er vermittelt den Studierenden ein theoretisches Verständnis für detaillierte Strategien und Verfahren zur Entwicklung, Herstellung und Anwendung von Biosensoren in der Diagnostik verschiedener Krankheiten.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 2 SWS, 30 h

Vor- und Nachbereitngszeit und Klausurvorbereitung: 90 Stunden

5.21 Modul: Biotechnologische Nutzung nachwachsender Rohstoffe [M-CIWVT-105295]

Verantwortung: Prof. Dr. Christoph Syldatk

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte 4 I P

Notenskala Zehntelnoten

Turnus Jedes Wintersemester

Dauer 1 Semester **Sprache** Deutsch

Level 4

Version 3

						_
Pfl	icł	nth	esta	and	teil	e

T-CIWVT-113237 Biotechnologische Nutzung nachwachsender Rohstoffe 4 LP Syldatk

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Diese Vorlesung vermittelt die Rolle biotechnologischer Prozesse in einer zukünftigen Bioökonomie. Es werden mögliche Rohstoffe, deren Vorbereitung und anschließende biotechnologische Umsetzung zu Energieträgern, Plattformchemikalien und speziellen mikrobiellen Produkten vorgestellt.

Inhalt

Nach einer Einführung in die Grundlagen einer zukünftigen Bioökonomie und dem Vergleich chemischer und biotechnologischer industrieller Prozesse werden dafür nutzbare nachwachsende Rohstoffe, deren Vorbereitung zur biotechnologischen Nutzung sowie deren Umsetzung zu Energieträgern (Methan, Ethanol), Plattformchemikalien (Lactat, Dicarbonsäuren, Aminosäuren) und speziellen Produkten (Polysachharide, Biotenside, Armostoffe) sowie Koppelprodukten wie Biokunststoffen vorgestellt. Am Beispiel von Zuckerfabrikation, Papierherstellung und Ethanolproduktion werden verschiedene Bioraffineriekonzepte erläutert.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenszeit: 45 h
- Selbststudium: 45 h
- Prüfungsvorbereitung: 30 h

5.22 Modul: Brennstofftechnik [M-CIWVT-104289]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Umweltschutzverfahrenstechnik

Vertiefungsfach I / Verbrennungstechnik

Leistu	ngspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
	6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-108829	Brennstofftechnik	6 LP	Scheiff

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind fähig, Energierohstoffe und daraus erzeugte Brennstoffe / chemische Energieträger zu charakterisieren und die Prozesse und Verfahren zur Erzeugung von chemischen Energieträgern bezüglich Verfahrenstechnik, Kosten und Umweltrelevanz kritisch zu bewerten.

Inhalt

- Überblick über die Energierohstoffe: Kohle, Öl, Gas, Biomasse Entstehung, Vorräte, Verbrauch
- · Technik der Förderung
- · Charakterisierung und Analytik der Energierohstoffe und Brennstoffe
- · Grundlagen, Prozesse und Verfahren zur Wandlung von Energierohstoffen in chemische Energieträger/Brennstoffe
- · Prozesse und Verfahren der Brennstoff-Nutzung: Strom / Wärme, Mobilität, Synthese
- Vergleichende Bewertung von Prozessketten zur Wandlung und Nutzung von Brennstoffen auf Basis von LCA, Ökoeffizienzanalyse

Arbeitsaufwand

- Präsenzzeit: 45 h
- · Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h

Literatur

- "Die Veredlung und Umwandlung von Kohle Technologien und Projekte 1970 bis 2000 in Deutschland"; ISBN 978-3-936418-88-0
- "Grundlagen der Gastechnik"; ISBN 978-3446211094
- "Handbook of Fuels"; ISBN 978-3-527-30740-1
- "Ullmann's Encyclopedia of Industrial Chemistry"; ISBN 978-3-5273-0673-2

5.23 Modul: C1-Biotechnologie [M-CIWVT-106816]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-CIWVT-113677	C1-Biotechnologie mündliche Prüfung	4 LP	Neumann		
T-CIWVT-113678	C1-Biotechnologie Präsentation	2 LP	Neumann		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- · Mündliche Prüfung im Umfang von ca. 30 Minuten über die Inhalte der Vorlesung und des Seminarvortrags
- · Studienleistung: Seminarvortrag

Voraussetzungen

Voraussetzung für Teilnahme an den Modul: Keine.

Voraussetzung innerhalb des Moduls: Die Teilnahme an der mündlichen Prüfung ist nur nach Teilnahme am Seminar/bestandener Präsentation möglich.

Qualifikationsziele

Beschreibung folgt.

Inhalt

Beschreibung folgt.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

5.24 Modul: Chemical Hydrogen Storage [M-CIWVT-106566]

Verantwortung: TT-Prof. Dr. Moritz Wolf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113234	Chemical Hydrogen Storage	4 LP	Wolf

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können grundlegende Eigenschaften von Wasserstoff und Wasserstoffträgern erläutern, kennen die Herstellungsmethoden von grünem Wasserstoff und können dessen Rolle im Rahmen der Energiewende abschätzen, insbesondere mit Bezug auf die industrielle stoffliche Nutzung. Sie verstehen nachhaltige und zukunftsträchtige Technologien für die chemische Wasserstoffspeicherung und können die verschiedenen Prozesse mitsamt den benötigten Katalysatoren und besonderen Herausforderungen beschreiben. Die Studierenden können verschiedene chemische, aber auch physikalische Speichertechnologien evaluieren, die Kosten der einzelnen Prozessschritte abschätzen und entsprechende potentielle Anwendungsgebiete beschreiben.

Inhalt

- Einführung in verschiedene Konzepte der (chemischen) Wasserstoffspeicherung
 - Speichertechnologien
 - · Trägermoleküle
 - Speicherkreisläufe
- · Prozesse und Katalysatoren für die chemische Wasserstoffspeicherung
 - Ammoniak
 - Flüssige organische Wasserstoffträger (Liquid organic hydrogen carriers, LOHCs)
 - Dimethylether
- Evaluation der Speicherprozesse
 - Nachhaltigkeit
 - Kosten bei Herstellung
 - Kosten des Transports
 - Kosten der Wasserstoffanwendung

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Prüfung in deutscher oder englischer Sprache ablegbar.

Arbeitsaufwand

- Präsenzzeit: 40 h
- · Selbststudium: 40 h
- Prüfungsvorbereitung: 40 h

Literatur

Announced in lectures/on slides.

Fundamentals:

- I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 2003, Wiley.
- · R. Schlögl, Chemical Energy Storage, 2022, De Gruyter.

5.25 Modul: Chemische Verfahrenstechnik II [M-CIWVT-104281]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
3

Pflichtbestandteile			
T-CIWVT-108817	Chemische Verfahrenstechnik II	6 LP	Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen das Filmmodell und sind in der Lage, es zur Berechnung von Stofftransport-Einflüssen in reagierenden mehrphasigen Systemen anzuwenden. Sie kennen technische Reaktoren für die Umsetzung von zwei- und dreiphasigen Reaktionsgemischen und können ihre Anwendungsgebiete und technischen Einsatzgrenzen erörtern. Im Fall mehrphasiger Reaktoren mit gut definierten System-Eigenschaften sind sie auch in der Lage, eine rechnerische Auslegung der Reaktordimensionen und der geeigneten Betriebsbedingungen vorzunehmen.

Inhalt

Theorie von Stofftransport und Reaktion in mehrphasigen Reaktionssystemen (Filmmodell); technische Reaktoren für zweiphasige Systeme: gasförmig-flüssig, flüssig, flüssig, gasförmig-fest; Reaktoren für dreiphasige Systeme.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Anmerkungen

Die Teilnehmerzahl in diesem Modul ist beschränkt. Bei der Auswahl der Teilnehmer finden folgende Kriterien Anwendung:

- 1. Bewerber, die im letzten Jahr nicht berücksichtigt wurden
- 2. Bewerber, die das Modul im Rahmen des Vertiefungsfach Chemische Verfahrenstechnik belegen möchten
- 3. Studienfortschritt

Sollte nach diesen Kriterien keine eindeutige Entscheidung möglich sein, wird ein Losverfahren angewendet.

Arbeitsaufwand

- Präsenzzeit: 30 h
- · Selbststudium: 50 h
- · Prüfungsvorbereitung: 40 h

Literatur

Skript "Chemische Verfahrenstechnik II"

5.26 Modul: Chem-Plant [M-CIWVT-104461]

Verantwortung: Prof. Dr. Sabine Enders

Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-109127	Chem-Plant	4 LP	Enders, Zeiner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleitung anderer Art: die Präsentation in Form eines Berichtes, eines Posters und eines Vortrages.

Modulnote ist die Note für die Präsentationen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage die im Studium gewonnenen Erkenntnisse für die Planung einer konkreten Chemieanlage einzubringen und können die erzielten Ergebnisse publizieren.

Inhalt

Planung einer kompletten Chemieanlage für die Herstellung eines ausgewählten Produktes, Teilnahme am Chem-Plant Wettbewerb (Organisation: VDI)

Anmerkungen

Dieses Projekt schließt die aktive Teilnahme an einer wissenschaftlichen Tagung (Process-Net Jahrestagung oder ein Fachausschusstreffen) ein. Die Teilnehmerzahl ist auf 5 Studierende beschränkt.

Arbeitsaufwand

- · Präsenszeit: 10 h
- Projektbearbeitung: 60 h
- · Präsentationen und Tagungsteilnahme: 50 h

Empfehlungen

Thermodynamik III, Prozess- und Anlagentechnik empfohlen

5.27 Modul: Computational Fluid Dynamics and Simulation Lab [M-MATH-106634]

Verantwortung: PD Dr. Mathias Krause
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte

4 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester **Dauer** 1 Semester Sprache Deutsch/ Englisch

Level 4 Version 2

Pfli	chtb	esta	ındt	eile

T-MATH-113373

Computational Fluid Dynamics and Simulation Lab

4 LP

Frank, Krause, Simonis, Thäter

Erfolgskontrolle(n)

Die Studierenden fertigen für ihr Abschlussprojekt eine schriftliche Ausarbeitung im Umfang von in der Regel 10-15 Seiten an, die benotet wird.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können über die eigene Fachdisziplin hinaus Probleme gemeinsam modellieren und auf Hochleistungsrechnern simulieren. Sie haben eine kritische Distanz zu Ergebnissen und deren Darstellung erworben. Sie können die Ergebnisse der Projekte im Disput verteidigen. Sie haben die Bedeutung von Stabilität, Konvergenz und Parallelität von numerischen Verfahren aus eigener Erfahrung verstanden und sind in der Lage, Fehler aus der Modellbildung, der Approximation, der Berechnung und in der Darstellung zu bewerten.

Inhalt

Vorlesungsanteil: Einführung in Modellbildung und Simulationen, Wiederholung zugehöriger numerischer Verfahren, Einführung in zugehörige Software und Hochleistungsrechner-Hardware

Eigene Gruppenarbeit: Bearbeitung von 1-2 Projekten in denen Modellbildung, Diskretisierung, Simulation und Auswertung (z.B. Visualisierung) für konkrete Themen aus dem Katalog durchgeführt werden. Der Katalog umfasst z.B: Diffusionsprozesse, Turbulente Strömungen, Mehrphasen-Strömungen, Reaktive Strömungen, Partikeldynamik, Optimale Kontrolle und Optimierung unter Nebenbedingungen, Stabilisierungsverfahren für advektionsdominierte Transportprobleme.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Abschlussprojekts.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden

Präsenzzeit: 60 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung der Projekte und Ausarbeitungen anfertigen
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Empfehlungen

Grundkenntnisse in der Analysis von Randwertproblemen und in numerischen Methoden für Differentialgleichungen werden empfohlen. Kenntnisse in einer Programmiersprache werden dringend empfohlen.

Sprache

Version

5.28 Modul: Computer-Aided Reactor Design [M-CIWVT-106809]

Turnus

Verantwortung: Dr.-Ing. Martin Kutscherauer

Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefungsfach I / Chemische Verfahrenstechnik

Notenskala

Vertiefungsfach I / Modellierung und Simulation

6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	4	1
Deli alatha atau altaila						

Dauer

Pflichtbestandteile				
T-CIWVT-113667	Computer-Aided Reactor Design	6 LP	Wehinger	

Erfolgskontrolle(n)

Leistungspunkte

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Bewertet wird die Projektaufgabe anhand des Quellcodes, des Posters und dessen Präsentation.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden sind in der Lage:

- die mathematischen und physikalischen Grundlagen von Modellen der chemischen Reaktionstechnik zu beschreiben und anzuwenden,
- · die Software Python selbständig und gründlich auf die Reaktormodelle anzuwenden,
- ein reaktionstechnisches Modell für einen unbekannten chemischen Prozess zu entwickeln und Probleme der Reaktorauslegung zu lösen,
- die erzielten Ergebnisse durch Vergleich mit aktueller Literatur zu analysieren und zu beurteilen,
- Fehler und Unsicherheiten des Modells zu erkennen und zu bewerten,
- · ihre erzielten Ergebnisse in geeigneter Form darzustellen, zu präsentieren und kritisch zu diskutieren.

Inhalt

- 1. Einführung in die Modellierung und Simulation von chemischen Reaktoren
- 2. Bilanzgleichungen von chemischen Reaktoren
- 3. Prozesse in porösen Systemen
- 4. Homogene und heterogene Reaktormodelle
- 5. Angewandte numerische Methoden
- 6. Reaktorauslegung

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Anmerkungen

Es Studierenden rechnen auf ihren eigenen Laptops.

Die Veranstaltung ist auf 24 Studierende begrenzt. Es werden Studierende aus dem Vertiefungsfach CVT bevorzugt.

Arbeitsaufwand

Empfehlungen

Präsenszeit: 45 hSelbststudium: 105 h

Prüfungsvorbereitung: 30 h

Kenntnisse der Module Chemische Verfahrenstechnik I und II werden vorausgesetzt.

Literatur

- · Finlayson: Introduction to Chemical Engineering Computing; 2012, Wiley
- Jakobsen: Chemical Reactor Modeling; 2014, Springer
- · Salmi et al.: Chemical reaction engineering: a computer-aided approach; 2020, de Gruyter

5.29 Modul: Cryogenic Engineering [M-CIWVT-104356]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	4	1

Pflichtbestandteile			
T-CIWVT-108915	Cryogenic Engineering	6 LP	Grohmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Verstehen der Funktion und Modellierung regenerativer Kryokühler; Verstehen und Anwenden der wichtigsten verfahrenstechnischen Methoden und Komponenten zur Konzeption und Auslegung von Tieftemperaturanlagen und Kryostatsystemen; Verstehen von Prinzipien der Labormesstechnik, Beurteilen und Anwenden von Sensoren und Messgeräten für kryotechnische Messaufgaben und Analysieren von Messunsicherheiten.

Inhalt

Kryotechnische Anwendungen; Regenerative Kälteerzeugung mit Kryokühlern; Grundlegende Aspekte der Konzeption von Tieftemperaturanlagen und Kryostaten, einschließlich Fluidmechanik und Wärmeübertragung, thermische Kontaktierung und thermische Isolation, kryogenes Pumpen von Gasen, Regularien und Konstruktionselemente für Kryostate sowie deren Sicherheit; Allgemeine Grundlagen der Messtechnik und der Messunsicherheit sowie kryogene Temperatur-, Druck- und Durchflussmessung.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Prüfung kann wahlweise auf Deutsch oder Englisch durchgeführt werden.

Arbeitsaufwand

- Präsenzzeit: 45 h
- · Selbststudium: 45 h
- · Prüfungsvorbereitung: 90 h

5.30 Modul: Data-Based Modeling and Control [M-CIWVT-106319]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
5Version
1

Pflichtbestandteile				
T-CIWVT-112827	Data-Based Modeling and Control	6 LP	Meurer	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 45 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verfügen über ein vertieftes Verständnis von Methoden und Konzepte der datenbasierten Modellierung und Regelung dynamischer Systeme unter Einbezug von Verfahren des Maschinellen Lernens und entsprechender Optimierungsverfahren. Sie verstehen die zugrundeliegenden mathematischen Konzepte und können diese auf neue Problemstellungen anwenden. Sie sind in der Lage, diese Methoden selbstständig auf konkrete Problemstellungen anzuwenden und sich selbstständig in weiterführende Literatur einzuarbeiten.

Inhalt

The module covers basic concepts and fundamentals of data-based approaches for modeling and control design for dynamical systems and processes. Data-based approaches for modeling, also called system identification, are used to identify a mathematical description of the considered system from the available input and output data. Data-based approaches for control design compute the controller without an a priori known model of the system. Extensions to learning-based control are addressed, where in principle machine learning techniques are used to learn a model or a controller for a given system.

Problem sets are considered in the exercises to apply the developed methods.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 30 h, Übung 15 h

Selbststudium: 75 h Prüfungsvorbereitung: 60 h

Literatur

- T. Meurer: Data-based Modeling and Control, Lecture Notes.
- S.L. Brunton, J.N. Kutz: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2022.
- D. Bertsekas: Reinforcement Learning and Optimal Control, Athena Scientific, 2019.
- D.H. Owens: Iterative Learning Control, Springer, 2016.
- Verschiedene aktuelle Publikationen, welche in der Vorlesung diskutiert werden.

5.31 Modul: Datenanalyse und Statistik [M-CIWVT-104345]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Gas-Partikel-Systeme

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108900	Datenanalyse und Statistik	4 LP	Guthausen

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können statistische Angaben verstehen und beurteilen. Sie können aus der Vielfalt der neuen statistischen Methoden der Datenauswertung die für eine konkrete Fragestellung geeignete Methode finden und vergleichend mit anderen Ansätzen beurteilen.

Inhalt

Einführung in die Statistik und Anwendung auf die Datenanalyse in der Analytik. Einfache beschreibende Statistik mit Größen, wie Standardabweichung, typischen Verteilungen und deren Anwendungen. Die Anwendung dieser Werkzeuge führt zu statistischen Tests, die zur Approximation und Regression benötigt werden. Chemometrische Datenverarbeitung und statistische Behandlung großer Datensätze werden am Beispiel von multivarianten Näherungen zur Aufdeckung von Korrelationen studiert.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 30 h

· Prüfungsvorbereitung: 60 h

Literatur

Angaben während der Vorlesung.

5.32 Modul: Datengetriebene verfahrenstechnische Modelle in Python [M-CIWVT-106835]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-CIWVT-113708	Datengetriebene Modellierung in Python - verfahrenstechnisches Projekt	3 LP	Rhein		
T-CIWVT-113709	Datengetriebene verfahrenstechnische Modelle in Python - Prüfung	1 LP	Rhein		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Studienleistung: Diese besteht aus einer Projektarbeit mit verfahrenstechnischem Bezug, die auf Wunsch der Studierenden eigenständig oder in kleinen Gruppen durchgeführt wird. Das Projekt erfordert die Anwendung der während dem Semester erarbeiteten Fähigkeiten auf eine neue Problemstellung. Bewertet wird ein einzureichendes Python-Skript, das eine Reihe von gestellten Aufgaben auf der Basis von zur Verfügung gestellten Daten löst.
- 2. Mündliche Prüfung im Umfang von ca. 25 Minuten.

Voraussetzungen

Voraussetzungen für das Modul: Keine.

Voraussetzungen innerhalb des Moduls: Die Teilnahme an der mündlichen Prüfung ist erst möglich, wenn das Projekt bestanden ist.

Qualifikationsziele

Das Erlernen der Grundkenntnisse und der Aufbau eines vertrauten Umgangs mit der Programmiersprache Python stehen im Fokus der Veranstaltung.

Anhand eines verfahrenstechnischen Projekts werden die Grundzüge der Optimierung, Regression, Datenintegration in physikalische Modelle sowie das Lösen einfacher Differentialgleichungen vermittelt.

Es werden wertvolle Werkzeuge zur automatisierten Datenverarbeitung vermittelt, die im Zuge zunehmender Digitalisierung in Forschung und Industrie immer weiter an Bedeutung gewinnen.

Inhalt

Die Inhalte der Vorlesung sind klar auf das Erlernen der Programmiersprache Python bzw. deren Anwendung in verschiedenen Bereichen der Datenanalyse ausgelegt.

- · Allgemeine Einführung in Python sowie die Bedeutung und Anwendung von Daten und Modellen
- Grundlagen der Programmiersprache Python: Syntax, Variablen, Funktionen, Klassen, ...
- Der Umgang mit Arrays und Matrizen (numpy)
- Erstellen publikationsfähiger Grafiken (matplotlib)
- · Einführung in lineare und nichtlineare Regression (scikit-learn)
- Einführung in die Optimierung (scipy.optimize)
- Numerisches Lösen gewöhnlicher Differentialgleichungen (scipy.integrate)
- Datengetriebene Modellierung: Ableiten physikalischer Parameter aus experimentellen Daten durch Kombination aller bisher erlernten Methoden
- Projektarbeit: Eigenständige Anwendung des Gelernten auf eine neue Problemstellung

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung

Arbeitsaufwand

- Präsenzzeit: 30 h
- Nachbearbeitung der Vorlesung und Bearbeitung weiterführender, freiwilliger Übungsaufgaben: 30 h
- · Projektarbeit: 45 h
- Prüfungsvorbereitung: 15 h

5.33 Modul: Design of a Jet Engine Combustion Chamber [M-CIWVT-105206]

Verantwortung: Dr.-Ing. Stefan Raphael Harth

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
5Version
1

Pflichtbestandteile				
T-CIWVT-110571	Design of a Jet Engine Combustion Chamber	6 LP	Harth	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bewertet werden eine mündliche Prüfung (maximal 35 Punkte) und der Mitarbeit/Präsentation während des Projektes (maximal 65 Punkte).

Notenschlüssel auf Anfrage. Zum Bestehen der Erfolgskontrolle müssen mindestens 45 Punkte erreicht werden.

Voraussetzungen

Keine

Qualifikationsziele

- The students are able to apply the relevant design parameters in order to design a jet engine combustor.
- The students are able to evaluate design modifications due to the performance of a jet engine combustor.
- The students are able to review literature studies and use them for their design aims.
- The students learn to work target oriented following a time schedule.
- The students learn to work in a team and to exchange information between the teams by definition of interfaces.
- The students learn to present clearly and in an acceptable time the work progress and the most important results.

Inhalt

At the beginning the description and operating mode of a jet engine with emphasis on the combustor is explained in 4 lessons. Afterwards the design of the combustor based on geometrical boundary conditions (engine casing) and the performance conditions will start. The tasks to be solved for the design are the combustor aerodynamic (pressure loss, air split), thermal management (temperature distribution, wall cooling, material), calculation of emissions and the construction of the combustor. In order to solve the tasks the students have to be organized in groups which are responsible for the tasks mentioned. The work progress will be controlled by a time schedule and regular presentations. The complete design will be discussed in a final presentation.

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Arbeitsaufwand

Präsenzzeit: 20 hSelbststudium: 60 h

· Projekt: 80 h

Prüfungsvorbereitung: 20 h

- · Lefebvre, Gas Turbine Combustion
- · Rolls-Royce plc, the jet engine
- Müller, Luftstrahltriebwerke Grundlage, Charakteristiken, Arbeitsverhalten

5.34 Modul: Digital Design in Process Engineering [M-CIWVT-105782]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	4	1

Pflichtbestandteile					
T-CIWVT-111582	Digital Design in Process Engineering - Laboratory	3 LP	Klahn		
T-CIWVT-111583	Digital Design in Process Engineering - Oral Examination	3 LP	Klahn		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Praktikum, unbenotete Studienleistung nach § 4 Abs. 3 SPO.
- 2. Mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Das bestandene Praktikum ist Voraussetzung für die Teilnahme an der mündlichen Prüfung.

Voraussetzungen

Keine.

Qualifikationsziele

- · Beherrschen und Anwenden der Grundlagen von 3D Geometriemodellierung
- Erkennen von typischen Fehlern und Artefakten in 3D Modellen
- Auswahl von geeigneten Methoden für Optimierung, Gestaltung und Validierung

Inhalt

Digital design for Process Engineering gibt eine Einführung in Programme und Methoden, um Bauteile für die Verfahrenstechnik effizient zu gestalten.

- Computer Aided Design CAD (Autodesk Inventor)
- Topologieoptimierung
- · Parametrisierung und Designautomatisierung (Grasshopper Rhino)
- · Verknüpfung von Optimierung, Konstruktion und nummerischer Validierung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenszeit: 60 h
- Selbststudium (CAD-Design): 80 h
- Prüfungsvorbereitung: 40 h

Empfehlungen

Das Modul wird als Grundlage für das Modul Additive Manufacturing for Process Engineering [M-CIWVT-105407] empfohlen.

5.35 Modul: Digitalisierung in der Partikeltechnik [M-CIWVT-104973]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Gas-Partikel-Systeme

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	2

Pflichtbestandteile				
T-CIWVT-110111	Digitalisierung in der Partikeltechnik	4 LP	Gleiß	
T-CIWVT-114694	Digitalisierung in der Partikeltechnik - Projektarbeit	2 LP	Gleiß	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- · Studienleistung unbenotete: Vortrag über die Projektarbeit
- Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Voraussetzungen für das Modul: Keine

Voraussetzungen innerhalb des Moduls: Die Teilnahme an der mündlichen Prüfung ist erst möglich, wenn das Projekt bestanden ist.

Qualifikationsziele

Fähigkeit zur Entwicklung von ganzheitlichen Strategien zur Digitalisierung von Prozessen in der Partikeltechnik. Dies umfasst die Methodenentwicklung aber auch die Anwendung von numerischen Methoden.

Die Studierenden bearbeiten die Projektarbeit als Team. Die einzelnen Themen greifen den Kontext der Vorlesung auf. Somit werden neben den fachspezifischen Themen der Vorlesung Softskills wie die Teamfähigkeit, die eigenständige Planung und Bearbeitung eines Projekts soie das Präsentieren gestärkt.

Inhalt

Vermittlung von Methoden zur systematischen Entwicklung von ingenieurswissenschaftlichen Digitalisierungsstrategien für die Partikeltechnik. Dies beinhaltet die Multiskalenmodellierung, die mathematischen Grundlagen der Prozessmodellierung und -simulation, die modellprädiktive Regelung sowie die Messwerterfassung mittels online und in-situ Prozessanalytik. Weiterhin erfordert die messtechnische Erfassung großer Datenmengen aufwendige Auswertemethoden für die Weiterverarbeitung sowie Reduktion der erzeugten Daten. Hierzu können Methoden des maschinellen Lernens eingesetht werden. Die Entwicklungen der Digitalisierung in der Partikeltechnik werden anhand verschiedener Beispiele aus der Praxis untermauert.

Projektarbeit: Eigenständige Anwendung des Gelernten auf eine neue Problemstellung.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hProjektarbeit: 30 hSelbststudium: 60 h

· Prüfungsvorbereitung: 60 h

5.36 Modul: Dynamik verfahrenstechnischer Systeme [M-CIWVT-107037]

Verantwortung: Dr.-Ing. Pascal Jerono

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-CIWVT-114105	Dynamik verfahrenstechnischer Systeme - Vorleistung	3 LP	Jerono		
T-CIWVT-114106	Dynamik verfahrenstechnischer Systeme - Prüfung	3 LP	Jerono		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Prüfungsleistung anderer Art: Bearbeitung von Aufgaben; schriftliche Ausarbeitung. Die zu bearbeitenden Aufgaben werden individuell abgeschtimmt.
- 2. Mündliche Prüfung im Umfang von ca. 45 Minuten

Voraussetzungen

- · für die Teilnahme an dem Modul: Keine
- innerhalb des Moduls: Voraussetzung für die Teilnahme an der mündlichen Prüfung ist die schriftliche Ausarbeitung.

Qualifikationsziele

Die Studierenden sind in der Lage, Probleme der Modellierung dynamischer Systeme zu durchdringen und besitzen praktische Fertigkeiten in der und der dynamischen Systemanalyse. Die Studierenden kennen Methoden zur mathematischen Modellierung von verfahrenstechnischen Prozessen, sowie für die dynamische Analyse von linearen, nichtlinearen und zeitvarianten Systemen. Sie sind in der Lage selbstständig die zugrundeliegenden Modellgleichungen zu analysieren, zu simulieren und Schlussfolgerungen für das Verhalten und die Regelung mechanischer und verfahrenstechnischer Systeme, Prozesse und Anlagen zu ziehen.

Inhalt

Das Modul gibt eine Einführung in die Analyse verfahrenstechnischer Systeme. Dazu werden grundlegende Methodiken in der Theorie von linearen, nichtlinearen und zeit-varianten Differentialgleichungen vorgestellt, welche die Analyse prozessrelevanter Systemeigenschaft ermöglichen.

Das Modul behandelt die folgenden Themen:

- · Strukturierte dynamische Modellierung verfahrenstechnischer Prozesse und Systeme
- · Methoden der qualitativen Analyse dynamischer Systeme
- Einführung in die Bifurkationstheorie
- Rechnergestützte Auswertung und Implementierung

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenzzeit:

- Vorlesung 30 h
- Übung 15 h

Selbststudium:

- · Schriftliche Ausarbeitung: 30 h
- Vor- und Nachbereitung der Lehrveranstaltungen: 45 h
- Prüfungsvorbereitung: 60 h

- · P. Jerono und T. Meurer: Dynamik verfahrens-technischer Systeme, Vorlesungsskript.
- B. Brogliato, R. Lozano, B. Maschke, O. Egeland: Dissipative systems analysis and control, Springer, 2007.
- S. Strogatz: Nonlinear Dynamics and Chaos: with applications to physics, biology, chemistry, and engineering, Pereus
- J. Hale, H. Kocak: Dynamics and Bifurcations, Springer.
 S. Wiggins: Introduction to Applied Nonlinear Systems and Chaos, Springer.
- S. Sastry: Nonlinear Systems: Analysis, Stability, and Control, Springer.
- S. Stephanopoulos: Chemical process control (Vol. 2), NJ: Prentice hall.

5.37 Modul: Einführung in die Sensorik [M-CIWVT-105933]

Verantwortung: Dr. Heike Hofsäß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Leistungspunkte
2 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-109128	Einführung in die Sensorik mit Praktikum	2 LP	Hofsäß	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 30 Minuten.

Voraussetzungen

Keine.

Inhalt

Sinnesphysiologische Grundlagen: einzelne Sinne, Grundgeschmacksrichtungen, Vereinheitlichung und Normung, Anforderungen an Prüfraum und Prüfer, Prüferschulung, Methoden der sensorischen Analyse: Unterschiedsprüfungen, Dreiecksprüfung, Duo-Trio-Prüfung, beschreibende Prüfungen, bewertende Prüfung mit Skale u.a.

Anmerkungen

Anmeldung erforderlich. Anmeldung eine Woche vor Beginn der Vorlesungszeit per Mail an heike.hofsaess@kit.edu .

5.38 Modul: Electrocatalysis [M-ETIT-105883]

Verantwortung: Prof. Dr. Ulrike Krewer

Dr. Philipp Röse

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte Notenskala Turnus Dauer Sprache Level Versichen Semester 1 Semester Englisch 4	ersion 3
--	-------------

Pflichtbestandteile				
T-ETIT-111831	Electrocatalysis	6 LP	Röse	

Erfolgskontrolle(n)

The examination takes place in form of a written examination lasting 120 minutes.

Voraussetzungen

none

Qualifikationsziele

Students have a well-grounded knowledge of electrocatalytic energy technologies for the conversion and storage of electrical energy in chemicals (Power-to-X). They know the functional principle of state-of-the-art electrocatalysts in fuel cells and electrolysis and understand the underlying electrochemical and physical processes. Participation in the course enables the students to assess and understand the relationship between electrode structure and their selectivity, performance and stability. Furthermore, the students learn the theoretical basics of experimental methods that are relevant for the investigation of model electrodes and technical cells.

Inhalt

Lecture:

- Basics, concepts and definitions within the Power-to-X context: Catalysis and electrocatalysis; activity and selectivity; fundamentals of electrochemical processes, elementary steps involving adsorbed intermediates.
- The role of intermediates: Electron transfer without intermediates, multi-electron transfer with intermediates; differences in adsorption energies of intermediates and active surfaces
- Theoretical treatment of electron transfer reactions: Tunneling processes at electrodes; electron transfer reactions (Marcus theory); role of electrode material on rate of electrode reaction.
- Measurement methods for the investigation of electrocatalytic reactions: Determination of the effective surface; Determination of the activity of electrochemically active species; Determination of the selectivity; Operando measurement methods
- Technically important electrocatalytic reactions and processes: The oxygen reduction reaction (ORR) and evolution reaction (OER); the chlorine evolution reaction.

Zusammensetzung der Modulnote

The module grade is the grade of the written examination.

Arbeitsaufwand

attendance in lectures: 30 * 45 min. = 22,5 h attendance in exercises: 15 * 45 min. = 11,25 h

preparation and follow up of the lectures and practice: 76.25 hours (approx. 1.75 hours per lecture or exercise)

preparation of examination and attendance in examination: 40 h

A total of 150 h = 5 CR

Empfehlungen

The participation of the module "Electrochemical Energy Technologies" is helpful.

5.39 Modul: Elektrobiotechnologie [M-CIWVT-106518]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	5	2

Pflichtbestandteile					
T-CIWVT-113148	Elektrobiotechnologie	4 LP	Holtmann		
T-CIWVT-113829	Elektrobiotechnologie Seminar	2 LP	Holtmann		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

 Prüfungsvorleistung/ Prüfungsleistung anderer Art: Benoteter Vortrag mit einer Dauer von ca. 10 Minuten im Rahmen des Seminars:

Beim Seminar besteht Anwesenheitspflicht bei mindestens 80 % der Termine.

• Mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

Die erfolgreiche Teilnahme an dem Seminar ist Voraussetzung für die Teilnahme an der mündlichen Prüfung.

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- Die Komponenten und Vorgänge eines bioelektrochemischen Reaktionssystems zu beschreiben und Optimierungen vorzuschlagen.
- Die Vorteile und Herausforderungen der elektrobiotechnologischen Verfahren zu diskutieren und von anderen Prozessen abzugrenzen.
- Wissenschaftliche Untersuchungen zur Entwicklung von elektrobiotechnologischen Prozessen zu planen.

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- · Aktuelle Entwicklungen in der Elektrobiotechnologie und angrenzenden Fachbereichen zu bewerten.
- Die Einsatzmöglichkeiten der Elektrobiotechnologie zur Erreichung der Nachhaltigkeitsziele zu beurteilen.
- · Verschiedene Handlungsoptionen transdisziplinär zu diskutieren.

Inhalt

Die Elektrobiotechnologie bietet eine grundlegend neue Möglichkeit, Redox-Prozesse von Bioproduktionssystemen durch extrazelluläre Aufnahme oder Abgabe von reduzierenden Äquivalenten in Form von Elektronen zu gestalten. Die elektrochemischen Prozesse dienen hauptsächlich dem effizienten Energietransfer, die Biokatalysatoren ermöglichen hochselektive, komplexe Reaktionen in Verbindung mit hochstabilen Katalysatoren. Generell ist die Elektrobiotechnologie ein aufstrebendes Gebiet an der Schnittstelle von Elektrochemie und Biotechnologie. Vor dem Hintergrund der zunehmenden Entwicklung und des schnellen Ausbaus erneuerbarer Energiequellen ermöglicht die Elektrobiotechnologie die Nutzung von bisher nicht genutzten Stoffen (energiearmen Abfällen oder Abwässern sowie von CO2). Mittel- bis langfristig könnte dies zu einer Umstellung von konventionellen Prozessen auf nachhaltige, auf erneuerbaren Energien basierende Prozesse führen, was ein wichtiger Schritt in Richtung einer nachhaltigen Kreislaufwirtschaft ist.

Die Elektrobiotechnologie kann für ein breites Spektrum von Anwendungen genutzt werden, von sensorischen Aspekten über Bio-Elektrosynthese bis hin zur Generierung elektrischer Energie. Aufgrund dieser breiten Anwendungsmöglichkeiten und der hohen Energie- und Ressourceneffizienz könnten die elektro-biotechnologischen Verfahren einen wesentlichen Beitrag zur Erreichung der Ziele für nachhaltige Entwicklung (Sustainable Development Goals, SDGs) der Vereinten Nationen leisten. Im ersten Teil der Vorlesung werden die grundlegenden Aspekte der elektrochemischen Verfahrens- und Reaktionstechnik vorgestellt. Im Fokus des zweiten Teils stehen die entsprechenden Anwendungen in bioelektrochemischen Verfahren.

Inhalte:

Definitionen und Grundbegriffe: Komponenten eines Reaktors/ Elektrolyte/ Wichtige Gesetzmäßigkeiten

Grundlagen der technischen Elektrochemischen Thermodynamik / Elektrochemische Kinetik / Transportprozesse in der Elektrochemie / Elektrochemische Reaktionstechnik / Elektrochemische Verfahrenstechnik / Mess-Methoden

Bioelektrochemische Verfahren: Brennstoffzellen / Mikrobielle Elektrolysen / Mikrobielle Elektrosynthesen / Elektroenzymatische Verfahren / Elektrofermentationen / Bio-Elektrochemische Sanierungsverfahren / Biosensoren / Elektrochemisches Bio-Mining / Elektrochemische Verfahren in der Aufarbeitung von Bio-Produkten

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenzzeit

Vorlesung: 30 hSeminar: 15 h

Selbststudium

- · Ausarbeitung Seminarvortrag: 45 h
- Vor- und Nachbereitung der Vorlesung: 60 h
- · Prüfungsvorbereitung 30 h

Empfehlungen

Grundlagen in Bioverfahrenstechnik werden vorausgesetzt.

Literatur

Allg. Literatur:

- Hamann, Carl H. / Vielstich, Wolf, ISBN: 978-3-527-31068-5
- Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozessoptimierung. Volkmar M. Schmidt, ISBN: 9783527299584
- Bioelectrochemistry Fundamentals, Experimental Techniques and Applications. Editor: P. Bartlett. ISBN: 978-0470843642
- Bioelectrosynthesis Advances in Biochemical Engineering /Biotechnology. Editors: F. Harnisch & D. Holtmann, ISBN 978-3-030-03298-2

Aktuelle wissenschaftliche Literatur wird zu Beginn der Veranstaltung bekannt gegeben.

5.40 Modul: Elektrochemie [M-CHEMBIO-106697]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte
3 LPNotenskala
ZehntelnotenTurnus
UnregelmäßigDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CHEMBIO-109773	Elektrochemie	3 LP	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Studenten erwerben einen Überblick über Eigenschaften ionischer Lösungen und chemische Reaktionen an Elektroden. Neben meist im Rahmen der klassischen Thermodynamik formulierten Grundlagen sollen auch moderne mikroskopische Vorstellungen über Elektrodenprozesse entwickelt werden.

Inhalt

Elektrolyte (Solvatation von Ionen, elektrolytische Leitfähigkeit, Zusammenhang von Migration und Diffusion, Hittorfsche Überführungszahlen, Interionische Wechselwirkungen und Debye-Hückel-Theorie), elektrochemische Zellen (Elektromotorische Kraft. Nernst-Gleichung. Diffusionspotential. Spannungsreihe), Elektrodenkinetik (Modelle der elektrochemischen Doppelschicht, Elektrokapillarität, elektrochemische Reaktionen, Butler-Volmer-Gleichung, Elektronentransfer, Marcus-Theorie, Elektrochemische Metallen, Mischpotentiale), (Zyklovoltammetrie, Passivität von Untersuchungsmethoden optische Spektroskopie an Elektrodenoberflächen, Rastertunnelmikroskopie), Anwendungen (Metallabscheidung, Brennstoffzellen, Nervenleitung).

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit in der Vorlesung: 30 h

Vor- und Nachbereitung inkl. Vorbereitung zur Modulabschlussprüfung: 60 h

Lehr- und Lernformen

5213 Elektrochemie

5214 Übungen zur Vorlesung Elektrochemie

- Hamann, Vielstich: Elektrochemie, Wiley-VCH, Weinheim 2005
- · Schmickler: Grundlagen der Elektrochemie, Vieweg, Braunschweig 1996

5.41 Modul: Energietechnik [M-CIWVT-104293]

Verantwortung: Prof. Dr.-Ing. Horst Büchner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
4

 Pflichtbestandteile

 T-CIWVT-108833
 Energietechnik
 4 LP Büchner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Der Hörer kennt die thermodynamischen Grundlagen und kann darauf aufbauend thermische Energieumwandlungsprozesse in Wärmekraftmaschinen und -anlagen quantitativ beschreiben und die Effizienz der Energieumwandlung zu berechnen. Darüber hinaus können die Studierenden das Erlernte auf Beispiel ausgewählter technischer Prozesse übertragen.

Inhalt

Die Vorlesung beginnt mit einer allgemeinen Übersicht über die wichtigsten wirtschaftlichen Gesichtspunkte und Kennzahlen thermischer Energietechnik am Beispiel Deutschland. Danach werden die thermodynamischen Grundlagen für das Verständnis von Wärmekraftmaschinen besprochen und bei ausgewählten Energieumwandlungsprozessen (Stirling-Motor, Gasturbine, Dampfkraftwerk, etc.) angewendet, um so Möglichkeiten zur Steigerung des thermischen und exergetischen Wirkungsgrades wie auch des Arbeitsverhältnisses anhand von Beispielen aufzuzeigen.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Blockveranstaltung im März 2026.

Sollten Sie an der Veranstaltung Energietechnik im Wintersemester 2025/26 teilnehmen wollen, is teine Anmeldung zur Vorlesung unter vbt-sekretariat∂ebi kit edu erforderlich. Bei einer zu geringen Anmeldezahl wird die Veranstaltung nicht stattfinden.

Arbeitsaufwand

- Präsenzzeit: 30 h
- · Selbststudium: 30 h
- · Prüfungsvorbereitung: 60 h

5.42 Modul: Energieträger aus Biomasse [M-CIWVT-104288]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Verbrennungstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-108828	Energieträger aus Biomasse	6 LP	Bajohr

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden entwickeln Prozessverständnis für Prozesse zur Umwandlung und Nutzung von Biomasse. Sie können entsprechende Prozesse bilanzieren, bewerten und weiterentwickeln. Die Betrachtung ethischer, ökonomischer und ökologischer Rahmenbedingungen hilft den Studierenden bei der kritischen Bewertung von (neuen) Prozessen und bei deren Weiterentwicklung.

Inhalt

- Grundlagen der Biomasseentstehung und der Umwandlungspfade hin zu chemischen Energieträgern wie Biodiesel, Ethanol oder SNG.
- Charakterisierungsmethoden und Unterscheidungskriterien für Biomasse, nutzbare Potenziale global/national, Nachhaltigkeitsaspekte, CO2-Vermeidungspotenziale.
- · Nutzung und Umwandlung von Pflanzenölen und -fetten.
- · Biochemische Umwandlungsprozesse zu Ethanol und Biogas, Nutzung- und Aufbereitungsprozesse für Biogas.
- Thermochemische Biomasseumwandlung durch Pyrolyse und Vergasung; ausgewählte Synthesen (FT-, CH4-, CH3OH-, DME-Synthese).

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 45 h
- Selbststudium:75 h
- Prüfungsvorbereitung: 60 h

- · Kaltschmitt, M.; Hartmann (Ed.): Energie aus Biomasse, 2. Aufl., Springer Verlag 2009.
- Graf, F.; Bajohr, S. (Hrsg.): Biogas: Erzeugung Aufbereitung Einspeisung, 2. Aufl., Oldenbourg Industrieverlag 2013.

5.43 Modul: Entwicklung eines innovativen Lebensmittelprodukts [M-CIWVT-104388]

Verantwortung: Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	5	2

Pflichtbestandteile				
T-CIWVT-108960	Entwicklung eines innovativen Lebensmittelprodukts	3 LP	van der Schaaf	
T-CIWVT-111010	Entwicklung eines innovativen Lebensmittelprodukts - Vortrag	3 LP	van der Schaaf	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus:

- Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO: Teilnahme am Seminar und Vortrag (20 30 Minuten)
- Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO: schriftliche Ausarbeitung in Gruppenarbeit (bis zu 6 Personen) mit einem Umfang von ca. 20 Seiten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können ihr bisheriges Wissen über Lebensmittel und ihre Herstellung nutzen, um selbst ein innovatives Lebensmittelprodukt sowie einen sinnvollen Herstellungsprozess unter Berücksichtigung der Aspekte Energieeffizienz und Nachhaltigkeit zu entwickeln. Die Studierenden können Grundprinzipien des Scale ups in der Lebensmittelherstellung sowie Strategien zur großmaßstäblichen Gewährleistung der Lebensmittelqualität und –sicherheit anwenden und in Bezug auf ihr eigenes Produkt evaluieren. Sie sind mit den grundlegenden Konzepten des Marketings und der Verpackungstechnologie vertraut, können diese anwenden und bezogen auf ihr Produkt analysieren. Die Studierenden können Grundprinzipien des Projektmanagements am Beispiel der Entwicklung eines Lebensmittelprodukts anwenden und evaluieren.

Inhalt

Entwicklung eines Lebensmittelprodukts bis zur Marktreife (dies beinhaltet u.a. Lebensmittelqualität und –sicherheit, Scale-up, Marketing, Verpackung, Energieeffizienz, Nachhaltigkeit etc.); Seminar zu den Grundlagen des Projektmanagements.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen: 50 % Note des Vortrags (Einzelnote) und 50 % der Note des auszuarbeitenden Exposés (Gruppennote).

Anmerkungen

Es besteht die Möglichkeit zur Teilnahme am Wettbewerb "EcoTrophelia".

Die maximale Teilnehmerzahl ist beschränkt. Die Zulassung erfolgt auf Grundlage eines Auswahlgesprächs.

Arbeitsaufwand

· Praktische Arbeit: 100 h

• Selbststudium: 20 h

· Ausarbeitung des Exposés: 30 h

· Seminar und eigene Präsentation: 30 h

Empfehlungen

Der Besuch von Vorlesungen der Vertiefungsfächer Lebensmittelverfahrenstechnik und/oder Produktgestaltung wird empfohlen.

5.44 Modul: Environmental Biotechnology [M-CIWVT-104320]

Verantwortung: Andreas Tiehm

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106835	Environmental Biotechnology	4 LP	Tiehm

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die Prinzipien der Mikrobiologie und deren technische Anwendung erklären. Sie sind in der Lage technisch relevante mikrobiologische Zusammenhänge auf ökologische, bio- und umwelttechnische Prozesse zu übertragen. Sie können biotechnologische Verfahren hinsichtlich leistungsbegrenzender Faktoren analysieren und Prozesskombinationen zur Steigerung der Umsatzraten unter ökologisch-ökonomischen Gesichtspunkten beurteilen.

Inhalt

Grundlagen Umweltbiotechnologie, Anwendungsgebiete, Stoffwechseltypen, Abbaubarkeit, Testverfahren zur Abbaubarkeit, Nährstoffe, Elektronenakzeptoren, Toxizität, Wachstumskinetik, Biologische Abwasserreinigung, Belebtschlammverfahren, Tropfkörper, Membranbioreaktoren, Klärschlammbehandlung, Biogasbildung, Desintegrationsverfahren, Mikrobiologischer Abbau von Schadstoffen (PAK, CKW), Sanierung kontaminierter Standorte, Natürlicher Abbau (Natural Attenuation), Uferfiltration, Trinkwasser-Aufbereitung, Monitoring-Methoden (Kulturverfahren, Molekularbiologie).

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 45 h

Prüfungsvorbereitung: 45 h

5.45 Modul: Ersatz menschlicher Organe durch technische Systeme [M-MACH-102702]

Verantwortung: apl. Prof. Dr. Christian Pylatiuk **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-MACH-105228	Ersatz menschlicher Organe durch technische Systeme	4 LP	Pylatiuk

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 min.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verfügen über umfassende Kenntnisse zur Funktionsweise von Unterstützungssystemen und deren Komponenten (z.B. Sensoren, Aktoren) für unterschiedliche menschliche Organe (z.B. Herz, Niere, Leber, Auge, Ohr, Bewegungsapparat). Sie kennen die physikalischen Grundlagen, die technischen Lösungen und die wesentlichen Aspekte dieser medizintechnischen Systeme und deren aktuelle Limitationen. Weiterhin kennen sie Bioreaktoren und weitere Verfahren körpereigene Zellen zur Organunterstützung einzusetzen (Tissue-Engineering). Darüber hinaus verfügen Sie über umfassende Kenntnisse zur Organtransplantation und deren Grenzen.

Inhalt

Hämodialyse, Leber-Dialyse, Herz-Lungen-Maschine, Kunstherzen, Biomaterialien, Definition und Klassifikation Organunterstützung und Organersatz, Hörprothesen, Sehprothesen, Exoskelette, Neuroprothesen, Endoprothesen, Tissue-Engineering.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

1. Präsenszeit Vorlesung: 15 * 2h = 30h

2. Vor- und Nachbereitungszeit Vorlesung: 15*3h = 45h

3. Prüfungsvorbereitung und Präsenz Prüfung: 45h

Insgesamt: 120h = 4 LP

Empfehlungen

Die Inhalte des Moduls MMACH-105235 ergänzen die Vorlesung.

- Jürgen Werner: Kooperative und autonome Systeme der Medizintechnik: Funktionswiederherstellung und Organersatz.
 Oldenbourg Verlag.
- Rüdiger Kramme: Medizintechnik: Verfahren Systeme Informationsverarbeitung. Springer Verlag.
- E. Wintermantel, Suk-Woo Ha: Medizintechnik. Springer Verlag.

5.46 Modul: Estimator and Observer Design [M-CIWVT-106320]

Verantwortung: Dr.-Ing. Pascal Jerono

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-112828	Estimator and Observer Design	6 LP	Jerono

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 45 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden verfügen über ein vertieftes Verständnis der Konzepte und Methoden zur Zustandsschätzung und Identifikation dynamischer Systeme und kennen deren Vor- und Nachteile. Darüber hinaus sind die Studierenden in der Lage, die Eigenschaften der Beobachtbarkeit und Detektierbarkeit der zugrundeliegenden Systemdynamik zu analysieren und diese Informationen für den Entwurf geeigneter Zustandsbeobachter im Rahmen praktischer Anwendungen zu nutzen. Die Studierenden kennen verschiedene numerische Lösungsansätze, verstehen deren Arbeitsweise und können diese für Schätzund Beobachterentwurfsaufgaben umsetzen.

Inhalt

State feedback control relies on the availability of the full state vector, which is in general not available from measurements. Moreover determining the states (or parameters) of a dynamical systems is of interest on its own as this allows to obtain insights into the system dynamics or to estimate quantities that are not or hardly measurable. The lecture addresses basic concepts of estimation and identification methods and the design of optimal state observers for linear and nonlinear dynamical systems both in a continuous and a discrete time setting. This includes:

- · Introduction to fundamental concepts for system identification and state estimation
- · State-space approaches for system identification
- · Analysis of observability and detectability
- · Design of linear and nonlinear observers as well as optimal state estimators (Kalman-Bucy and Kalman Filters)
- Numerical methods

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 30 h, Übung 15 h

Selbststudium: 60 h

Prüfungsvorbereitung: 75 h

- P. Jerono: Estimator and Observer Design, Lecture Notes.
- L. Lennart: System identification. Birkhäuser, 1998.
- H. Nijmeijer, A. Van der Schaft: Nonlinear dynamical control systems, Springer-Verlag, 1990.
- · Isidori: Nonlinear Control Systems, Springer-Verlag, 1995.
- · Gelb: Applied optimal estimation. MIT Press, 1974.
- F.L. Lewis, X. Lihua, and D. Popa: Optimal and robust estimation: with an introduction to stochastic control theory, CRC Press, 2017.

5.47 Modul: Extrusion Technology in Food Processing [M-CIWVT-105996]

Verantwortung: PD Dr.-Ing. Azad Emin

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
4 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	4	1	

Pflichtbestandteile			
T-CIWVT-112174	Extrusion Technology in Food Processing	4 LP	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Students will learn the fundamental principles of extrusion technology and its capabilities as well as the reasons behind its wide use by food industry. They will learn how various conventional food products are manufactured using this technology. Students will be able to approach a development of food more systematically by applying the principles of product design. They will also be able to combine and apply what they have learned in other courses/subjects during their studies in a multidisciplinary approach necessary for extruded food design. Students will understand how extrusion technology can be used in targeted ways to open up new opportunities for sustainable food transition.

Inhalt

This course covers the principles of extrusion, the design of extrusion processes, and the formulation of extruded products. Moreover, the course gives an introduction to more fundamental topics such as biopolymer structure, reactivity, rheology and process control. In addition to the extrusion of conventional products, the design of sustainable and innovative food products such as plant-based meat and sea-food alternatives as well as upcycled food side-streams, will be discussed. While focusing on the fundamentals as well as on the state-of-the-art extrusion technology, the course is very practically oriented, and includes a practical demonstration of the principles learned.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Veranstaltung findet als Blockvorlesung vom 13. - 17. Oktober statt. Anmeldung erforderlich! Weitere Informationen im Vorlesungsverzeichnis.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 30 h

Prüfungsvorbereitung: 60 h

Literatur

Wird in der Vorlesung angegeben.

5.48 Modul: Fest Flüssig Trennung [M-CIWVT-104342]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte
8 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-108897	Fest Flüssig Trennung	8 LP	Gleiß

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 (2) Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die grundlegenden Gesetze und daraus folgende physikalischen Prinzipien der Abtrennung von Partikeln aus Flüssigkeiten anwenden und nicht nur den prinzipiell dafür geeigneten Trennapparaten zuordnen, sondern auch speziellen Varianten. Sie sind in der Lage, den Zusammenhang zwischen Produkt-, Betriebs- und Konstruktionsparametern auf verschiedene Trenntechniken anzuwenden. Sie können Trennprobleme mit wissenschaftlichen Methoden analysieren und alternative Lösungsvorschläge angeben.

Inhalt

Physikalische Grundlagen, Apparate, Anwendungen, Strategien; Charakterisierung von Partikelsystemen und Suspensionen; Vorbehandlungsmethoden zur Verbesserung der Trennbarkeit von Suspensionen; Grund-lagen, Apparate und Anlagentechnik der statischen und zentrifugalen Sedimentation, Flotation, Tiefenfiltration, Querstrom-filtration, Kuchenbildenden Vakuum und Gasüberdruckfiltration, Filterzentrifugen und Pressfilter; Filtermedien; Auswahlkriterien und Dimensionierungsmethoden für trenntechnische Apparate und Maschinen; Kombinationsschaltungen; Rechenbeispiele zur Lösung trenntechnischer Aufgabenstellungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 H (Vorlesung 3 SWS, Übung 1SWS)
- Selbststudium: 80 h
- Prüfungsvorbereitung: 100 h

Literatur

Anlauf: Skriptum "Mechanische Separationstechnik - Fest/Flüssig-Trennung"

5.49 Modul: Formulierung und Darreichung biopharmazeutischer Wirkstoffe [M-CIWVT-104266]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte 4 LP **Notenskala** Zehntelnoten

Turnus Jedes Wintersemester **Dauer** 1 Semester Sprache Deutsch

Level 5

Version 1

Pflichtbestandteile

T-CIWVT-108805 Formulierung und Darreichung biopharmazeutischer Wirkstoffe 4 LP Hubbuch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umpfang von ca. 15 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können unterschiedlich Entwicklungsmethoden für biopharmazeutische Wirkstoffe erläutern. Die Prozesse, denen ein Arzneistoff im Körper unterliegt, können sie im Hinblick auf die Physiologie der Vergabeweges diskutieren.

Vor und Nachteile verschiedener Verabreichungsformen können Sie darlegen und analysieren.

Inhalt

Grundlagen; Wirkstoffentwicklung; LADME; Verabreichungsformen: Oral, Parenteral, Dermal, Nasal, Pulmonal.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 h Selbststudium: 60 h

Prüfungsvorbereitung: 30 h

Empfehlungen

Inhalte des Moduls Biopharmazeutische Aufarbeitungsverfahren.

5.50 Modul: Fundamentals of Water Quality [M-CIWVT-103438]

Verantwortung: Dr. Michael Wagner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Wassertechnologie

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106838	Fundamentals of Water Quality	6 LP	Wagner

Erfolgskontrolle(n)

Erfolgskontrolle ist mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die Zusammenhänge des Vorkommens von geogenen und anthropogenen Stoffen in den verschiedenen Bereichen des hydrologischen Kreislaufs erklären. Sie sind in der Lage, geeignete analytische Verfahren zu deren Bestimmung auszuwählen. Sie können die zugehörigen Berechnungen durchführen, Daten vergleichen und interpretieren. Sie sind fähig methodische Hilfsmittel zu gebrauchen, die Zusammenhänge zu analysieren und die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Wasserarten, Wasserrecht, Grundbegriffe der wasserchemischen Analytik, Analysenqualität, Probenahme, Schnellteste, allgemeine Untersuchungen, elektrochemische Verfahren, optische Charakterisierung, Trübung, Färbung, SAK, Säure-Base-Titrationen, Abdampf-/Glührückstand, Hauptinhaltstoffe, Ionenchromatographie, Titrationen (Komplexometrie), Atomabsorptionsspektrometrie (Schwermetalle), organische Spurenstoffe und ihre analytische Bestimmung mit chromatographischen und spektroskopischen Messverfahren, Wasserspezifische summarische Kenngrößen (DOC, AOX, CSB, BSB), Radioaktivität, Mikrobiologie.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 45 h Vor-/Nachbereitung: 65 h

Prüfung + Prüfungsvorbereitung: 70 h

- · Harris, D.C., 2010. Quantitative chemical analysis. W. H. Freeman and Company, New York.
- Crittenden, J.C. et al., 2005. Water treatment Principles and design. Wiley & Sons, Hoboken.
- Patnaik, P., 2010. Handbook of environmental analysis: Chemical pollutants in air, water, soil, and solid wastes. CRC Press.
- Wilderer, P., 2011. Treatise on water science, four-volume set, 1st edition, volume 3: Aquatic chemistry and biology. Elsevier. Oxford.
- · Vorlesungsunterlagen im ILIAS

5.51 Modul: Gas-Partikel-Messtechnik [M-CIWVT-104337]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Gas-Partikel-Systeme

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
5

Pflichtbestandteile				
T-CIWVT-108892	Gas-Partikel-Messtechnik	6 LP	Dittler	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Studierende können Fragestellungen rund um die Gas-Partikel-Messtechnik durch Kenntnis der erforderlichen Analyseschritte und die Wahl einer für die Aufgabenstellung geeigneten Partikelmesstechnik selbstständig lösen.

Inhalt

Aspekte der Partikelmesstechnik; Probenahme; Probenvorbereitung; Dispergierung; Abbildende Messverfahren; Zählverfahren; Trennverfahren; Spektroskopie; Gasanalytik.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 60 hSelbststudium: 90 h
- Prüfungsvorbereitung: 30 h

5.52 Modul: Gas-Partikel-Trennverfahren [M-CIWVT-104340]

Verantwortung: Dr.-Ing. Jörg Meyer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Gas-Partikel-Systeme

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Umweltschutzverfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108895	Gas-Partikel-Trennverfahren	6 LP	Meyer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten (Einzelprüfung) bzw. 20 Minuten (Gesamtprüfung im Vertiefungsfach Gas-Partikel-Systeme) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Studierende lernen die Größen kennen, die zur quantitativen Beschreibung der Effizienz eines Trennprozesses eingesetzt werden. Studierende entwickeln ein Verständnis für die physikalischen Grundprozesse, die zur (größenabhängigen) Trennung von Partikeln in einem Trägergasstrom verwendet werden können und lernen zugehörige Apparatetypen und -bauformen kennen. Sie können die entscheidenden Betriebsbedingungen und Prozessanforderungen identifizieren, die zur Vorauswahl geeigneter Trennapparate für eine spezifische Trennaufgabe benötigt werden. Sie können den Einfluss wichtiger Prozess- und Betriebsparameter auf Abscheideeffizienz und Energiebedarf eines Trennapparates quantitativ beschreiben.

Die Studierenden lernen, praktische Probleme beim Betrieb von Trennapparaten zu erkennen und Maßnahmen zu deren Behebung zu identifizieren.

Sie sind damit in der Lage, für eine spezielle Trennaufgabe den am besten geeigneten Apparat und die zugehörige Betriebsweise selbständig auszuwählen.

Inhalt

- Grundlagen:
 - Kennzeichnung einer Trennung
 - · Elementartheorie für Sichter und Abscheider
 - · Auswahlkriterien und Bewertung von Trennapparaten
 - Gesetzliche Rahmenbedingungen
- · Spezielle Trennapparate für Gas-Partikel-Systeme:
 - Funktionsweise, Bauformen, Einsatzbereiche und -grenzen, Praxisbeispiele
 - Näherungsrechnungen zur Quantifizierung von Abscheideeffizienz und Energieaufwand bei exemplarischen Abscheideaufgaben
 - · In der Vorlesung behandelte Apparate:
 - Sichter im Erdschwerefeld u. Fliehkraftfeld
 - Fliehkraftabscheider (Gaszyklon)
 - Filternde Abscheider
 - Nassabscheider (Wäscher)
 - Elektrische Abscheider

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 45 h
- Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h

5.53 Modul: Grenzflächenthermodynamik [M-CIWVT-103063]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte

4 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch

Level 4 Version 1

Pflichtbestandteile			
T-CIWVT-106100	Grenzflächenthermodynamik	4 LP	Enders

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind vertraut mit Besonderheiten von fluid-fluid und von fluid-solid Grenzflächeneigenschaften. Sie sind in der Lage, die Grenzflächeneigenschaften (Grenzflächenspannung, Dichte- und Konzentraionsprofile, Adsorptionsisotherme) mit makroskopischen und ortsaufgelösten Methoden zu berechnen.

Inhalt

Gibbs-Methode, Dichtefunktionaltheorie, experimentelle Methoden zur Charakterisierung von Grenzflächen, Adsorption

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Bei Bedarf wird die Lehrveranstaltung in englischer Sprache angeboten.

Arbeitsaufwand

Präsenszeit: 30 h Selbststudium: 60 h Prüfungsvorbereitung: 30 h

Empfehlungen

Thermodynamik III, Programmierkenntnisse.

Lehr- und Lernformen

Integrierte Lehrveranstaltung

Literatur

H. T. Davis, Statistical Mechanics of Phases, Interfaces and

Thin Films, Wiley-VCH Verlag, 1995.

J.P. Hansen, I.R. McDonald, Theory of simple liquids, Elsevier, 2014

5.54 Modul: Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie [M-CIWVT-104886]

Verantwortung: apl. Prof. Dr. Günter Schell

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Leistungspunkte

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester Sprache Level
Deutsch 4

el Version

Pflichtbestandteile			
T-MACH-102111	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	4 LP	Schell

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung zu einem vereinbarten Termin mit einer Dauer von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden haben grundlegende Kenntnisse zur Charakterisierung von Pulvern, Pasten und Suspensionen. Sie können die verfahrenstechnischen Grundlagen, die für die Verarbeitung von Partikelsystemen zu Formkörpern relevant sind, erläutern. Sie können diese Grundlagen zur Auslegung von ausgewählten Verfahren der Nass- und Trockenformgebung anwenden.

Inhalt

Die Vorlesung vermittelt verfahrenstechnisches Grundlagenwissen zur Herstellung von Formkörpern aus Keramik- und Metall-Partikelsystemen. Sie gibt einen Überblick über die wichtigsten Formgebungsverfahren und ausgewählte Werkstoffgruppen. Schwerpunkt bilden die Themenbereiche Charakterisierung und Eigenschaften von partikulären Systemen und insbesondere die Grundlagen der Formgebungsverfahren für Pulver, Pasten und Suspensionen.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 45 h

· Prüfungsvorbereitung: 45 h

Empfehlungen

Es werden Kenntnisse der allgemeinen Werkstoffkunde vorausgesetzt.

- Folien zur Vorlesung: verfügbar unter http://ilias.studium.kit.edu
- R.J. Brook: Processing of Ceramics I+II, VCH Weinheim, 1996
- M.N. Rahaman: Cermamic Processing and Sintering, 2nd Ed., Marcel Dekker, 2003
- Schatt ; K.-P. Wieters ; B. Kieback. "Pulvermetallurgie: Technologien und Werkstoffe", Springer, 2007
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
- Thümmler, R. Oberacker. "Introduction to Powder Metallurgy", Institute of Materials, 1993

5.55 Modul: Grundlagen der Lebensmittelchemie [M-CHEMBIO-104620]

Verantwortung: Prof. Dr. Mirko Bunzel

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CHEMBIO-109442	Grundlagen der Lebensmittelchemie	4 LP	Bunzel

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- kennen grundlegende Begriffe der Lebensmittelchemie und der Lebensmittelanalytik und können diese in schriftlicher und mündlicherForm einsetzen
- können die wichtigsten Komponenten von Lebensmitteln chemisch beschreiben, ihre Bedeutung in Lebensmitteln benennen undgrundlegende Reaktionen während der Lagerung, Verarbeitung etc. vorhersagen

Inhalt

Das Modul vermittelt Grundwissen über Proteine, Kohlenhydrate und Lipide als Hauptbestandteile von Lebensmitteln. Der Schwerpunktliegt dabei auf der Beschreibung ihrer chemischen Struktur, ihren Eigenschaften und möglichen Reaktionen im Lebensmittel. Die sich indiesem Zusammenhang ergebenden ernährungsphysiologischen, toxikologischen, warenkundlichen und analytischen Aspekte werdendiskutiert

Arbeitsaufwand

- Präsenzzeit: 30 h
- · Selbststudium: 45 h
- Prüfungsvorbereitung: 45 h

5.56 Modul: Grundlagen der Medizin für Ingenieure [M-MACH-102720]

Verantwortung: apl. Prof. Dr. Christian Pylatiuk **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-MACH-105235	Grundlagen der Medizin für Ingenieure	4 LP	Pylatiuk

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 min.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden haben ein umfassendes Verständnis zur Funktionsweise und zum anatomischen Bau von Organen, die unterschiedlichen medizinischen Disziplinen zugeordnet sind. Weiterhin kennen sie die physikalischen Grundlagen, die technischen Lösungen und die wesentlichen Aspekte bei der Anwendung medizintechnischer Verfahren in der Diagnostik und Therapie. Sie kennen häufige Krankheitsbilder in den unterschiedlichen medizinischen Disziplinen und deren Relevanz. im Gesundheitswesen. Die Studierenden können durch ihre erworbenen Kenntnisse mit Ärzten über medizintechnische Verfahren kommunizieren und gegenseitige Erwartungen realistischer einschätzen.

Inhalt

Definition von Krankheit und Gesundheit und Geschichte der Medizin, Evidenzbasierte Medizin" und Personalisierte Medizin, Nervensystem, Reizleitung, Bewegungsapparat, Herz-Kreislaufsystem, Narkose, Atmungssystem, Sinnesorgane, Gynäkologie, Verdauungsorgane, Chirurgie, Nephrologie, Orthopädie, Immunsystem, Genetik.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

1. Präsenszeit Vorlesung: 15 * 2h = 30h

2. Vor- und Nachbereitungszeit Vorlesung: 15*3h = 45h

3. Prüfungsvorbereitung und Präsenz Prüfung: 45h

Insgesamt: 120h = 4 LP

Empfehlungen

Die Inhalte des Moduls T-MACH-105228 ergänzen die Vorlesung.

- Adolf Faller, Michael Schünke: Der Körper des Menschen. Thieme Verlag.
- Renate Huch, Klaus D. Jürgens: Mensch Körper Krankheit. Elsevier Verlag.

5.57 Modul: Grundlagen der Verbrennungstechnik [M-CIWVT-103069]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106104	Grundlagen der Verbrennungstechnik	6 LP	Trimis

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden sind in der Lage, die Eigenschaften der verschiedenen Flammentypen zu beschreiben und zu erklären
- Die Studenten k\u00f6nnen die wichtigsten Verbrennungseigenschaften wie Flammentemperatur und Flammengeschwindigkeit quantitativ sch\u00e4tzen/berechnen. Sie verstehen die physikalisch-chemischen Mechanismen, die die Entflammbarkeitsgrenzen und L\u00f6schstrecken beeinflussen.
- Die Studierenden verstehen und können den Einfluss bzw. die Wechselwirkung von Turbulenzen, Wärme und Stoffaustausch auf reaktive Strömungen beurteilen.
- Die Studierenden verstehen die Flammenstruktur und die hierarchische Struktur der reaktionskinetischen Mechanismen.
- Die Studierenden verstehen und k\u00f6nnen den Einfluss der Interaktion zwischen verschiedenen Zeitskalen der chemischen Kinetik und dem Fluidstrom bei der Reaktion von Str\u00f6mungen beurteilen.
- Die Studierenden sind in der Lage, die Funktionsfähigkeit der Brenner im Hinblick auf die Anwendung zu beurteilen und zu bewerten.

Inhalt

- · Einführung und Stellenwert der Verbrennungstechnik
- · Thermodynamik technischer Verbrennung: Stoffumsatz und Enthalpieumsatz
- Gleichgewichtszusammensetzung
- Verbrennungstemperatur
- Reaktionsmechanismen in Verbrennungsprozessen
- Laminare Brenngeschwindigkeit und thermische Flammentheorie
- Kinetik von Verbrennungsvorgängen; Verbrennungstechnische Kenngrößen: Zündgrenzen, Zündtemperatur, Zündenergie, Zündverzug, Löschabstand, Flammpunkt, Oktan und Cetanzahl
- · Turbulente Flammenausbreitung
- Industrielle Brennertypen

Arbeitsaufwand

- Präsenszeit: 45 hSelbststudium: 25 h
- · Prüfungsvorbereitung: 110 h

- K.K. Kuo: Principles of Combustion, John Wiley & Sons, Hoboken, New York 2005
- J. Warnatz, U. Maas, R.W. Dibble: Combustion, Spinger Verlag, Berlin, Heidelberg 2006
- S.R. Turns: An Introduction to Combustion Concepts and Applications, McGraw-Hill, Boston 2000
- · I. Glassman: Combustion, Academic Press, New York, London 1996

5.58 Modul: Herstellung und Entwicklung von Krebstherapeutika [M-CIWVT-106563]

Verantwortung: PD Dr. Gero Leneweit

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte 4 LP **Notenskala** Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester

Sprache Deutsch Level 4 Version 1

Pflic	htb	estan	dteile

T-CIWVT-113230 Herstellung und Entwicklung von Krebstherapeutika

4 LP Leneweit

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden erwerben Fähigkeiten zum selbständigen Analysieren der Produktanforderungen von Wirkstoffen und Arzneiformulierungen sowie der eigenständigen Planung und Realisierung von Herstellungstechnologien für Arzneistoffe und Trägersysteme.

Inhalt

- · Risikofaktoren und Stadien der Krebsentstehung
- · therapeutische Ansatzpunkte
- · Mechanismen der Chemotherapien, Immuntherapien, DNA- und RNA-Therapien
- Mechanismen der Therapie-Resistenz und Überwindungs-Strategien
- Arzneistoff-Trägersysteme und Herstellungstechnologien
- Skalierung
- · Wirkstoffbeladung und Beschichtung
- industrielle Verfahren
- zielgerichtete Krebstherapien
- Rezeptoren und Liganden
- Wirkstoff-Akkumulation
- · (prä-) klinische Erprobung
- regulatorische und ökonomische Aspekte
- Innovationspotenziale und Anwendungsperspektiven

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 60 h

· Prüfungsvorbereitung: 30 h

Literatur

Skriptum zur Vorlesung mit Quellennachweisen und themenspezifischen Literaturempfehlungen

5.59 Modul: Heterogene Katalyse im Ingenieurwesen [M-CIWVT-107025]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-114085	Heterogene Katalyse im Ingenieurwesen	6 LP	Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage:

- Die grundlegenden Prinzipien der Katalyse zu erläutern,
- · Technische Katalysatoren einzuordnen,
- Die verschiedenen Werkzeuge der Charakterisierung von Katalysatoren auf konkrete Fragestellungen anzuwenden,
- · Reaktionskinetiken der heterogenen Katalyse zu interpretieren und anzuwenden,
- Den Einfluss von Wärme- und Stofftransportprozessen auf die Reaktionsgeschwindigkeit abzuschätzen und Maßnahmen abzuleiten,
- Die Gestaltung von Katalysatoren als Partikel oder strukturierte Reaktoreinbauten zu diskutieren,
- Wichtige Anwendungsbeispiele katalytischer Reaktoren zu erläutern.

Inhalt

- Einführung und Prinzipien der Katalyse
- Technische Katalysatoren
- Charakterisierung von Katalysatoren
- Kinetik
- · Einfluss von Transportprozessen
- · Formgebung von Partikeln und strukturierten Reaktoren
- Katalytische Reaktoren und Anwendungen

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- · Präsenzzeit: Vorlesung und Übung 45 h
- Selbststudium: 75 h
- · Prüfungsvorbereitung: 60 h

- Dmitry Yu. Murzin: Engineering Catalysis, De Gruyter, Berlin, 2nd Ed. (2020)
- G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp: Handbook of Heterogenous Catalysis, Wiley-VCH, Weinheim (2008)
- I. Chorkendorff and J.W. Niemantsverdriet: Concepts of modern catalysis and kinetics, Wiley-VCH, Weinheim, 3rd Ed. (2017)
- A. Jess, P. Wasserscheid: Chemical technology: an integrated textbook, Wiley-VCH, Weinheim (2013)

5.60 Modul: Hochtemperatur-Verfahrenstechnik [M-CIWVT-103075]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Thermische Verfahrenstechnik

Vertiefungsfach I / Verbrennungstechnik

6 LP Zehntelnoten Jedes Sommersemester 1 Semester Deutsch 4	Version 1	Ver	_evel 4	Lev 4	Sprache Deutsch	Dauer 1 Semester	Turnus Jedes Sommersemester	Notenskala Zehntelnoten	Leistungspunkte 6 LP	
---	--------------	-----	------------	----------	------------------------	----------------------------	-----------------------------	----------------------------	--------------------------------	--

Pflichtbestandteile			
T-CIWVT-106109	Hochtemperatur-Verfahrenstechnik	6 LP	Stapf

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden identifizieren Anforderungen an Hochtemperaturprozesse aus der Problemstellung. Durch geeignete Bilanzierung unter Berücksichtigung relevanter kinetischer Vorgänge ermitteln sie daraus die erforderlichen Prozessparameter. Sie sind fähig, hierfür geeignete Reaktoren und Prozesskomponenten auszuwählen. Somit können die Studierenden unterschiedliche Verfahren der Prozessindustrie kritisch beurteilen und Lösungen für neue Problemstellungen der HTVT systematisch entwickeln.

Inhalt

Hochtemperaturprozesse im Beispiel; Verbrennungstechnische Grundlagen; Wärmeübertragung durch Strahlung; Wärmeaustauschrechnung für Hochtemperaturanlagen; Metallische und keramische Hochtemperaturwerkstoffe; Beispiele zur Konstruktion von Hochtemperaturanlagen.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Dieses Modul behandelt die Hochtemperaturverfahrenstechnik als Querschnittsthema verschiedener verfahrenstechnischer Fachgebiete. Im Rahmen der Übungen findet die Anwendung der erlernten Grundlagen in der Prozessbeurteilung anhand konkreter Beispiele der HTVT statt.

Arbeitsaufwand

- Präsenszeit: 45 h
- Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h

5.61 Modul: Industrial Wastewater Treatment [M-CIWVT-105903]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Wassertechnologie

Vertiefungsfach I / Umweltschutzverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	5	1

Pflichtbestandteile			
T-CIWVT-111861	Industrial Wastewater Treatment	4 LP	Horn

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, die Zusammensetzung der verschiedenen Arten von Industrieabwässern zu unterscheiden. Darüber hinaus haben die Studierenden Kenntnisse über Behandlungstechnologien, die auf Industrieabwässer angewendet werden können. Sie sind in der Lage, die biologische Abbaubarkeit von Industrieabwässern zu beurteilen und können darauf aufbauend die erforderlichen Behandlungsschritte planen. Die Studierenden kennen Behandlungsschritte, mit denen die Wiederverwendung des gereinigten Abwassers verbessert werden kann.

Inhalt

In diesem Modul wird die Verschiedenheit der Zusammensetzung von industriellen Abwässern (Lebensmittelindustrie, Papierbranche, chemische und pharmazeutische Industrie) aufgezeigt. Daraus wird die biologische Abbaubarkeit abgeleitet und Verfahren vorgestellt, die in den entsprechenden Branchen für die Behandlung eingesetzt werden. Ein Fokus liegt auf den biologischen Verfahren und dort im Besonderen auf den Biofilmverfahren. Abschließend werden Möglichkeiten aufgezeigt, wie das behandelte Abwasser einer Wiederverwertung zugeführt werden kann.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 60 h

• Prüfungsvorbereitung: 30 h

- Horn, H. et al. (2017) Wastewater, 1. Introduction, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA.
- Telgmann, L., et al. (2019) Wastewater, 2. Aerobic Biological Treatment. Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA.
- Rosenwinkel K.H. et al. (2020) Taschenbuch der Industrieabwasserreinigung, Vulcan Verlag.

5.62 Modul: Industrielle Aspekte in der Bioprozesstechnologie [M-CIWVT-105412]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-110935	Industrielle Aspekte in der Bioprozesstechnologie	4 LP	Hubbuch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 15 Minuten nach § 4 (2) Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Herausforderungen und Aspekten in der biopharmazeutischen Industrie diskutieren und analysieren.

Inhalt

· Angewandte Themen aus dem Feld der Bioprozesstechnologie.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 60

• Prüfungsvorbereitung: 30

5.63 Modul: Industrielle Biokatalyse [M-CIWVT-106678]

Verantwortung: PD Dr. Jens Rudat

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefungsfach I / Neue Bioproduktionssysteme – Elektrobiotechnologie

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113432	Industrielle Biokatalyse	4 LP	Rudat

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen industriell bedeutende Anwendungen biokatalytischer Reaktionen sowie deren Herausforderungen und Grundlagen der zugehörigen Verfahrensführung mit isolierten Enzymen und ganzen Zellen. Sie sind in der Lage, Verfahren zur Herstellung industriell relevanter Produktklassen zu vergleichen und kritisch zu beurteilen (Chemo- vs. Biokatalyse sowie verschiedene biokatalytische Optionen untereinander).

Inhalt

Aktuelle Entwicklungen enzymatisch katalysierter Produktionsverfahren sowie am Markt etablierte Prozesse aus

- Pharmaindustrie: Synthese und Modifikation von Wirkstoffen
- · Chemische Industrie: Synthese und Modifikation von Basis- und Feinchemikalien
- · Lebensmittelindustrie: Herstellung und enzymatische Umsetzung von Lebensmittelzutaten

Hierbei werden neben der eigentlichen enzymatischen Reaktion und deren molekularbiologischer Optimierung auch verfahrenstechnische Aspekte wie z.B. Wahl und Design des Lösungsmittels bzw. des Reaktionsmediums, Methoden der Produktisolierung ("Downstream Processing") sowie wirtschaftliche und ökologische Gesichtspunkte besprochen.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 45 hPrüfungsvorbereitung: 45h

Empfehlungen

Voraussetzungen sind Grundkenntnisse in Biochemie und Enzymtechnik

Grundlagen:

Jaeger, Liese, Syldatk: Einführung in die Enzymtechnologie; SpringerSpektrum 2018; ISBN: 978-3-662-57618-2 Als PDF frei herunterladbar auf der Seite des Verlags:

https://link.springer.com/book/10.1007/978-3-662-57619-9

NEU: Jaeger, Liese, Syldatk: Introduction to Enzyme Technology; SpringerSpektrum 2024; ISBN: Softcover 978-3-031-42998-9 eBook 978-3-031-42999-6

Als PDF frei herunterladbar auf der Seite des Verlags:

https://link.springer.com/book/10.1007/978-3-662-57619-9

Literatur

Vorlesungsfolien und Übungsfragen (ILIAS), basierend auf aktuellen Veröffentlichungen in via KIT-Bibliotheksaccount frei verfügbaren biokatalytischen und multidisziplinären Fachzeitschriften, z. B.

- Trends in Biotechnology, Appl Microbiol Biotechnol, Green Chemistry, ChemSusChem, ChemCatChem
- · Angew Chem Int Ed, Nature, Science, Chemical Reviews

Wer aus dem Bachelorstudium nicht über Grundkenntnisse in Biochemie und Enzymtechnik verfügt, sollte sich diese DRINGEND vorab aneignen anhand des Buches:

Jaeger, Liese, Syldatk: Introduction to Enzyme Technology; SpringerSpektrum 2024; ISBN: Softcover 978-3-031-42998-9; eBook 978-3-031-42999-6

Als PDF frei herunterladbar auf der Seite des Verlags: https://link.springer.com/book/10.1007/978-3-662-57619-9 Ältere Version auf Deutsch:

Jaeger, Liese, Syldatk: Einführung in die Enzymtechnologie; SpringerSpektrum 2018; ISBN: 978-3-662-57618-2 Als PDF frei herunterladbar auf der Seite des Verlags: https://link.springer.com/book/10.1007/978-3-662-57619-9

5.64 Modul: Industrielle Bioprozesse [M-CIWVT-106501]

Verantwortung: Prof. Dr.-Ing. Michael-Helmut Kopf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte 4 LP **Notenskala** Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester Sprache Level
Deutsch 5

Version 1

Pflichtbestandteile			
T-CIWVT-113120	Industrielle Bioprozesse	4 LP	Kopf

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden:

- erhalten Kenntnis in Theorie und Anwendung von Prozesse und Techniken zur Entwicklung industrieller, bio-basierter Verfahren
- erhalten Einsicht in den Ablauf der Entwicklung eines large-scale (zweistellige kt/a) industriellen Bioprozesses.
- lernen theoretisches Verständnis und praktische Anwendung (am relevanten Beispiel) zu kombinieren.
- verstehen die relevant einer techno-ökonomischen Bewertung als Basis der Entwicklung wettbewerbsfähiger Prozesse.

Inhalt Inhalt

- Ablauf einer Prozessentwicklung (neuer / alternativer Prozess) hin zu einem bio-basierten Produktionsprozess: Ideation, Basiskonzept, kritische Analyse, Entwicklungsstationen
- · Value Proposition des neuen Produktes / Prozesses:
 - Qualität, Leistungsmerkmale, Preis, Eco-efficiency, Regionale Aspekte
- Kritische Aspekte im Entwicklungsprozess:
 - Rohstofffragen, "Design to Cost", Spezifikation & Leistung, Regulatorik Eco-efficiency (Rohstoff- u. Energieeffizienz)
- Vom Labor in die Produktion (Schwerpunkt der Vorlesung):
- Phasen der Prozessentwicklung: Suchforschung, Proof of Principle, Proof of Concept, Scale-up, Apparatedesign, Anlagendesign, Produktion
- Competitor Intelligence:
 - Wettbewerber und deren Prozesse, alternative Produkte mit ähnlicher / gleicher Anwendung.
- · Benchmarking als Entwicklungswerkzeug:
 - Cost Benchmarking (CoP) als Entwicklungswerkzeug zur Identifikation von Entwicklungspotenzialen.
- · Produktionsszenarien:
 - Eigene Investition, Toller, Produktionspartner

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 60 h

Prüfungsvorbereitung: 30 h

Literatur

Skriptum zur Vorlesung

5.65 Modul: Innovationsmanagement für Produkte und Prozesse der chemischen Industrie [M-CIWVT-104397]

Verantwortung: Dr. Claudius Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte 4 LP **Notenskala** Zehntelnoten

Turnus Jedes Wintersemester **Dauer** 1 Semester **Sprache** Deutsch/Englisch

Level 4 Version 1

Pflichtbestandteile			
T-CIWVT-108980	Innovationsmanagement für Produkte und Prozesse der chemischen Industrie	4 LP	Neumann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung (multiple choice) im Umfang von 60 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden lernen die Strukturen der chemischen Industrie kennen.
- · Sie erhalten einen Einblick in die Interpretation von Geschäftszahlen und deren Zusammenhang mit Innovationen.
- Sie wissen wie verschiedenen Faktoren Einfluss auf verfolgte Innovationsstrategien nehmen.
- · Sie lernen den Ablauf eines Innovationsprozesses kennen.
- Die Studierenden bekommen die Möglichkeit das Wissen an Hand industrienaher Beispiele anzuwenden.
- Des Weiteren erhalten die Studenten einen Einblick in die Arbeiten eines Innovationsmanagements in Form einer Exkursion.

Inhalt

Hintergrund

In den letzten Jahrzehnten musste sich die chemische Industrie bedingt durch die Globalisierung auf ökonomische Veränderungen einstellen. Die Anpassung an die globalen Märkte veränderte auch die früher wissenschaftlich-technologisch orientierte Forschung und Entwicklung. Deshalb sind heutzutage in der industriellen Produkt- und Prozessentwicklung neben fundierten Kenntnissen aus dem Fachbereich Chemie und Verfahrenstechnik auch weitreichendere Fähigkeiten von Nöten: ein gutes ökonomisches Verständnis, verbunden mit der Kompetenz ein komplexes System basierend auf Geschäftszahlen zu verstehen und steuern zu können. Wissenschaftlich und technologisch ausgebildeten Personen können mit diesen Fähigkeiten Konzepte für die chemische Produkt- und Prozessentwicklung erstellen und im Rahmen der Innovationsstrategie mit strategischen Geschäftsplänen abgleichen. Die Umsetzung der Innovationsstrategie erfolgt im Innovationsprozess, der durch bestimmte Kennzahlen überprüft und gesteuert wird. Auf diese Weise kann der ökonomische Nutzen von Innovationen für das wirtschaftliche Wachstum transparent gemacht und gelenkt werden.

Umfang der Blockvorlesung

Die Vorlesung möchte grundlegende Einblicke in den Bereich des Innovationsmanagements bieten und den Teilnehmern den Bezug zur industriellen Praxis aufzeigen. Innerhalb der Vorlesung werden folgende Fragen beantwortet:

- Wie sehen die Strukturen der chemischen Industrie aus?
- · Was sind Geschäftszahlen? Wie werden diese interpretiert und mit Innovationen in Zusammenhang gebracht?
- Was ist ein Kunde und wie beeinflusst er Innovationen?
- · Was ist eine Geschäftsstrategie und wie steht diese im Zusammenhang mit Innovationsstrategien?
- · Wie sieht ein Innovationsprozess aus und wie wird dieser gesteuert?
- · Was ist ein Innovationsportfoliomanagement und warum wird es für eine erfolgreiche Innovation benötigt?
- Wie sieht ein modernes Innovationsmanagement in der chemischen Industrie aus?

Exkursion

Die Blockvorlesung beinhaltet eine Exkursion zu Evonik in Hanau.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Anmerkunger

Die Veranstaltung wird in Zusammenarbeit mit Herrn Neumann Evonik Industries in Hanau angeboten.

Arbeitsaufwand

- Präsenzzeit: 30 h (Blockvorlesung 4 Tage)
 Selbststudium: 60 h
 Prüfungsvorbereitung: 30 h

Literatur

Vorlesungsfolien

5.66 Modul: Innovative Concepts for Formulation and Processing of Printable Materials [M-CIWVT-105993]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Vertiefungsfach I / Entrepreneurship in der Verfahrenstechnik

Leistungspunkte

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester Sprache Englisch Level 4 Version 1

Pflichtl	bestan	dteile
----------	--------	--------

T-CIWVT-112170

Innovative Concepts for Formulation and Processing of Printable Materials

4 LP

Willenbacher

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden können grundlegende Konzepte der Stabilität und des Fließverhaltens disperser Systeme erläutern und anwenden. Sie lernen industriell wichtige Druck- und Beschichtungsverfahren kennen und können komplexe flüssige Systeme für diese Verfahren gestalten. Schwerpunkt werden druckbare keramische und elektrisch- oder thermisch leitfähige Materialien sein. Die Studierende verstehen das Konzept der Kapillarsuspensionen und dessen Anwendungsmöglichkeiten für die Produktgestaltung und können es auf praktische Beispiele übertragen.

Inhalt

- Grundlagen der Stabilität von dispersen Systemen Suspensionen und Emulsionen
- · Grundlagen der Rheologie disperser Systeme
- · Rheologie in der Druck- und Beschichtungstechnik
- Siebdruck für Elektronik und Solarzellen
- · Zerstäubung und Automobillackierung
- Extrusionsbasierte Additive Fertigung (AM) Keramik, Silikon, Bio-Gele
- · Pastenformulierungskonzepte auf Basis von Kapillarsuspensionen
- · Leitfähige Klebstoffe und Pasten für gedruckte Elektronik

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 50 h

• Prüfungsvorbereitung: 40 h

Literatur

Colloid Science, Terence Cosgrove, Wiley, 2010, wissenschaftliche Publikationen zu den einzelnen Kapiteln werden in der Vorleung benannt.

5.67 Modul: Introduction to Numerical Simulation of Reacting Flows [M-CIWVT-106676]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Verbrennungstechnik Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte 8 LP **Notenskala** Zehntelnoten

Turnus Jedes Wintersemester **Dauer** 1 Semester Sprache Englisch **Level** 5

Version 1

Pflichtbestandteile			
T-CIWVT-113435	Introduction to Numerical Simulation of Reacting Flows - Prerequisite	5 LP	Stein
T-CIWVT-113436	Introduction to Numerical Simulation of Reacting Flows	3 LP	Stein

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Studienleistung (unbenotet): Als Prüfungsvorleistung sind Berichte über die Übungsblätter einzureichen, die die bearbeitete Aufgabe, die erzeugten Daten und deren Analyse dokumentieren.
- 2. Prüfungsleistung: Mündliche Prüfung im Umfang von ca. 30 min.

Voraussetzungen

Keine

Qualifikationsziele

Die Kursteilnehmer kennen die theoretischen Grundlagen von Batch und Flow-Reaktoren für die Simulation chemischer Kinetik und von reagierenden Strömungen, und können diese erläutern. Sie können die grundlegenden numerische Methoden zur Diskretisierung von Raum und Zeit beschreiben. In den zugehörigen Python-Tutorien haben sie erste praktische Erfahrungen beim Aufsetzen, Durchführen und Analysieren eigener Simulationen gesammelt und können das erlangte Wissen auf weitere Simulationsaufgaben anwenden.

Inhalt

- · Einführung in Python
- · Batch-Reaktoren für die Simulation chemischer Kinetik
- · Einfache Strömungsreaktoren
- Newton-Raphson Methode
- · Diskretisierungsmethoden für Raum und Zeit

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Python-Übungen werden auf den eigenen Laptops der Studierenden durchgeführt.

Arbeitsaufwand

Präsenszeit:

Vorlesung 2 SWS: 30 h Übung 2 SWS: 30 h

Selbststudium:

Vor- und Nachbereitung der Lehrveranstaltung: 15 h

Datenanalyse, Verfassen und Abgabe der Übungsberichte: 105 h

Prüfungsvorbereitung:

60 h

5.68 Modul: Journal Club - Neue Bioproduktionssysteme [M-CIWVT-106526]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefungsfach I / Neue Bioproduktionssysteme – Elektrobiotechnologie (EV zwischen 01.04.2024 und

31.03.2026)

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-113149	Journal Club - Neue Bioproduktionssysteme	4 LP	Holtmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bewertet werden zwei mündliche Präsentationen, wobei eine Präsentation auf Deutsch und eine Präsentation auf Englisch zu halten ist. Die aktive Teilnahme am Seminar (Anwesenheit bei mindestens 80 % der Termine) ist Voraussetzung für das Bestehen.

Voraussetzungen

Keine.

Qualifikationsziele

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- selbständig Fachliteratur zu recherchieren und diese kritisch zu analysieren
- wissenschaftliche Inhalte in einen größeren Kontext einzuordnen
- · Inhalte zu einem vorgegebenen und einem freigewählten Thema wissenschaftlich zusammenzufassen

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- wissenschaftliche Themen nach eigener Recherche m\u00fcndlich in deutscher und englischer Sprache zu pr\u00e4sentieren und sich den Fragen des Auditoriums zu stellen
- komplexe wissenschaftliche Inhalte zusammenzufassen
- als Teil einer Gruppe aktiv und wertschätzend zu diskutieren

Inhalt

Im Journal Club - Neue Bioproduktionssysteme sollen die Studierenden das kritische Lesen und Diskutieren von wissenschaftlichen Arbeiten/Publikationen erlernen und üben. Dabei sollen die Artikel insbesondere kritisch hinsichtlich der guten Wissenschaftlichen Praxis beleuchtet werden.

Dazu werden von den Teilnehmern jeweils ein vorgegebener und ein selbst ausgewählter englischsprachiger wissenschaftlicher Text zu einem aktuellen Forschungsthema vorgestellt und kritisch beleuchtet. Für die kritische Betrachtung muss jeweils auch weiterführende Literatur analysiert werden. Ziel ist es dadurch die wissenschaftliche Publikation in einen größeren Kontext einzuordnen. Dabei sollen sowohl die Motivation, die gewählten Methoden als auch die Schlussfolgerungen der Autoren kritisch beleuchtet werden.

Weiterhin soll das Diskutieren von wissenschaftlichen Fragestellungen in deutscher und englischer Sprache trainiert werden. Zu Semesterbeginn erhalten die Studierenden einen Satz Primärliteratur, der aus einem Artikel für jeden Seminarteilnehmer besteht. Danach werden Präsentationstechniken und Leitlinien zur Diskussionskultur besprochen. Im Anschluss wählen die Studenten einen weiteren wissenschaftlichen Peer-Reviewed Artikel. Anschließend müssen Sie selbständig Sekundärliteratur zu den Themen recherchieren, welche über die Primärliteratur hinausgeht. Beide Artikel werden in Form von Präsentationen vorgestellt und diskutiert, dabei wird eine Präsentation und die nachfolgende Diskussion in deutscher und eine in englischer Sprache durchgeführt.

Abschließend werden ihnen die anderen Seminarteilnehmer Feedback zu Inhalt, Folienaufbau und Vortragstechnik geben.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfungsleistung anderer Art.

Anmerkungen

Die Teilnehmerzahl in diesem Modul ist beschränkt. Bei der Auswahl der Teilnehmer finden folgende Kriterien Anwendung:

- 1. Bewerber, die das Modul im Rahmen des Vertiefungsfach Neue Bioproduktionssysteme Elektrobiotechnologie belegen
- Bewerber, die im letzten Jahr nicht berücksichtigt wurden
- 3. Studienfortschritt

Sollte nach diesen Kriterien keine eindeutige Entscheidung möglich sein, wird ein Losverfahren angewendet.

Empfehlungen

Vertiefte Grundlagen in Bioverfahrenstechnik werden vorausgesetzt.

Die wissenschaftliche Literatur wird zu Beginn der Veranstaltung bekannt gegeben. Allg. Literatur:

- Ebel und Bliefert: Vortragen: in Naturwissenschaft, Technik und Medizin
- Kuzbari und Ammer: Der wissenschaftliche Vortrag https://www.youtube.com/watch?app=desktop&v=K0pxo-dS9Hc
- https://www.youtube.com/watch?app=desktop&v=lwpi1Lm6dFo

5.69 Modul: Kältetechnik B - Grundlagen der industriellen Gasgewinnung [M-CIWVT-104354]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108914	Kältetechnik B - Grundlagen der industriellen Gasgewinnung	6 LP	Grohmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Verstehen der Prinzipien unterschiedlicher Verfahren zur Gasverflüssigung und zur Gaszerlegung; Analysieren von Prozessen zur Ermittlung der Ursachen des Energiebedarfs; Anwenden von Prinzipien der Gemisch-Thermodynamik und Analysieren der Zustände von Stoffströmen in Rektifikationskolonnen; Beurteilen des Potenzials von technischen Lösungsansätzen aus Sicht der Thermodynamik

Inhalt

Verfahren der Gasverflüssigung, Prozessanalyse, Refrigeratoren und Gemischkälteanlagen, Gaszerlegung durch Tieftemperaturrektifikation, Luftzerlegung und Gewinnung von Edelgasen, Aufbereitung und Zerlegung von Erdgas, Gewinnung von Ethylen, Verarbeitung H2-reicher Gasgemische, Lagerung und Transport verflüssigter Gase.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 45 h
- · Selbststudium: 45 h
- · Prüfungsvorbereitung: 90 h

5.70 Modul: Katalyse für nachhaltige chemische Produkte und Energieträger [M-CIWVT-107131]

Verantwortung: Dr. Arik Malte Beck

Prof. Dr. Jan-Dierk Grunwaldt

Dr. Erisa Saraci Prof. Dr. Felix Studt TT-Prof. Dr. Moritz Wolf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-114167	Katalyse für nachhaltige chemische Produkte und Energieträger	4 LP	Beck, Grunwaldt, Saraci, Studt, Wolf

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

Keine

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 h Selbststudium: 60 h

Prüfungsvorbereitung: 30 h

5.71 Modul: Katalytische Mikroreaktoren [M-CIWVT-104451]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile			
T-CIWVT-109087	Katalytische Mikroreaktoren	4 LP	Pfeifer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studentinnen und Studenten können die Methoden der Prozessintensivierung mittels katalytischer Mikroreaktoren anwenden und sind in der Lage die Vorteile und Nachteile einer Übertragung von gegebenen Prozessen in katalytisch funktionalisierten Mikroreaktoren zu analysieren. Zusammen mit der Kenntnis über spezielle Herstellverfahren für Mikroreaktoren sind die Studentinnen und Studenten in der Lage Auslegungsmethoden auf mikrostrukturierte Systeme hinsichtlich des Stoff- und Wärmetauschs in katalytisch funktionalisierten Mikroreaktoren anzuwenden und die Vor- und Nachteile sowie die Anwendbarkeit des Typs Mikroreaktor zu analysieren. Sie verstehen außerdem, wie die Mechanismen von Stofftransport und heterogen katalysierter Reaktion in strukturierten Reaktoren zusammenspielen, und sind in der Lage diese Kenntnisse auf reale Probleme anzuwenden. Darüber hinaus können sie mögliche Einsparungen beim Design der Mikroreaktoren erkennen und in die Praxis umsetzen bzw. die Fahrweise der Reaktoren so optimieren, dass sowohl CAPEX als auch OPEX durch den Einsatz katalytischer Mikroreaktoren reduziert wird.

Inhalt

Methoden der Herstellung von Mikroreaktoren; Verbindungstechniken für Mikrostrukturapparate; Grundlagen des Wärme- und Stofftransports in Mikrokanälen sowie der Verweilzeitverteilung in Einkanal- und Mehrkanalanordnungen. Schwerpunktthemen auf der Katalysatorintegration in Mikrostrukturreaktoren und Vergleich zu konventionellen katalytischen Reaktoren; experimentelle und mathematische Kriterien zur Beurteilung von Wärme- und Stofftransportlimitierungen in katalytischen Mikrostrukturreaktoren sowie die dazugehörigen Stoff- und Wärmebilanzen; Einstellungen isothermer Bedingungen, Fahrweisen mit erzwungenen Temperaturgradienten für exotherme Gleichgewichtsreaktionen sowie Kombination exothermer und endothermer Reaktionen in einem Mikroreaktor.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Das Modul kann auch ohne Praktikum mit einem Umfang von 4 LP gewählt werden.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 50 h

· Prüfungsvorbereitung: 40 h

5.72 Modul: Katalytische Mikroreaktoren mit Praktikum [M-CIWVT-104491]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-109182	Praktikum zu Katalytische Mikroreaktoren	2 LP	Pfeifer
T-CIWVT-109087	Katalytische Mikroreaktoren	4 LP	Pfeifer

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.
- 2. Praktikum: Unbenotete Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studentinnen und Studenten können die Methoden der Prozessintensivierung mittels katalytischer Mikroreaktoren anwenden und sind in der Lage die Vorteile und Nachteile einer Übertragung von gegebenen Prozessen in katalytisch funktionalisierten Mikroreaktoren zu analysieren. Zusammen mit der Kenntnis über spezielle Herstellverfahren für Mikroreaktoren sind die Studentinnen und Studenten in der Lage Auslegungsmethoden auf mikrostrukturierte Systeme hinsichtlich des Stoff- und Wärmetauschs in katalytisch funktionalisierten Mikroreaktoren anzuwenden und die Vor- und Nachteile sowie die Anwendbarkeit des Typs Mikroreaktor zu analysieren. Sie verstehen außerdem, wie die Mechanismen von Stofftransport und heterogen katalysierter Reaktion in strukturierten Reaktoren zusammenspielen, und sind in der Lage diese Kenntnisse auf reale Probleme anzuwenden. Darüber hinaus können sie mögliche Einsparungen beim Design der Mikroreaktoren erkennen und in die Praxis umsetzen bzw. die Fahrweise der Reaktoren so optimieren, dass sowohl CAPEX als auch OPEX durch den Einsatz katalytischer Mikroreaktoren reduziert wird.

Inhalt

Methoden der Herstellung von Mikroreaktoren; Verbindungstechniken für Mikrostrukturapparate; Grundlagen des Wärme- und Stofftransports in Mikrokanälen sowie der Verweilzeitverteilung in Einkanal- und Mehrkanalanordnungen. Schwerpunktthemen auf der Katalysatorintegration in Mikrostrukturreaktoren und Vergleich zu konventionellen katalytischen Reaktoren; experimentelle und mathematische Kriterien zur Beurteilung von Wärme- und Stofftransportlimitierungen in katalytischen Mikrostrukturreaktoren sowie die dazugehörigen Stoff- und Wärmebilanzen; Einstellungen isothermer Bedingungen, Fahrweisen mit erzwungenen Temperaturgradienten für exotherme Gleichgewichtsreaktionen sowie Kombination exothermer und endothermer Reaktionen in einem Mikroreaktor.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 30 h
- Praktikum: 20 h (3 Praktikumsversuche (je 0.5-1 Tag)) plus Ausarbeitung 30 h
- Selbststudium: 50 h
- · Prüfungsvorbereitung: 50 h

5.73 Modul: Katalytische Verfahren der Gastechnik [M-CIWVT-104287]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-108827	Katalytische Verfahren der Gastechnik	4 LP	Bajohr

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen katalytischen Verfahren in der Gastechnik. Das an den konkreten Beispielen der Vorlesung erlernte Zusammenspiel aus Thermodynamik, Stoff-/Wärmetransport und Reaktionskinetik liefert ihnen das notwendige Wissen zur Reaktorauswahl und weiteren Verfahrensentwicklung anderer katalytischer Prozesse.

Inhalt

Quellen, Nutzung, Bedarf und Charakterisierung gasförmiger chemischer Energieträger.

Übersicht über katalytische Verfahren und Prozesse zur Erzeugung, Aufbereitung und Nutzung gasförmiger Energieträger.

Erzeugung und Nutzung am Beispiel Methanisierung / Steamreforming => Reaktorkonzepte für exotherme und endotherme Prozesse.

Gasaufbereitung bzw. katalytische Prozesse zur Gasreinigung und Gaskonditionierung.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 30 h
- Selbststudium: 50 h
- Prüfungsvorbereitung: 40 h

Literatur

- Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH 2000.
- Jess, A.; Wasserscheid, P.: Chemical Technology. An Integral Textbook, Wiley-VCH 2013.
- Weber, K.: Engineering verfahrenstechnischer Anlagen. Praxishandbuch mit Checklisten und Beispielen. Springer Vieweg 2014.
- Froment, G. F.; Waugh, K. C.: Reaction Kinetics and the Development and Operation of Catalytic Processes, Elsevier 1999.

5.74 Modul: Kinetik und Katalyse [M-CIWVT-104383]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (CIW)
Technisches Ergänzungsfach

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion6 LPZehntelnotenJedes Sommersemester1 SemesterDeutsch41

 Pflichtbestandteile

 T-CIWVT-106032
 Kinetik und Katalyse
 6 LP
 Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Studierende werden in die Kinetik von molekularem Transport und chemischen Reaktionen eingeführt. Sie lernen die Katalyse als kinetisches Phänomen kennen und verstehen. Sie sind in der Lage, die Kinetiken von homogen, enzymatisch und heterogen katalysierten Prozessen zu analysieren und zu deuten.

Inhalt

Kinetische Gastheorie; molekularer Transport in Gasen und Flüssigkeiten; Diffusivität in porösen Feststoffen; molekulare Wechselwirkungen und Lennard-Jones Potenzial; Kinetik von Homogenreaktionen; Adsorption an Feststoffoberflächen und Sorptionskinetik; Elemente der Kinetik katalysierter Reaktionen (homogene Säure-Base-Katalyse, Enzymkatalyse, heterogene Katalyse).

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 42 hRepetitorium: 28 hSelbststudium: 80 hPrüfungsvorbereitung: 30 h

Literatur

- · W. Atkins: Physical Chemistry (Oxford University Press, 1998);
- · B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena (Wiley, 2007)
- · C. Gates: Catalytic Chemistry (Wiley, 1992)
- Ertl: Reactions at Solid Surfaces (Wiley, 2009)

5.75 Modul: Kommerzielle Biotechnologie [M-CIWVT-104273]

Verantwortung: Prof. Dr. Ralf Kindervater

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Vertiefungsfach I / Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-108811	Kommerzielle Biotechnologie	4 LP	Kindervater

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Bei großer Teilnehmerzahl bzw. bei Prüfungen im Technischen Erfängzungsfach alternativ eine schriftliche Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind fähig wissenschaftliche Ergebnisse in ein kommerzielles Umfeld in allen relevanten lebenswissenschaftlichen Industriesektoren zu übersetzen und geistiges Eigentum zu schützen. Sie können sowohl eine Management Rolle in einem großen industriellen Unternehmen einnehmen, als auch die Rolle eines Managers in einer Startup Firma. Sie können technische Entwicklungen bezogen auf den Innovationsgrad einordnen und Lücken in Wertschöpfungsketten identifizieren und schließen. Vorgegebene Firmenstrategien können analysiert und strategisch optimiert werden.

Inhalt

Blockveranstaltung mit Exkursion; Überblick Pharma-Industrie; biotechnologisch hergestellte Produkte in der Pharmaindustrie; Überblick Biotech-Industrie, mit Vergleich USA/EU/D; Finanzierung von Biotech-Unternehmen; Grundlagen der Lizensierung am Beispiel eines Wirkstoffes; Vorbereitung und Durchführung einer Lizenzverhandlung. Überblick industrielle Biotechnologie; Biotechnologisch hergestellte Produkte der chemischen Industrie und deren Folgeprodukte, Erläuterung des Begriffes Bioökonomie und deren Konsequenzen für Wirtschaftssysteme. Definition des Begriffes Wertschöpfungskette. Erläuterung des Ablaufes einer Firmengründung. Vorstellung und strategische Analyse von 12 Biotech Firmen aus Baden-Württemberg. Vorstellung und Diskussion möglicher Berufswege als Bioverfahrenstechniker in den Branchen Pharma, Medizintechnik, Biotechnologie, chemische Industrie, Verbände, Ausbildung, Lehre und öffentliche Forschung.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 h Selbststudium: 50 h

Prüfungsvorbereitung: 40 h (etwa eine Woche)

5.76 Modul: Kreislaufwirtschaft [M-CIWVT-106881]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
2 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113815	Kreislaufwirtschaft	6 LP	Stapf

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung über die Inhalte von Vorlesung, Übung und Fallstudien, Dauer ca. 30 Minuten

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden verstehen wichtige Stoffsysteme und wesentliche verfahrenstechnische Prozessschritte der Bereitstellung und des Recyclings mineralischer und metallischer Grundstoffe und des anthropogenen Kohlenstoffs. Mit dem Ziel der Schließung von Kreisläufen können sie Methoden der Prozessbewertung anwenden, Prozessketten analysieren und anhand von Effizienzindikatoren beurteilen.

Inhalt

Einführung in den Ressourcen- und Technologiewandel für eine nachhaltige Kreislaufwirtschaft. Kenntniserwerb in der System-, Effizienz- und Nachhaltigkeitsbewertung. Motivation für verfahrenstechnische Forschung und Entwicklung auf dem Gebiet der nachhaltigen Rohstoffversorgung einer klimaneutralen Gesellschaft:

- Stoffstrom- und Prozesswissen der Grundstoff- und Recyclingindustrien
- Methodenwissen (betriebswirtschaftliche Grundlagen, Stoffstromanalyse, Indikatorenermittlung)
- Bearbeiten von Fallstudien im Team

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die Teilnehmerzahl ist auf 10 Personen begrenzt.

Die Teilnahme ist nicht möglich, wenn im Bachelor das Profilfach Kreislaufwirtschaft belegt wurde.

Arbeitsaufwand

- Präsenszeit: Vorlesung und Übung: 45 h
- Selbststudium: Vor- und Nacharbeit der Vorlesung und der Fallstudien: 75 h
- Prüfungsvorbereitung: 60 h

5.77 Modul: Liquid Transportation Fuels [M-CIWVT-105200]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Umweltschutzverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	5	2

Pflichtbestandteile			
T-CIWVT-111095	Liquid Transportation Fuels	6 LP	Rauch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einem Umfang von ca. 20 Minuten nach § 4 Abs. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

The students are enabled to balance modern processes for the production of liquid fuels and to put them into context of a modern refinery. Actual alternative processes for the production of liquid fuels, their advantages and disadvantages have to be understood.

Inhalt

Introduction to Chemical Fuels (resources, global and regional consumption, CO2 emissions, characterization of raw materials and products, overview of conversion processes; petroleum refining: characterization of crude oils and refinery products, physical separation processes, chemical conversion processes (cracking, hydrotreating, reforming, H2 production etc); liquid fuels from renewable sources (biomass, renewable electricity); gaseous fuels; gasification of solid fuels; economic aspects and perspectives.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Das Modul ist nicht in Kombination mit dem Modul "Raffinerietechnik" wählbar.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 75 h

Klausurvorbereitung: 60 h

Literatur

- Elvers, B. (Ed.): Handbook of Fuels, Energy Sources for Transportation, Wiley VCH 2008.
- Lucas, A. G. (Ed.): Modern Petroleum Technology, Vol. 2 Downstream, John Wiley 2000.
- Gary, J.; Handwerk, G., Kaiser, M. J.: Petroleum Refining, Technology and Economics, Fifth Edition, CRC Press 2007

5.78 Modul: Luftreinhaltung - Gesetze, Technologie und Anwendung [M-CIWVT-106314]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Gas-Partikel-Systeme

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Umweltschutzverfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
4

Pflichtbestandteile			
T-CIWVT-112812	Luftreinhaltung - Gesetze, Technologie und Anwendung	4 LP	Dittler

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Studierende entwickeln ein Verständnis für das breite Themenfeld der Luftreinhaltung. Sie sind in der Lage, anwendungsgerechte Lösungen zur Emissionsminderung zu definieren und kennen die wesentlichen Problemstellungen im Betriebsverhalten der jeweiligen Komponenten der angewandten Technologien zur Luftreinhaltung / Darstellung von erforderlichen Grenzwerten (Oxidationskatalysator, Partikelfilter, SCR-Katalysator, Ammoniak-Schlupf-Katalysator). Die Studierenden lernen aktuelle Fragestellungen zur Luftreinhaltung sachlich einzuordnen und selbstständig zu bewerten.

Inhalt

- · Luftschadstoffe Definition
- Gesetzliche Rahmenbedingungen: Gesetzgebung für Emission und Immission, EU, weltweit Bedeutung & Unterschiede
- Entwicklung von Emissionen und Immissionen, aktuelle Problemfelder
- · Technologien zur Luftreinhaltung durch Abgasreinigung
- Oxidationskatalysatoren: Aufbau, Funktionsweise, Auslegung & Anwendung
- Partikelfilter: Aufbau, Funktion & Auslegung von Partikelfiltern, Ruß- und Ascheabscheidung; Alterung von Systemen durch Ascheablagerungen; Ascheentfernung
- DeNOx-Systeme Abgasreinigung mittels selektiver katalytischer Reduktion: Grundlegende Reaktionen; mögliche Reduktionsmittel; AdBlue® – Spezifikation & Aufbereitung; Charakterisierung angewandter Katalysatoren; Aufbau, Funktionsweise, Auslegung von Systemen
- Kombinierte Abgasnachbehandlungssysteme Aufbau & Funktionsweise

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- · Präsenzzeit: 30 h
- · Selbststudium: 50 h
- Prüfungsvorbereitung: 40 h

5.79 Modul: Materialien für elektrochemische Speicher und Wandler [M-CIWVT-104353]

Verantwortung: Prof. Dr. Jens Tübke

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte 4 LP Notenskala Zehntelnoten **Turnus** Jedes Semester **Dauer** 1 Semester Sprache Deutsch Level Version 2

Pflichtbestandteile			
T-CIWVT-108146	Materialien für elektrochemische Speicher und Wandler	4 LP	Tübke

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die Funktionsweise elektrochemischer Speicher und Wandler (Batterien und Brennstoffzellen) sowie die dazu erforderlichen elektrochemischen Grundlagen. Sie kennen eingesetzte Aktiv- und Passivmaterialien, wissen wie diese hergestellt und gegebenenfalls modifiziert werden können. Sie kennen verfahrenstechnische Methoden zur Herstellung von Batteriezellen und Brennstoffzellen-Stacks und wissen, wie Gesamtsysteme aufgebaut sind.

Inhalt

Elektrochemische Grundlagen

Einführung in die Elektrochemie, elektrochemische Potentiale, Konzentrationsabhängigkeit, elektrochemische Methoden.

Grundlagen elektrochemischer Speichersysteme und Brennstoffzellen

Aufbau und Funktionsweise von primären und sekundären Batterien:

Alkali-Mangan, Zink-Kohle, Blei-Säure, Zink-Luft, Nickel-Cadmium, Nickel-Metallhydrid, Redox-Flow-Batterien, Hochtemperaturbatterien, Lithium (Natrium)-Ionen Batterien, Lithium-Schwefel-Batterien, Festkörperbatterien.

Aufbau und Funktionsweise von Brennstoffzellen:

PEMFC, AMFC, DMFC, SOFC, MCFC

Werkstoffe und Verfahren für elektrochemische Speicher

Einlagerungs- und Konversionselektroden, flüssige, polymere und keramische Separatoren (Elektrolyte), Elektrolytadditive und Elektrodenbeschichtungen, Ableitermaterialien (Metalle, modifizierte Kunststoffe), Gehäusematerialien; Katalysator- und Membranmaterialien für Brennstoffzellen, Stackaufbau und verwendete Materialien in Brennstoffzellen

Produktionsverfahren und Prozesse zur Fertigung von Batteriezellen und Brennstoffzellen-Stacks

Aufbauprinzipien und Produktionsverfahren für wasserbasierte Batteriesysteme (Blei-Säure, Nickel-Metallhydrid)

Aufbauprinzipien und Produktionsverfahren für Lithium-basierte Batteriesysteme und Festkörperbatterien, Elektrodenfertigung im Pastierverfahren (Pastenherstellung, Applikation, Trocknungsverfahren), Trockenbeschichtungsverfahren,

Herstellungsverfahren für Separationsfolien für unterschiedliche Batteriesysteme

Qualitätssicherungsverfahren in der Zellenproduktion, Zellenformierung und Testverfahren für Zellen

Herstellungsverfahren für Stackkomponenten für Brennstoffzellen

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 30 h
- · Selbststudium: 80
- Prüfungsvorbereitung: 10

5.80 Modul: Membrane Materials & Processes Research Masterclass [M-CIWVT-106529]

Verantwortung: Prof. Dr. Andrea Schäfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-113153	Membrane Materials & Processes Research Masterclass	6 LP	Schäfer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art.

Forschungsbericht von 10 Seiten und eine mündliche Präsentation von 10 Minuten (Einzelnote).

Voraussetzungen

Keine

Qualifikationsziele

The student will learn basic skills in research at the example of membrane materials and processes applied to water treatment. The skills will assist in conducting research at master, PhD, or postdoctoral levels when background or training differ. Technical skills include the design of experiments to answer specific research questions, performance parameters through to data manipulation, validation, error estimation and interpretation, while the soft skills encompass health and safety aspects of experimental research, research communication (publication) and research integrity.

Inhalt

The content teaches required knowledge to carry out research in the field, including

formulation of a research problem and research questions, experimental design, data validation and storage, as well as presentation of research in spread sheets, graphs, schematics and communication in publications, oral & poster presentations.

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Anmerkungen

The course will be held at IAMT at Campus North (352, IAMT Seminar Room) and be integrated with ongoing research in an international environment. To carry out experimental work exam registration is required. Attendance is required for the completion of the module, in particular for the full day workshop. Learning will be most successful with an interactive participation of participants. Tutors are available during the course time (only) to assist and answer questions.

Arbeitsaufwand

- · Präsenszeit: Vorlesung und Übung 60 h
- · Selbststudium: 80 h
- · Prüfungsvorbereitung: 40 h

Empfehlungen

The course assumes basic knowledge of membrane materials and processes applied to water treatment as well as the course on proposal writing. Those missing the relevant background are expected to read a textbook from the course recommended reading list or consult relevant materials on the proposal writing course.

5.81 Modul: Membrane Technologies in Water Treatment [M-CIWVT-105380]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (BIW) Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Vertiefungsfach I / Wassertechnologie

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	5	3

Pflichtbestandteile			
T-CIWVT-113235	Excercises: Membrane Technologies	1 LP	Horn, Saravia
T-CIWVT-113236	Membrane Technologies in Water Treatment	5 LP	Horn, Saravia

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- schriftliche Prüfung, Dauer: 90 min
- Studienleistung (Vorleistung zur schriftlichren Prüfung):
 Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

Voraussetzungen

Voraussetzungen für das Modul: Keine

Voraussetzungen innerhalb des Moduls: Die Teilnahme an der Klausur ist erst nach bestandener Vorleistung möglich.

Qualifikationsziele

Die Studierenden verfügen über grundlegende Kenntnisse der Membrantechnik in der Wasseraufbereitung und Abwasserbehandlung, gängige Membranverfahren

(Umkehrosmose, Nanofiltration, Ultrafiltration, Mikrofiltration, Dialyse) und deren verschiedene Anwendungen. Sie sind in der Lage solche Anlagen auszulegen.

Inhalt

- · Das Lösungs-Diffusions-Modell
- Die Konzentrationspolarisation und die Konsequenzen für die Membranmodulauslegung
- Membranherstellung und Membraneigenschaften
- · Membrankonfiguration und Membranmodul
- · Membrananlagen zur Meerwasserentsalzung und zur Brackwasserbehandlung.
- · Membranbioreaktoren zur Abwasserbehandlung
- · Biofouling, Scaling und Vermeidungsstrategien für beides
- Übungen zum Design einer Membranaufbereitung
- Exkursionen mit Einführung

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: Vorlesung: 30 h, Übung inkl. Exkursion: 15 h
- Vor-/Nachbereitung: 60 h
- Prüfung + Prüfungsvorbereitung: 75 h

Empfehlungen

Modul "Water Technology"

Literatur

- · Melin, T., Rautenbach, R., 2007. Membranverfahren Grundlagen der Modul- und Anlagenauslegung. Springer Verlag Berlin Heidelberg.
 Mulder, M.H., 2000. Basic Principles of Membrane Technology. Kluwer Academic, Dordrecht.
 Schäfer, I. A., Fane, A. G. (Eds., 2021): Nanofiltration: Principles and Applications., 2. Auflage, Elsevier, Oxford.

- Staude, E., 1992. Membranen und Membranprozesse. Verlag Chemie, Weinheim.
- Vorlesungsunterlagen in ILIAS

5.82 Modul: Messmethoden in der chemischen Verfahrenstechnik [M-CIWVT-104490]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-109086	Messmethoden in der chemischen Verfahrenstechnik	4 LP	Müller

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können unterschiedliche Messmethoden erörtern und können diese auch z.B. anhand unterschiedlichen Messprinzipien unter-einander vergleichen und analysieren. Die Studierenden sind daher fähig, unterschiedliche Messmethoden kritisch zu beurteilen und zu bewerten.

Inhalt

Theorie und Praxis zur *on-line* Messung von Prozessgrößen (Temperatur, Druck, Durchflussgeschwindigkeit, Gemischzusammensetzung, pH-Wert) und zur Bestimmung von Stoffeigenschaften (Fluiddichte, Feststoffdichte).

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 22,5 hSelbststudium: 26 h

Prüfungsvorbereitung: 80 h

5.83 Modul: Messmethoden in der Chemischen Verfahrenstechnik mit Praktikum [M-CIWVT-104450]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile	Pflichtbestandteile				
T-CIWVT-109086	Messmethoden in der chemischen Verfahrenstechnik	4 LP	Müller		
T-CIWVT-109181	Praktikum Messmethoden in der Chemischen Verfahrenstechnik	2 LP	Müller		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.
- 2. Praktikum: Unbenotete Studienleistung nach § 4 Abs. 3 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können unterschiedliche Messmethoden erörtern und können diese auch z.B. anhand unterschiedlichen Messprinzipien untereinander vergleichen und analysieren. Die Studierenden sind daher fähig, unterschiedliche Messmethoden kritisch zu beurteilen und zu bewerten.

Inhalt

Theorie und Praxis zur *on-line* Messung von Prozessgrößen (Temperatur, Druck, Durchflussgeschwindigkeit, Gemischzusammensetzung, pH-Wert) und zur Bestimmung von Stoffeigenschaften (Fluiddichte, Feststoffdichte).

Anmerkungen

Das Modul kann auch ohne Praktikum gewählt werden, Umfang 4 LP

Arbeitsaufwand

Präsenzzeit: 22.5 h

• Praktikum: 11,5 h, 8 Versuche

· Selbststudium: 26 h

Prüfungsvorbereitung: 120 h

5.84 Modul: Messtechnik in der Thermofluiddynamik [M-CIWVT-104297]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Thermische Verfahrenstechnik Vertiefungsfach I / Technische Thermodynamik Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte 6 LP **Notenskala** Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester Sprache Le

Level 4 Version 1

Pflichtbestandteile			
T-CIWVT-108837	Messtechnik in der Thermofluiddynamik	6 LP	Trimis

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden sind in der Lage, ein Experiment zu planen, die geeigneten Messgrößen auszuwählen und die geeigneten dimensionslosen Zahlen für die universelle Darstellung der Ergebnisse zu identifizieren.
- Die Studierenden haben ein tiefes Verständnis für verschiedene fortgeschrittene Messtechniken, die in der Grundlagenforschung an Thermofluiden eingesetzt werden. Sie sind in der Lage, die am besten geeignete Technik für eine experimentelle Studie auszuwählen.
- · Die Studierenden können die Genauigkeit und Grenzen der Messtechnik quantitativ beurteilen.
- Die Studierenden verstehen die verschiedenen Zeitskalen der beteiligten Phänomene und die stochastische Natur von Experimenten, Messtechniken und turbulenten Strömungen. Sie sind in der Lage, die erfassten Messdaten im Zeit- und Spektralbereich präzise zu verarbeiten.

Inhalt

- · Versuchsplanung und Dimensionsanalyse
- Strömungsvisualisierung (Lichtschnitt, Shadowgrafie, Schlieren und Interferometrie)
- Laser-Doppler-Anemometrie
- · Phasen-Doppler-Anemometrie
- Partikelbild-Velozimetrie
- · Laserinduzierte Fluoreszenz
- Absorptionsspektroskopie
- Übersicht über weitere Techniken
- · Datenverarbeitung für turbulente Strömungen im Zeit- und Spektralbereich

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenszeit: 45 hSelbststudium: 25 h
- Prüfungsvorbereitung: 110 h

Literatur

- C. Tropea, Handbook of Experimental Fluid Mechanics, Springer, Heidelberg, 2007
- M. Zlokarnik, Dimensional Analysis and Scale-up in Chemical Engineering, Springer, Berlin, 1991
- A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Taylor & Francis Ltd, New York, 1996
- K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics, Taylor & Francis Ltd, New York, 2002
- · H. W. Coleman, W. G. Steele, Experimentation and Uncertainty Analysis for Engineers, Wiley, New York, 1999

5.85 Modul: Mikrofluidik [M-CIWVT-104350]

Verantwortung: PD Dr. Gero Leneweit

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte 4 LP Notenskala Zehntelnoten

TurnusJedes Wintersemester

Dauer 1 Semester Sprache Deutsch Level

Leneweit

Version 3

Pflic	htbestandteile	

T-CIWVT-108909 Mikrofluidik

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Erwerb von Fähigkeiten zur Entwicklung und Erforschung mikrofluidischer Systeme

Inhalt

- Physik und Messtechnik der Miniaturisierung von Prozessräumen
- Mikrofabrikationstechniken für chemisch-biologische Prozesstechniken
- Fluiddynamische Grundgleichungen in Mikro- und Nanoskalen
- · Mikro- und nanofluidische Strömungsprozesse
- Elektrohydrodynamik von Mikrosystemen: Elektroosmose und Elektrophorese
- Mikrofluidische Sequenzierungstechniken für Genomik und Proteomik
- Manipulationsprozesse für die Metabolomik singulärer Zellen
- Diffusion, Mischen und Trennen in Mikrosystemen
- · Digitale Mikrofluidik und Operatoren mikrofluidischer Prozesssteuerung
- · Erzeugung und Analytik von technologischer Mehrphasen-Systeme
- Industrielle Anwendungen der Mikrofluidik
- Mikrofluidische Produktion von Arzneistoff-Trägersystemen für Biologika
- · Mikrofluidische Prozesstechniken und scale-up für die Biotechnologie

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 60 h

• Prüfungsvorbereitung: 30 h

Literatur

Skriptum zur Vorlesung

5.86 Modul: Mikrofluidik mit Fallstudien [M-CIWVT-105205]

Verantwortung: PD Dr. Gero Leneweit

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile					
T-CIWVT-108909	Mikrofluidik	4 LP	Leneweit		
T-CIWVT-110549	Mikrofluidik - Fallstudien	2 LP	Leneweit		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Erwerb von Fähigkeiten zur Entwicklung und Erforschung mikrofluidischer Systeme

Inhalt

Entwicklung der Mikrofluidik; Physik der Miniaturisierung, Größenskalen der Mikrofluidik; Einführung in die Mikrofabrikationstechniken; Fluiddynamik mikrofluidischer Systeme, Grundgleichungen der Strömungsmechanik, reibungsdominierte Strömungen; Elektrohydrodynamik von Mikrosystemen, Elektroosmose, Elektrophorese und DNA-Sequenzierung, Mikrofluidik biologischer Zellen; Diffusion, Mischen und Trennen in Mikrosystemen; Digitale Mikrofluidik und mikrofluidische Systeme, Erzeugung und Analytik von Mehrphasen-Systemen; industrielle Anwendung der Mikrofluidik;

Praktikumsversuche: Erzeugung von Nanoemulsionen aus Aerosolen in einem Mikromischer; Erzeugung und Charakterisierung von Nanokapseln als Arzneimittel-Transportsysteme durch Nanofluidik.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 60 hPrüfungsvorbereitung:30 h

· Fallstudien: 60 h

Literatur

Skriptum zur Vorlesung

5.87 Modul: Mikrorheologie und Hochfrequenzrheometrie [M-CIWVT-104395]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
2 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108977	Mikrorheologie und Hochfrequenzrheometrie	2 LP	Oelschlaeger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Voraussetzung ist die Teilnahme an einer Fallstudie.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen das Prinzip der Mikrorheologie und die verschiedenen Methoden, welche in Abhängigkeit vom Stoffsystem verwendet werden können. Die Studierenden sind insbesondere mit Diffusing Wave Spectroscopy und Multiple Particle Tracking Methoden vertraut. Aus rheologischen Daten der DWS können sie auf die Biegesteifigkeit semiflexibler Objekte (Mizellen, Polymere, Fasern) zurückschließen. Mit der MPT können die Studierenden rheologische Eigenschaften ortsaufgelöst auf mikroskopischer Ebene erfassen.

Die Studierenden sind mit den verschiedenen Hochfrequenz Methoden vertraut. Sie können aus den linear-viskoelastischen Eigenschaften bei hohen Frequenzen auf den Stabilisierungsmechanismus konzentrierter Dispersionen und auf Informationen über Struktur und Dynamik komplexer Fluide zurückschließen.

Inhalt

Grundlagen und experimentelle Methoden. Aktive Mikrorheologie: Optische und magnetische Pinzetten - Atomic-force Mikroskopie. Passive Mikrorheologie: Dynamische Lichtstreuung - Diffusing Wave Spectroscopy (DWS) - Multiple Particle Tracking (MPT). Vergleich der Frequenz- und Moduli- Bereiche. Einführung in die Brownsche Bewegung und die mittlere quadratische Verschiebung von Tracer-Partikeln. Partikel Bewegung in einem rein viskosen, viskoelastichen und rein elastischem Medium. Diffusion und verallgemeinerte Stokes-Einstein Gleichungen. Anwendungsbeispiele: DWS: Tenside, Polysaccharid- (Hyaluronsäure) Lösungen. Bestimmung der Biegefestigkeit.

MPT: Polymere Verdicker - Polystyrol Dispersionen - Hyaluronsäure-Collagen Cryogele für Tissue Engineering. Untersuchung mikro-struktureller, mikro-mechanischer Eigenschaften und Heterogenitäten.

Hochfrequenzrheologie: Mechanische Methoden: Oszillatorische Scherung (PRV) und Quetschströmung (PAV) – Torsionsresonanzoszillation - Ultraschall Scherrheometer. Anwendungsbeispiele: Tensidlösungen - konzentrierte Suspensionen.

Arbeitsaufwand

Präsenzzeit: 15 hSelbststudium: 35 h

Prüfungsvorbereitung: 10 h

5.88 Modul: Mischen, Rühren, Agglomeration [M-CIWVT-105399]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik Vertiefungsfach I / Angewandte Rheologie

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-110895	Mischen, Rühren, Agglomeration	6 LP	Rhein

Erfolgskontrolle(n)

Erfolgskontrolle ist eine individuelle mündliche Prüfung mit einem Umfang von 30 Minuten nach § 4 Abs. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die grundlegenden Gesetze und daraus folgende physikalische Prinzipien des Mischens, Rührens und der Agglomeration von Partikeln erläutern und nicht nur den dazu geeigneten Verfahren zurordnen, sondern auch ausgewählten Apparaten. Sie sind in der Lage, den Zusammenhang zwischen Produkt-, Betriebs- und Konstruktionsparametern herzustellen und auf die verschiedenen Verfahren anzuwenden. Sie können die entsprechenden verfahrenstechnischen Probleme mit wissenschaftlichen Methoden analysieren und alternative Lösungsvorschläge angeben. Auf der Basis des Gelernten können die Studierenden beurteilen, ob und gegebenenfalls in welcher Form ein erfolgversprechender Prozess gestaltet werden kann.

Inhalt

- Grundlagen und Anwendungen
- Statistische Methoden zur Charakterisierung der Mischgüte
- · Charakterisierung der Fließeigenschaften von Schüttgütern und Flüssigkeiten
- · Einführung in die Dimensionsanalyse zur Ermittlung von mischtechnisch wichtigen Kennzahlen
- · Scale-up Verfahren für spezifische Mischprozesse
- Feststoffmischverfahren, wie Freifall-, Schub-, Intensivmischer, Wirbelschicht-, Luftstrahl- und Umwälzmischer, Haldenmischverfahren
- Fluidmisch-verfahren, wie Homogenisierung, Suspendierung, Emulgierung, Begasung und Wärmeübertragung
- · Statische Mischer und Kneter
- · Haftkräfte zwischen Partikeln
- Agglomerateigenschaften: Charakterisierung von Agglomeraten bezüglich Größe, Größenverteilung, Porosität, Dichte, Festigkeit, Fließverhalten und Instantisiereigenschaften;
- Agglomerationsverfahren, wie Rollagglomeration, Mischagglomeration, Wirbelschicht- und Sprühagglomeration, Agglomeration in Flüssigkeiten durch Koagulation, Flockung oder Umbenetzung, Pressagglomeration, sowie Nachverfestigung von Agglomeration durch Sintern
- · Einführung in die Modellierung und Simulation von Misch- und Agglomerationsverfahren

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 3 SWS/ 45 h

Selbststudium: 75 h Prüfungsvorbereitung: 60 h

Summe: 180 h

5.89 Modul: Modeling Wastewater Treatment Processes [M-BGU-106113]

Verantwortung: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-BGU-112371	Modeling Wastewater Treatment Processes	6 LP	Azari Najaf Abad

Erfolgskontrolle(n)

- Teilleistung T-BGU-112371 mit einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage die Grundlagen der Abwasserbehandlung zu modellieren und eine Matrix für ein biologisches Modell zu entwickeln. Sie lernen mehrere relevante Computersoftware als Werkzeuge für die Modellierung von Abwasserbehandlungsprozessen kennen und sind in der Lage Sensitivitätsanalysen, sowie Kalibration und Validierung von Modellen vorzunehmen. Die Studierenden sind in der Lage die Modelltheorie anhand von Fallbeispielen mit realen Datensätzen und einer vorgestellten Software anzuwenden. In den Präsentationen werden die Modellergebnisse erklärt und diskutiert.

Inhalt

Der Kurs umfasst die Grundlagen der Abwassermodellierung (Kinetik, Stöchiometrie, Massenbilanzen, Hydraulik, Durchmischung und Matrizendarstellung), eine Einführung in bestehende Modelle zum Belebtschlamm (ASM1, ASM2, ASM3, ASM2d) und eine Auswahl an Computerprogrammen (AQUASIM, SIMBA, GPS-X und SUMO), in denen Modelle erstellt und kalibriert werden können. Verschiedene Anpassungen des grundlegenden ASM-Modells für die Charakterisierung von Biofilmen und Kornschlamm, sowie der anaeroben Faulung (anaerobic digestion models, ADM) werden diskutiert. Der Kurs wird durch Übungen anhand von Fallstudien mit realen Datensätzen aus Abwasserbehandlunganlagen vervollständigt.

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Anmerkungen

Die Teilnehmerzahl ist auf 20 begrenzt. Die Anmeldung erfolgt über ILIAS. Die Plätze werden unter Berücksichtigung des Studienfortschritts vergeben, vorrangig an Studierende aus *Water Science and Engineering*, dann *Bauingenieurwesen, Chemieingenieurwesen und Verfahrenstechnik, Geoökologie* und weiteren Studiengängen

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 60 Std.

Selbststudium:

- · Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
- Erstellen der schriftlichen Ausarbeitung und der Präsenation (Prüfungsleitung): 40 Std.

Summe: 180 Std.

Empfehlungen

Vorkenntnisse in Siedlungswasserwirtschaft, Modul "Urban Water Infrastructure and Management"

Literatur

Chen, G.H., van Loosdrecht, M.C., Ekama, G.A. and Brdjanovic, D. eds., 2020. Biological wastewater treatment: principles, modeling and design. IWA publishing.

Makinia, J. and Zaborowska, E., 2020. Mathematical modelling and computer simulation of activated sludge systems. IWA publishing.

Mannina, G. ed., 2017. Frontiers in Wastewater Treatment and Modelling: FICWTM 2017 (Vol. 4). Springer.

5.90 Modul: Modellbildung elektrochemischer Systeme [M-ETIT-100508]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Vertiefungsfach I / Neue Bioproduktionssysteme – Elektrobiotechnologie

Leistungspunkte
3 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-ETIT-100781	Modellbildung elektrochemischer Systeme	3 LP	Weber

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen Modelle auf verschiedenen Skalen (Elementarkinetik bis Systemmodell) zur Beschreibung von elektro-chemischen Systemen und sind in der Lage diese in der Entwicklung von Batterien und Brennstoffzellen einzusetzen.

Inhalt

Die Modellierung elektrochemischer Systeme ist ein Multiskalen-problem. Während sich der Ladungsübertritt an der Grenzfläche Elektrode / Elektrolyt auf atomarer Skala abspielt, werden für die Systemmodellierung stark vereinfachte Teilmodelle für die Systemkomponenten benötigt, die eine echtzeitfähige Simulation des Systembetriebs zulassen. In der Vorlesung werden aktuelle elektro-chemische Modelle für Batterien und Brennstoffzellen auf den verschiedenen Ebenen vorgestellt, auf die experimentelle Bestimmung der Modellparameter eingegangen und Beispiele für die Modellvalidierung gezeigt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

1. Präsenszeit Vorlesung: 15 * 2 h = 30 h

- 2. Vor- und Nachbereitungszeit Vorlesung: 15 * 2 h = 30 h
- 3. Prüfungsvorbereitung und Präsens in selbiger: 30 h

Insgesamt: 90 h = 3 LP

Empfehlungen

Die Inhalte der Vorlesung "Batterien und Brennstoffzelle" werden als bekannt vorausgesetzt. Studierenden, die diese Vorlesung (noch) nicht gehört haben, wird empfohlen das Skript zu dieser Vorlesung vorab durchzuarbeiten.

5.91 Modul: Modellbildung und Simulation in der Thermischen Verfahrenstechnik [M-CIWVT-106832]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

> Vertiefungsfach I / Thermische Verfahrenstechnik Vertiefungsfach I / Technische Thermodynamik Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte

Notenskala Zehntelnoten

Turnus Jedes Wintersemester

Dauer 1 Semester

Sprache Level Deutsch 4

Version

Pflichtbestandteile

T-CIWVT-113702 Modellbildung und Simulation in der Thermischen Verfahrenstechnik

Zeiner 6 LP

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art in Form einer Präsentation von Projektergebnissen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage selbstständig Modelle aus der thermischen Verfahrenstechnik in einer höheren Programmiersprache zu implementieren und die Numerik für die Lösung der Gleichungssysteme zu schreiben.

Inhalt

- Modelle und Algorithmen
- Fehleranalyse
- · Numerische Verfahren zur Lösung linearer Gleichungssysteme
- Numerische Verfahren zur Lösung nichtlinearer Gleichungssysteme
- Numerische Interpolation
- Numerische Integration
- Numerische Lösung von gewöhnlichen Differentialgleichungen

Die gelernten Verfahren werden anhand von Beispielen aus der thermischen Verfahrenstechnik umgesetzt.

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Arbeitsaufwand

 Präsenzzeit: 60 h Selbststudium: 60 h

· Vorbereitung der Präsentation: 60 h

Empfehlungen

Thermodynamik III

5.92 Modul: Modern Concepts in Catalysis: From Science to Engineering [M-CIWVT-107149]

Verantwortung: Prof. Dr. Jan-Dierk Grunwaldt

Prof. Dr. Felix Studt

Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-114168	Modern Concepts in Catalysis: From Science to Engineering	4 LP	Grunwaldt, Studt, Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

Keine

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 30 h Selbststudium: 60 h

Prüfungsvorbereitung: 30 h

5.93 Modul: Modul Masterarbeit [M-CIWVT-104526]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Masterarbeit

Leistungspunkte
30 LPNotenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
5Version
5

Pflichtbestandteile			
T-CIWVT-109275	Masterarbeit	30 LP	Rauch

Voraussetzungen

§ 14 (1) SPO:

Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende im Fach "Erweiterte Grundlagen" die Modulprüfung "Prozess-und Anlagentechnik" sowie drei weitere Modulprüfungen in diesem Fach und das Berufspraktikum erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Es müssen 3 von 7 Bedingungen erfüllt werden:
 - Das Modul M-CIWVT-103065 Biopharmazeutische Aufarbeitungsverfahren muss erfolgreich abgeschlossen worden sein.
 - 2. Das Modul M-CIWVT-103072 Numerische Strömungssimulation muss erfolgreich abgeschlossen worden sein.
 - 3. Das Modul M-CIWVT-103058 Thermodynamik III muss erfolgreich abgeschlossen worden sein.
 - 4. Das Modul M-CIWVT-104383 Kinetik und Katalyse muss erfolgreich abgeschlossen worden sein.
 - 5. Das Modul M-CIWVT-104378 Partikeltechnik muss erfolgreich abgeschlossen worden sein.
 - 6. Das Modul M-CIWVT-105380 Membrane Technologies in Water Treatment muss erfolgreich abgeschlossen worden sein.
 - 7. Das Modul M-CIWVT-107039 Thermische Verfahrenstechnik II muss erfolgreich abgeschlossen worden sein.
- 2. Das Modul M-CIWVT-104374 Prozess- und Anlagentechnik muss erfolgreich abgeschlossen worden sein.
- 3. Das Modul M-CIWVT-104527 Berufspraktikum muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, ein Problem aus ihrem Fach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen, zu bearbeiten.

Inhalt

Theoretische oder experimentelle Bearbeitung einer komplexen Problemstellung aus einem Teilbereich des Chemieingenieurwesens nach wissenschaftlichen Methoden.

Anmerkungen

- Die Masterarbeit soll einen Umfang von 55 bis 60 Seiten nicht überschreiten (ohne Anhang).
- Die Aufgabenstellung, mit der die Masterarbeit dem Prüfungsausschuss gemeldet wurde, muss unverändert in die Arbeit (vorne) eingebunden werden.
- Bei der Abgabe der Masterarbeit hat der/die Studierende schriftlich zu versichern, dass er/sie die Arbeit selbständig verfasst hat und keine anderen als die von ihm/ihr angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie (KIT) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei der Abgabe einer unwahren Versicherung wird die Masterarbeit mit "nicht ausreichend" (5,0) bewertet. (SPO 2016, § 14 Abs. 5).
 - Die Erklärung kann wie folgt lauten: "Ich versichere wahrheitsgemäß, die Arbeit selbständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben."
- Bei Arbeiten, die in englischer Sprache angefertigt werden, muss die Aufgabenstellung in Englisch sein. Auch die Eigenständigkeitserklärung in der Arbeit soll auf Englisch abgefasst werden.

Arbeitsaufwand

Selbststudium: 900 h

5.94 Modul: Nanopartikel - Struktur und Funktion [M-CIWVT-104339]

Verantwortung: Dr.-Ing. Jörg Meyer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Gas-Partikel-Systeme

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108894	Nanopartikel - Struktur und Funktion	6 LP	Meyer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten (Einzelprüfung) bzw. 20 Minuten (Gesamtprüfung im Vertiefungsfach Gas-Partikel-Systeme) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Studierende sollen zum einen ein Verständnis für die Zusammenhänge zwischen der Struktur nanoskaliger Systeme und deren physikalischen Eigenschaften entwickeln. Zum anderen sollen sie verstehen, wie Prozessparameter bei der Synthese von nanoskaligen Partikelsystemen die entstehende Struktur bestimmen.

Auf der Basis des Verständnisses dieses Struktur-Funktions-Zusammenhangs und der Synthesewege sollen die Studierenden Strategien zur gezielten Generierung und Funktionsoptimierung nanopartikulärer Systeme entwickeln.

Inhalt

- Fachliche und historische Einordnung des Vorlesungsinhaltes
- Methoden zur Visualisierung nanoskaliger Objekte und Strukturen
- Beschreibung und physikalische Ursachen spezieller Eigenschaften nanoskaliger Partikeln (und anderer Strukturformen)
 - Größenabhängigkeit der Oberflächenenergie
 - Veränderung der Phasenumwandlungstemperatur gegenüber der Bulk-Phase
 - Mechanische Eigenschaften
 - Optische Eigenschaften
 - Elektrische Eigenschaften
- Synthesemethoden für nanoskalige Partikelkollektive mit definierten Struktureigenschaften in der Gasphase.
- Relevante Prozessparameter zur Einstellung von
 - Partikelgröße (Primärpartikel- und Agglomeratgröße)
 - Agglomerationsgrad
 - Agglomeratfestigkeit
 - · Festkörperstruktur / -modifikation
 - Chemischer Struktur der Partikel-Oberfläche
 - Mehrstufiger Strukturierung (Kern-Schale, Nanopartikeln auf Trägerpartikeln)

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 45 h
- · Selbststudium: 75 h
- Prüfungsvorbereitung: 60 h

5.95 Modul: NMR im Ingenieurwesen [M-CIWVT-104401]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Wassertechnologie

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile					
T-CIWVT-108984	NMR im Ingenieurwesen	4 LP	Guthausen		
T-CIWVT-109144	Praktikum zu NMR im Ingenieurwesen	2 LP	Guthausen		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Praktikum: unbenotete Studienleistung nach § 4 Abs. 3 SPO
- 2. Mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Das Praktikum ist Voraussetzung für die Teilnahme an der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Kenntnis der NMR und ihrer Einsatzgebiete, grundlegendes Verständnis der Phänomene

Inhalt

In der Vorlesung wird ein Überblick über die vielfältigen Anwendungsmöglichkeiten der Kernspinresonanz (NMR) und deren Grundlagen vermittelt. Insbesondere Anwendungen im Bereich der CIW / BIW werden diskutiert. Anhand der Beispiele wird das Verständnis dieser sehr vielseitig einsetzbaren Methode erarbeitet.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Bei Bedarf kann das Modul in englischer Sprache angeboten werden

Arbeitsaufwand

Präsenszeit: 30 h Selbststudium: 30 h

Praktikum: Präsenzzeit 30 h, Vor- und Nachbereitung: 30 h

Prüfungsvorbereitung: 60 h

Literatur

Lehrbücher Kimmich und Callaghan, weitere Literatur wird jeweils in der Vorlesung angegeben.

5.96 Modul: NMR-Methoden zur Produkt- und Prozessanalyse [M-CIWVT-105890]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Wassertechnologie

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte

4 LP

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester **Sprache** Deutsch/Englisch

Level 5

Version 1

Pflichtbestandteile

T-CIWVT-111843 NMR-Methoden zur Produkt- und Prozessanalyse

4 LP Guthausen

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Kenntnis der NMR und ihrer Einsatzgebiete, grundlegendes Verständnis der Phänomene.

Inhalt

In der Vorlesung wird ein Überblick über die vielfältigen Anwendungsmöglichkeiten der Kernspinresonanz (NMR) und deren Grundlagen vermittelt. Insbesondere Anwendungen im Bereich der CIW / BIW werden diskutiert. Anhand der Beispiele wird das Verständnis dieser sehr vielseitig einsetzbaren Methode erarbeitet.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Bei Bedarf kann das Modul in englischer Sprache angeboten werden.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 30 h

Prüfungsvorbereitung: 60 h

Literatur

Lehrbücher Kimmich und Callaghan, weitere Literatur wird jeweils in der Vorlesung angegeben.

5.97 Modul: Nonlinear Process Control [M-CIWVT-106316]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

L	eistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
	6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	5	1

Pflichtbestandteile	flichtbestandteile					
T-CIWVT-112824	Nonlinear Process Control	6 LP	Meurer			

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 45 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verfügen über ein vertieftes Verständnis von Methoden und Konzepte zur Analyse und Regelung nichtlinearer dynamischer Systeme. Sie verstehen die zugrunde liegenden mathematischen Konzepte und können diese auf neue Problemstellungen anwenden. Sie verfügen über ein umfassendes Verständnis nichtlinearer Regelungskonzepte und sind in der Lage, diese Methoden selbstständig auf konkrete Problemstellungen sowohl analytisch als auch unter Einbezug von Computeralgebrasystemen anzuwenden.

Inhalt

Nonlinearities are ubiquitous in nature. Differing from linear control theory and linear control systems, which typically rely on the local linearization of a nonlinear system around some equilibrium, this module addresses nonlinear concepts for the analysis and the control of nonlinear systems. The course covers the following topics:

- Introduction to the dynamic analysis of nonlinear systems
- Differential geometric concepts
- · Exact feedback linearization
- · Differential flatness and flatness-based feedforward and tracking control
- · Lyapunov theory and Lyapunov-based design methods

Problem sets are considered in the exercises to apply the developed methods using analytical tools as well as computer algebra systems to realize the design approaches.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Bei Bedarf wird die Veranstaltung auf Englisch angeboten.

Arbeitsaufwand

Präsenzzeit: Vorlesung 30 h, Übung 15 h

Selbststudium: 75 h Prüfungsvorbereitung: 60 h

Literatur

- T. Meurer: Nonlinear Process Control, Lecture Notes.
- B. Brogliato, R. Lozano, B. Maschke, O. Egeland: Dissipative systems analysis and control, Springer, 2007.
- H. Nijmeijer, A.J. van der Schaft: Nonlinear Dynamical Control Systems. Springer, 1991.
- · Isidori: Nonlinear Control Systems. Springer-Verlag, 1995.
- · H. K. Khalil: Nonlinear Systems, Prentice Hall, 2002.
- M. Krstic, I. Kanellakopoulos, P. Kokotovic: Nonlinear and Adaptive Control Design, John Wiley & Sons, 1995.
- S. Sastry: Nonlinear Systems, Analysis, Stability, Control. Springer-Verlag, 1999.
- A. J. van der Schaft: L2-gain and passivity techniques in nonlinear control, Springer, 2016.
- M. Vidyasagar: Nonlinear Systems Analysis, SIAM, 2002.

5.98 Modul: Numerical Simulation of Reacting Multiphase Flows [M-CIWVT-107076]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Verbrennungstechnik Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte 8 LP **Notenskala** Zehntelnoten

Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch

Level 5 Version 1

Pflichtbestandteile						
T-CIWVT-114117	Numerical Simulation of Reacting Multiphase Flows - Prerequisite	5 LP	Stein			
T-CIWVT-114118	Numerical Simulation of Reacting Multiphase Flows	3 LP	Stein			

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Studienleistung (unbenotet): Als Prüfungsvorleistung sind Berichte über die Übungsblätter einzureichen, die die bearbeitete Aufgabe, die erzeugten Daten und deren Analyse dokumentieren.
- 2. Mündliche Prüfung im Umfang von ca. 30 Minuten

Voraussetzungen

Die Studienleistung ist Voraussetzung für die Teilnahme an der mündlichen Prüfung.

Qualifikationsziele

Die Kursteilnehmer können grundlegende und weiterführende Konzepte der Modellierung und Simulation von reagierenden Mehrphasenströmungen erläutern. Sie haben Kenntnis der Erhaltungsgleichungen sowohl von Ein- als auch Mehrphasenströmungen und können die physikalische Bedeutung aller Terme in diesen Gleichungen beschreiben. Sie können die Grundzüge der Turbulenz, Turbulenzmodellierung, des chemischen Umsatzes und der Modellierung von Mehrphasenströmungen erläutern. Sie kennen numerische Approximations- und Lösungsverfahren für reagierende Mehrphasenströmungen und können diese anwenden. In den zugehörigen Tutorien mit der OpenFOAM Software haben sie erste praktische Erfahrungen beim Aufsetzen, Durchführen und Analysieren eigener Simulationen gesammelt und können das erlangte Wissen auf weitere Simulationsaufgaben anwenden.

Inhalt

- Grundlagen der numerischen Strömungssimulation
- Erhaltungsgleichungen, Turbulenz und Turbulenzmodellierung
- · Chemischer Umsatz und reagierende Strömungen
- · Nicht-reagierende und reagierende Mehrphasenströmungen
- · Numerische Approximations- und Lösungsmethoden

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Die OpenFOAM-Übungen werden auf den eigenen Laptops der Studierenden durchgeführt. Die Kursmaterialien sind vollständig auf Englisch, die Vorlesung wird je nach Bedarf auf Deutsch oder Englisch gehalten.

Arbeitsaufwand

Präsenzzeit:

Vorlesung 2 SWS: 30 h Übung 2 SWS: 30 h

Selbststudium:

Vor- und Nachbereitung der Vorlesung: 15 h

Datenanalyse, Verfassen und Abgabe der Übungsberichte: 105 h

Prüfungsvorbereitung:

60 h

Literatur

Wird in der Vorlesung bekanntgegeben.

5.99 Modul: Numerische Methoden in der Strömungsmechanik [M-MATH-102932]

Verantwortung: Prof. Dr. Willy Dörfler

PD Dr. Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	4	1

Pflichtbestandteile					
T-MATH-105902	Numerische Methoden in der Strömungsmechanik	4 LP	Dörfler, Thäter		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Studierende können die Modellierung und die physikalischen Annahmen erläutern, die zu den Navier-Stokes-Gleichungen führen. Sie können die Finite-Elemente-Methode auf die Strömungsrechnung anwenden und insbesondere mit der Inkompressibilität numerisch umgehen. Sie können die Konvergenz und Stabilität der Verfahren erläutern und begründen.

Inhalt

- · Modellbildung und Herleitung der Navier-Stokes- Gleichungen
- · Mathematische und physikalische Repräsentation von Energie und Spannung
- · Lax-Milgram-Theorem, Céa-Lemma und Sattelpunkttheorie
- Analytische und numerische Behandlung der Potential- und der Stokes-Strömung
- Stabilitäts- und Konvergenztheorie der diskreten Modelle
- · Numerische Behandlung der stationären nichtlinearen Gleichung
- Numerische Verfahren für das instationäre Problem
- Anwendungen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden

Präsenzzeit: 45 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Grundlagenkenntnisse in der numerischen Behandlung von Differentialgleichungen (z. B. von Randwertproblemen oder Anfangsrandwertproblemen) werden dringend empfohlen. Kenntnisse in Funktionalanalysis werden empfohlen.

5.100 Modul: Numerische Strömungssimulation [M-CIWVT-103072]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (CIW)
Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106035	Numerische Strömungssimulation	6 LP	Nirschl

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Erarbeitung der Grundlagen der Numerischen Strömungstechnik um selbständig Berechnungen durchführen zu können.

Inhalt

Navier-Stokes Gleichungen, numerische Lösungsverfahren, Turbulenz, Mehrphasenströmungen.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 64 hSelbststudium: 56 h

• Prüfungsvorbereitung: 60 h

Empfehlungen

Vorlesung Strömungsmechanik.

- Nirschl: Skript zur Vorlesung CFD
- Ferziger, Peric: Numerische Strömungsmechanik
- · Oertel, Laurien: Numerische Strömungsmechanik

5.101 Modul: Optimal and Model Predictive Control [M-CIWVT-106317]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	5	1

Pflichtbestandteile			
T-CIWVT-112825	Optimal and Model Predictive Control	6 LP	Meurer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 45 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verfügen über ein vertieftes Verständnis der dynamischen Optimierung mit Nebenbedingungen, der Optimalsteuerung und der modellprädiktiven Regelung. Sie verstehen die zugrundeliegenden mathematischen Konzepte und können diese auf neue Problemstellungen anwenden. Sie verfügen über ein umfassendes Verständnis von Optimierungsmethoden und sind in der Lage, diese Methoden selbstständig auf dynamische Optimierungsprobleme anzuwenden. Die Studierenden kennen verschiedene numerische Lösungsansätze, verstehen deren Arbeitsweise und können diese für Optimierungsprobleme umsetzen.

Inhalt

Many problems in industry and economy rely on the determination of an optimal solution satisfying desired performance criteria and constraints. In mathematical terms this leads to the formulation of an optimization problem. Here it is in general distinguished between static and dynamic optimization with the latter involving a dynamical process. This lecture gives an introduction to the mathematical analysis and numerical solution of dynamic optimization problems with a particular focus on optimal control and model predictive control. The lecture addresses the following topics:

- · Fundamentals of dynamic optimization problems
- · Dynamic optimization without and with constraints
- · Linear and nonlinear model predictive control
- · Numerical methods

Selected examples are considered and solved in the exercises and dedicated computer exercises.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 30 h, Übung 15 h

Selbststudium: 60 h Prüfungsvorbereitung: 75 h

- T. Meurer: Optimal and Model Predictive Control, Lecture Notes.
- D. G. Luenberger, Y. Ye: Linear and Nonlinear Programming, Springer, 2008.
- J. Nocedal, S.J. Wright: Numerical Optimization, Springer, 2006.
- M. Papageorgiou, M. Leibold, M. Buss: Optimierung, Springer, 2012.
- E. Camacho, C. Alba: Model Predictive Control, Springer, 2004
- L. Grüne, J. Pannek: Nonlinear Model Predictive Control: Theory and Algorithms, Springer, 2011.
- L. Wang: Model Predictive Control System Design and Implementation Using MATLAB, Springer, 2009.

5.102 Modul: Paralleles Rechnen [M-MATH-101338]

Verantwortung: PD Dr. Mathias Krause

Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte 5 LP Notenskala Zehntelnoten **Turnus** Unregelmäßig **Dauer** 1 Semester **Level** 5

Version 1

T-MATH-102271 Paralleles Rechnen 5 LP Krause, Wieners

Erfolgskontrolle(n)

Prüfungsvorleistung: bestandenes Praktikum

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- beherrschen die Grundlagen des parallelen Rechnens.
- haben einen Überblick zu wissenschaftlichem Rechnen auf parallelen Rechnern
- verfügen über theoretische und praktische Erfahrungen mit parallelen Lösungsmethoden

• können einfache praktische Aufgaben eigenständig skalierbar implementieren

Programmiermodellen und parallelen

Inhalt

- Parallele Programmiermodelle
- Paralleles Lösen linearer Gleichungssysteme
- Parallele Finite Differenzen, Finite Elemente, Finite Volumen
- · Methoden der Gebietszerlegung
- Matrix-Matrix und Matrix-Vektor-Operationen
- · Konvergenz- und Leistungsanalyse
- Lastverteilung
- Anwendungen aus den Natur- und Ingenieurwissenschaften

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Kenntnisse in einer höheren Programmiersprache (C++, Java, Fortran). Grundlagenkenntnisse in der numerischen Behandlung von Differentialgleichungen (Finite Differenzen oder Finite Elemente).

5.103 Modul: Partikeltechnik [M-CIWVT-104378]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (CIW)
Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-106028	Partikeltechnik Klausur	6 LP	Dittler	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Studierende entwickeln ein fortgeschrittenes Verständnis des Verhaltens von Partikeln und Partikelsystemen in wichtigen Ingenieuranwendungen; sie können dieses Verständnis für die Berechnung und Auslegung ausgewählter Prozesse nutzen.

Inhalt

Verhalten von Partikeln und dispersen Systemen anhand technisch relevanter Problemstellungen und wichtiger Grundoperationen der Partikeltechnik.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 90 hPrüfungsvorbereitung: 45 h

Empfehlungen

Vorlesung Mechanische Verfahrenstechnik oder gleichwertige Lehrveranstaltung

Literatur

Skript, Fachbücher

5.104 Modul: Physical Foundations of Cryogenics [M-CIWVT-103068]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106103	Physical Foundations of Cryogenics	6 LP	Grohmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Verstehen der Mechanismen der Entropieerzeugung und des Zusammenwirkens von erstem und zweitem Hauptsatz in thermodynamischen Prozessen; Verstehen von Festkörpereigenschaften bei kryogenen Temperaturen, Anwenden, Analysieren und Beurteilen von Realgasmodelllen für klassiches Helium I; Verstehen der Quantenfluid-Eigenschaften von Helium II auf Basis der Bose-Einstein-Kondensaation; Verstehen der Funktion von Kühlmethoden bei tiefsten Temperaturen.

Inhalt

Beziehung zwischen Energie und Temperatur, Energietransformation auf mikroskopischer und makroskopischer Ebene, physikalische Definition von Entropie und Temperatur, thermodynamische Gleichgewichte, Reversibilität thermodynamischer Prozesse, Helium als klassisches Fluid und als Quantenfluid, Materialeigenschaften bei tiefen Temperaturen, Kühlverfahren bei Temperaturen unter 1 K.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 45 h

· Prüfungsvorbereitung: 90 h

Lehr- und Lernformen

22030 - Kryotechnik A

22031 - Übungen zu 22030 Krytechnik A

Literatur

Schroeder, D.V.: An introduction to thermal physics. Addison Wesley Longman (2000)

Pobell; F.: Matter and methods at low temperatures. 3rd edition, Springer (2007)

5.105 Modul: Polymerthermodynamik [M-CIWVT-106882]

Verantwortung: Prof. Dr. Sabine Enders

Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte 6 LP	Notenskala Zehntelnoten	Turnus Jedes Wintersemester	Dauer 1 Semester	Sprache Deutsch/Englisch	Level 5	Version 1
--------------------------------	----------------------------	---------------------------------------	----------------------------	---------------------------------	----------------	--------------

Pflichtbestandteile				
T-CIWVT-113796	Polymerthermodynamik	6 LP	Enders, Zeiner	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können komplexe Phasengleichgewichte verstehen und berechnen und kennen die dazu nötigen thermodynamischen Modelle und deren Parameteranpassung.

Inhalt

- Phasengleichwichte für Vielkomponentenmischungen (z.B. Polymere, Elektrolytlösungen)
- · Numerische Methoden zur Berechnung von komplexen Phasengleichgewichten,
- · Thermodynamische Modelle
- · Modelparameterbestimmung

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Bei Bedarf wird die Lehrveranstaltung in englischer Sprache angeboten.

Arbeitsaufwand

- Präsenszeit: 90 h
- · Selbststudium: 45 h
- Prüfungsvorbereitung: 45 h

Empfehlungen

Grundkenntnisse in der Mischphasenthermodynamik (Thermodynamik III oder Ähnliches).

Literatur

Chemical Thermodynamics for Process Simulation, J. Gmehling, B. Kolbe, M. Kleiber, J. Raray (Eds.), Wiley-VCH, 2012. ISBN: 978-3-527-31277-1.

5.106 Modul: Power-to-X – Key Technology for the Energy Transition [M-CIWVT-105891]

Verantwortung: Prof. Dr.-Ing. Roland Dittmeyer

Dr. Peter Holtappels

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
EnglischLevel
5Version
1

Pflichtbestandteile					
T-CIWVT-111841	Power-to-X – Key Technology for the Energy Transition	4 LP	Dittmeyer, Holtappels		
T-CIWVT-111842	Practical in Power-to-X: Key Technology for the Energy Transition	2 LP	Dittmeyer, Holtappels		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Praktikum, unbenotete Studienleistung
- 2. mündliche Prüfung im Umfang von ca. 30 Minuten

Qualifikationsziele

The students are familiar with the rationale and the basic concepts of Power-to-X conversion. They know the major routes and individual components and what can be expected in terms of performance metrics both on component and process level. They have developed a basic understanding of water and steam electrolysis as well as of plasma splitting of carbon dioxide. Moreover, they had a first encounter with real container plants for electrolysis and fuel synthesis in the Energy Lab 2.0 as well as modular setups for plasma splitting, fuel synthesis and fuel upgrading.

Inhalt

The module will provide an introduction to Power-to-X technologies which are expected to play a major role in the future energy system. The rationale for converting renewable electrical energy into fuels and chemicals will be explained and substantiated with data from relevant studies. Concepts for central and distributed Power-to-X facilities will be described with a focus on modular technologies for distributed production. Different options for water and steam electrolysis as well as selective electrochemical reduction of carbon dioxide will be discussed with a view to technology readiness level, energy efficiency, and cost. The alternative concept of plasma-based activation of inert molecules will be introduced and the status of this technology will be assessed and compared to electrolysis. Basic process layouts for production of synthetic methane, liquid hydrocarbons, methanol and ammonia from renewable electrical energy, carbon dioxide and water will be described and assessed in terms of material and energy flows and options for process integration. Moreover, concepts for offshore Power-to-X production will be explained and current research in this area will be highlighted. Finally, industrial project initiatives in the field of Power-to-X will be presented and discussed. The practical will cover four days and will be done in larger groups of up to 15 persons. Participants will be introduced to the containerized Power-to-Liquid Plant and its infrastructure in the Energy Lab 2.0 at KIT Campus North. They will work at this site with a containerized water electrolyzer and steam electrolyzer for hydrogen production. Moreover, the group will be made familiar with an experimental setup for plasma splitting of carbon dioxide in the plasma lab jointly operated by IMVT and IHM and with the synthesis and upgrading of Fischer-Tropsch-Fuels in the synfuel lab at IMVT.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Praktikum: Termine nach Vereinbarung, Ort: IMVT, KIT Campus Nord, Energy Lab 2.0, Geb. 605.

Arbeitsaufwand

 Präsenszeit: Vorlesung: 30 h,

Praktikum: 16 h (4 Termine)

Selbststudium: 90 h

Prüfungsvorbereitung: 45 h

Literatur

Florian Ausfelder, Hannah Dura, 3. Roadmap des Kopernikus-Projektes P2X Phase II, OPTIONEN FÜR EIN NACHHALTIGES ENERGIE- SYSTEM MIT POWER-TO-X- TECHNOLOGIEN, Transformation – Anwendungen – Potenziale, 2021 (abrufbar unter https://www.kopernikus-projekte.de/aktuelles/news/p2x roadmap 3 0)

5.107 Modul: Practical Course in Water Technology [M-CIWVT-103440]

Verantwortung: Dr. Andrea Hille-Reichel

Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Wassertechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	4	3

Pflichtbestandteile			
T-CIWVT-106840	Practical Course in Water Technology	3 LP	Hille-Reichel, Horn
T-CIWVT-110866	Excursions: Water Supply	1 LP	Horn

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus zwei Teilleistungen:

- Praktikum; Prüfungsleistung anderer Art:
 6 Versuche inkl. Eingangskolloquium und Protokoll; Vortrag zu einem Versuch; mündliches Abschlusstestat (Dauer 15 min). Das Abschlusstestat findet nach der Abgabe der Protokolle und der Vorstellung eines ausgewählten Versuchs statt.
- Studienleistung: Teilnahme an Exkursionen und Abgabe der Exkursionsprotokolle

Voraussetzungen

Das Modul kann nur in Kombination mit dem Modul *Water Technology* belegt werden. Eine Teilnahme am Praktikum ist er nach der Teilnahme an der Exkursion möglich.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CIWVT-103407 - Water Technology muss begonnen worden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, die grundlegenden wichtigen Aufbereitungsverfahren in der Wassertechnik zu erklären. Sie können Berechnungen durchführen, Daten vergleichen und interpretieren. Sie sind fähig, methodische Hilfsmittel zu gebrauchen, die Zusammenhänge zu analysieren und die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Praktikum: 6 Versuche aus folgender Auswahl: Kalklöseversuch, Flockung, Adsorption an Aktivkohle, Photochemische Oxidation, Atomabsorptionsspektrometrie, Ionenchromatographie, Flüssigkeitschromatographie, Summenparameter, und Vortrag.

Ergänzend erfolgt die Besichtigung zweier Aufbereitungsanlagen (Abwasser, Trinkwasser).

Zusammensetzung der Modulnote

Modulnote ist die Note des Praktikums.

Die Gesamtnote der Prüfungsleistung anderer Art wird wie folgt gebildet: Insgesamt können 150 Punkte erreicht werden, davon

- maximal 60 Punkte f
 ür die Eingangskontrolle und Protokolle (je 10),
- · maximal 15 Punkte für den Vortrag,
- maximal 75 Punkte f
 ür das Abschlusstestat.

Für das Bestehen der Erfolgskontrolle müssen mindestens 80 Punkte erreicht werden.

Arbeitsaufwand

Präsenzzeit: Einführung und Vortrag (halbtags), 6 Versuche (halbtags), 2 Exkursionen; 36 h

Vor-/Nachbereitung, Protokolle (Versuche und Exkursion) und Vortrag: 50 h

Prüfung + Prüfungsvorbereitung: 34 h

- Harris, D. C., Lucy, C. A. (2019): Quantitative chemical analysis, 10. Auflage. W. H. Freeman and Company, New York.
- Crittenden, J. C. et al. (2012): Water treatment Principles and design. Wiley & Sons, Hoboken.
- Patnaik, P., 2017: Handbook of environmental analysis: Chemical pollutants in air, water, soil, and solid wastes. CRC Press
- Wilderer, P. (Ed., 2011): Treatise on water science, four-volume set, 1st edition, volume 3: Aquatic chemistry and biology. Elsevier, Oxford.
- · Vorlesungsskript im ILIAS
- Praktikumsskript

5.108 Modul: Principles of Constrained Static Optimization [M-CIWVT-106313]

Verantwortung: Dr.-Ing. Pascal Jerono

Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion4 LPZehntelnotenJedes Wintersemester1 SemesterEnglisch51

Pflichtbestandteile			
T-CIWVT-112811	Principles of Constrained Static Optimization	4 LP	Jerono, Meurer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 45 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden verfügen über ein vertieftes Verständnis der statischen Optimierung mit Nebenbedingungen. Sie verstehen die zugrunde liegenden mathematischen Konzepte und können diese auf neue Problemstellungen anwenden. Sie verfügen über ein umfassendes Verständnis von Optimierungsmethoden und sind in der Lage, diese Methoden selbstständig auf statische Optimierungsprobleme anzuwenden. Die Studierenden kennen verschiedene numerische Lösungsansätze, verstehen deren Arbeitsweise und können diese für Optimierungsprobleme umsetzen.

Inhalt

Optimization problems arise in a broad variety in different scientific and engineering domains ranging from the fit of parameter based on a performance criterion to finding extreme values of an objective function and further extending to machine learning applications. While dynamic optimization (addressed on the module M-CIWVT-106317) involves dynamical systems in static optimization the minimization (maximization) of functions subject to equality and inequality constraints is considered. This module gives an introduction to the mathematical analysis and numerical solution of unconstrained and constrained static optimization problems. The lecture addresses the following topics:

- Fundamentals of static optimization problems
- · Unconstrained static optimization
- · Constrained static optimization
- · Numerical methods

Selected examples are considered and solved in the exercises and dedicated computer exercises.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 15 h, Übung 15 h

Selbststudium: 50 h Prüfungsvorbereitung: 40 h

- T. Meurer: Optimal and Model Predictive Control, Lecture Notes.
- D. G. Luenberger, Y. Ye: Linear and Nonlinear Programming, Springer, 2008.
- · N. Nocedal, S.J. Wright: Numerical Optimization, Springer, 2006.
- · M. Papageorgiou, M. Leibold, M. Buss: Optimierung, Springer, 2012.
- S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004.
- C.T. Kelley. Iterative Methods for Optimization. SIAM, 1999.

5.109 Modul: Process Engineering in Wastewater Treatment [M-BGU-103399]

Verantwortung: Dr.-Ing. Tobias Morck

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Technisches Ergänzungsfach

Notenskala Leistungspunkte **Turnus** Dauer **Sprache** Level Version 6 LP Zehntelnoten Jedes Wintersemester 1 Semester Englisch 4

Pflichtbestandteile			
T-BGU-106787	Process Engineering in Wastewater Treatment	6 LP	Morck

Erfolgskontrolle(n)

- Teilleistung T-BGU-106787 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verfügen über das Wissen typischer Verfahrenstechniken der Abwasserreinigung im In- und Ausland. Sie sind in der Lage, diese technisch zu beurteilen und unter Berücksichtigung rechtlicher Randbedingungen flexibel zu bemessen. Die Studierenden können die Anlagentechnik analysieren, beurteilen und betrieblich optimieren. Es gelingt eine energetisch effiziente Auslegung unter Berücksichtigung wesentlicher kostenrelevanter Faktoren. Die Studierenden können die Situation in wichtigen Schwellen- und Entwicklungsländern im Vergleich zu der in den Industrienationen analysieren und wasserbezogene Handlungsempfehlungen entwickeln.

Inhalt

Municipal Wastewater Treatment:Die Studierenden erlangen vertieftes Wissen über Bemessung und Betrieb typischer Verfahrenstechniken der kommunalen Abwasserreinigung in Deutschland. Behandelt werden u.a.

- verschiedene Belebungsverfahren
- Anaerobtechnik und Energiegewinnung
- Kofermentation und nachwachsende Rohstoffe
- Filtrationsverfahren
- Abwasserdesinfektion und pathogene Keime
- chemische und biologische Phosphorelimination
- Spurenstoffelimination
- Ressourcenschutz und Energieeffizienz

International Sanitary Engineering:Die Studierenden verfügen über das Wissen der Bemessung und des Betriebs der im internationalen Raum eingesetzten Techniken zur Wasseraufbereitung. Sie können diese Techniken analysieren, beurteilen und entscheiden, wann neue, stärker ganzheitlich orientierte Methoden eingesetzt werden können. Behandelt werden:

- Belebungsverfahren
- Tropf- und Tauchkörper
- Teichanlagen
- Bodenfilter / Wetlands
- UASB / EGSB / Anaerobe Filter
- dezentrale versus zentrale Systeme
- Stoffstromtrennung
- Energiegewinnung aus Abwasser
- Trinkwasseraufbereitung
- Abfallwirtschaft

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Anmerkungen

Das Modul wird ab dem Sommersemester 2019 nicht mehr angeboten. Es wird ersetzt durch das Modul Wastewater **Treatment Technologies.**

Gruppenvortrag und schriftliche Ausarbeitung ist interne Prüfungsvorleistung.

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- · Municipal Wastewater Treatment Vorlesung/Übung: 30 Std.
- · International Sanitary Engineering Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen Municipal Wastewater Treatment: 30 Std.
- · Vor- und Nachbereitung Vorlesung/Übungen International Sanitary Engineering: 30 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Empfehlungen

Modul "Urban Water Infrastructure and Management"

Literatur

Imhoff, K. u. K.R. (1999) Taschenbuch der Stadtentwässerung, 29. Aufl., Oldenbourg Verlag, München, WienATV-DVWK (1997) Handbuch der Abwassertechnik: Biologische und weitergehende Abwasserreinigung, Band 5, Verlag Ernst & Sohn, BerlinATV-DVWK(1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn, BerlinSperling, M.; Chernicaro, C.A.L. (2005) Biological wastewater treatment in warm climate regions, IWA publishing, LondonWilderer, P.A., Schroeder, E.D. and Kopp, H. (2004) Global Sustainability - The Impact of Local Cultures. A New Perspective for Science and Engineering, Economics and Politics WILEY-VCH

5.110 Modul: Produktentstehung - Entwicklungsmethodik [M-MACH-102718]

Verantwortung: Prof. Dr.-Ing. Albert Albers **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Technisches Ergänzungsfach (EV bis 31.03.2026)

Leistungspunkte

6 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch

Level 4 Version 3

Pflichtbestandteile

T-MACH-109192 | Methoden und Prozesse der PGE - Produktgenerationsentwicklung | 6 LP | Albers, Burkardt

Erfolgskontrolle(n)

siehe Teilleistung

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können ...

- Produktentwicklung in Unternehmen einordnen und verschiedene Arten der Produktentwicklung unterscheiden.
- die für die Produktentwicklung relevanten Einflussfaktoren eines Marktes benennen.
- die zentralen Methoden und Prozessmodelle der Produktentwicklung benennen, vergleichen und diese auf die Entwicklung moderat komplexer technische Systeme anwenden.
- · Problemlösungssystematiken erläutern und zugehörige Entwicklungsmethoden zuordnen.
- Produktprofile erläutern sowie darauf aufbauend geeignete Kreativitätstechniken zur Lösungsfindung/Ideenfindung unterscheiden und auswählen.
- Gestaltungsrichtlinien für den Entwurf technischer Systeme erörtern und auf die Entwicklung gering komplexer technischer Systeme anwenden.
- Qualitätssicherungsmethoden für frühe Produktentwicklungsphasen nennen, vergleichen, situationsspezifisch auswählen und diese auf moderat komplexe technische Systeme anwenden.
- Methoden der statistischen Versuchsplanung erläutern.
- Kostenentstehung und Kostenverantwortung im Konstruktionsprozess erläutern.

Inhalt

Grundlagen der Produktentwicklung: Grundbegriffe, Einordnung der Produktentwicklung in das industrielle Umfeld, Kostenentstehung/Kostenverantwortung

Konzeptentwicklung: Anforderungsliste/Abstraktion der Aufgabenstellung/ Kreativitätstechniken/ Bewertung und Auswahl von Lösungen

Entwerfen: Allgemein gültige Grundregeln der Gestaltung, Gestaltungsprinzipien als problemorientierte Hilfsmittel

Rationalisierung in der Produktentwicklung: Grundlagen des Entwicklungsmanagements, Simultaneous Engineering und integrierte Produktentwicklung, Baureihenentwicklung und Baukastensysteme

Qualitätssicherung in frühen Entwicklungsphasen: Methoden der Qualitätssicherung im Überblick, QFD, FMEA

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 3h= 45 h
- 2. Vor-/Nachbereitungszeit Vorlesung: 15 * 4,5 h = 67,5 h
- 3. Präsenzzeit Übung: 4 * 1,5h = 6 h
- 4. Vor-/Nachbereitungszeit Übung: 4 * 3 h = 12 h
- 5. Prüfungsvorbereitung und Präsens in selbiger: 49,5 h Insgesamt: 180 h = 6 LP

Lehr- und Lernformen

Vorlesung

Übung

Literatur

Vorlesungsunterlagen

Pahl, Beitz: Konstruktionslehre, Springer-Verlag 1997 Hering, Triemel, Blank: Qualitätssicherung für Ingenieure; VDI-Verlag,1993

5.111 Modul: Prozess- und Anlagendesign in der Biotechnologie [M-CIWVT-107357]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (BIW)

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile					
T-CIWVT-114498	Seminar Prozess- und Anlagendesign in der Biotechnologie	2 LP	Holtmann		
T-CIWVT-114499	Schriftliche Prüfung Prozess- und Anlagendesign in der Biotechnologie	4 LP	Holtmann		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Prüfungsvorleistung/ Prüfungsleistung anderer Art: Benoteter Vortrag mit einer Dauer von ca. 10 Minuten im Rahmen des Seminars:
 - Beim Seminar besteht Anwesenheitspflicht bei mindestens 80 % der Termine.
- schriftliche Prüfung im Umfang von 90 Minuten

Voraussetzungen

Das Seminar ist Voraussetzung für die Teilnahme an der Klausur.

Qualifikationsziele

Die Studierenden können ihr Wissen über Unit Operations im Upstream und Downstream nutzen, um Gesamtprozesse in der Biotechnologie zu planen und zu bewerten. Mithilfe von Massen- und Energiebilanzen sowie grafischen Darstellungen können sie zudem systemtheoretische Überlegungen zu biotechnischen Prozessen umsetzen. Darüber hinaus können sie ihre verfahrenstechnischen Kenntnisse bei der Planung von biotechnologischen und biopharmazeutischen Anlagen unter Berücksichtigung des "Hygienic Designs" anwenden.

Inhalt

Nach einer Einführung in die grundlegenden Unit Operations und deren Berechnungsgrundlagen werden zunächst die gemeinsamen Grundprinzipien biotechnologischer Produktionsverfahren diskutiert. Dabei stehen die Wechselwirkungen zwischen den biologischen Systemen und dem Prozess im Fokus. Anhand von Beispielen werden Fließbilder sowie Massenund Energiebilanzen besprochen. Darüber hinaus werden Beispiele aus den Bereichen Hygienic Design, Sterilisation, kritische Versorgungsmedien, Messtechnik und Prozessanalysentechnik sowie Formulierung erörtert.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

- Präsenzzeit: 60 h
- · Selbststudium: 40 h
- · Vorbereitung Referat im Rahmen des Seminars: 20 h
- · Prüfungsvorbereitung: 60 h

Literatur

Wird in der Vorlesung bekanntgegeben.

5.112 Modul: Prozess- und Anlagentechnik [M-CIWVT-104374]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (Pflichtbestandteil)

Technisches Ergänzungsfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8 LP	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	4	1

Pflichtbestandteile					
T-CIWVT-106148	Praktikum Prozess- und Anlagentechnik	0 LP	Scheiff		
T-CIWVT-106149	Eingangsklausur Praktikum Prozess- und Anlagentechnik	0 LP	Scheiff		
T-CIWVT-106150	Prozess- und Anlagentechnik Klausur	8 LP	Scheiff		

Erfolgskontrolle(n)

Die Modulprüfung besteht aus drei Teilleistungen:

- Schriftliche Prüfung im Umfang von 180 Minuten
- · Praktikum Prozess- und Anlagentechnik, unbenotete Studienleistung
- Zulassungsklausur zum Praktikum Prozess- und Anlagentechnik, unbenotete Studienleistung

Voraussetzungen

Die Teilnahme am Praktikum Prozess- und Anlagentechnik ist nur nach erfolgreicher Teilnahme an der Eingangsklausur möglich.

Qualifikationsziele

Die Studierenden sind in der Lage Verfahren und die dazugehörigen verfahrenstechnischen Anlagen zu analysieren und in Form von Fließschemata darzustellen. Sie können ingenieurstechnische und verfahrenstechnische Grundlagen auf Prozesse und Verfahren der Industrie anwenden. Sie können Prozessschritte und Prozessketten auf Basis vereinfachender Annahmen und Kennzahlen auslegen und bewerten.

Inhalt

- Ingenieurstechnische Grundlagen: Fließschemata, flowsheet-Simulation, Prozessoptimierung, Sicherheitsaspekte, Wirtschaftlichkeitsbewertung
- Anwendung der ingenieurstechnischen Grundlagen im Praktikum
- Verfahrenstechnik in der technischen Anwendung, Industrielle Produktionsprozesse: z. B.: Steamcracker, Methanol, Schwefelsäure, Ammoniak, Zement, Zellstoff

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 43 hSelbststudium: 87 h

Prüfungsvorbereitung: 80 h

Praktikum: Präsenzzeit: 9 h + Vor- & Nachbereitungszeit: 21 h

Empfehlungen

Es wird empfohlen, die Klausur erst nach Absolvieren des Praktikums zu schreiben, da Praktikumsinhalte klausurrelevant sind

- Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2000. ISBN 9783527306732.
- Baerns, M., et al. Technische Chemie., erw. Aufl. Weinheim: Wiley-VCH, 2013. ISBN 978-3-527-67409-1.
- Weber, K. Engineering verfahrenstechnischer Anlagen. Praxishandbuch mit Checklisten und Beispielen. Berlin: Springer Vieweg, 2014. SpringerLink: Bücher. ISBN 978-3-662-43529-8.
- Perry, R., D. Green und J. Maloney. Perry's chemical engineer's handbook. ed. New York: McGraww-Hill, 1999. ISBN 0-07-049841-5.
- Levenspiel, O. Chemical reaction engineering. 3rd ed. New York: Wiley, 1999. ISBN 047125424X.

5.113 Modul: Prozessanalyse: Modellierung, Data Mining, Machine Learning [M-ETIT-105594]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
2

Pflichtbestandteile			
T-ETIT-111214	Prozessanalyse: Modellierung, Data Mining, Machine Learning	4 LP	Borchert, Heizmann

Erfolgskontrolle(n)

Mündliche Prüfung, Dauer circa 30 Minuten, Note gemäß Ergebnis der Prüfung

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen aus der Sicht der industriellen Praxis Fragestellungen der Prozesstechnik kennen, die mit Hilfe von Methoden der physico-chemischen Modellierung und Datenwissenschaften behandelt werden. Studierende lernen wichtige Zusammenhänge der Prozesstechnik kennen und können diese anhand von Beispielprozessen erläutern. Sie sind in der Lage, relevante Prozessdaten zu erkennen und geeignete Modellierungsansätze zu deren Interpretation auszuwählen und anzuwenden. Mit Prozessdaten können die Studierenden Analysen praktisch durchführen und wenden dabei Methoden unterschiedlicher Komplexität an. Die Studierenden kennen die Wertschöpfungskette der Datenanalyse und verfügen über die Fähigkeit, ein geeignetes Datenanalyseverfahren auszuwählen. Der Lernschwerpunkt liegt auf der Vermittlung von breitem Methodenwissen und Anwendung anhand von praxisnahen Beispielen. Es wird auf spezialisierte Vertiefungsvorlesungen und/oder tiefergehende Literatur verwiesen.

Inhalt

Ziele der Prozesstechnik

- Stoff- und Energiewandlung mittels chemischer, mechanischer, thermischer oder biologischer Operationen
- Grundoperationen (Auswahl)
- · Systembeispiele
- Wichtige Größen der Prozesstechnik (Temperatur, Druck, Zusammensetzung,...)
- Wirtschaftlichkeit in der Prozessindustrie

Erfassung von Daten

- Messgrößen und Messprinzipien (Auswahl)
- · Messunsicherheit

Modelle der Prozesstechnik

- · Bilanzgleichungen (Auswahl)
- Konstitutive Gleichungen (Auswahl)
- Lösen von Bilanzgleichungen (Beispiel in Matlab)
- · Parameterunsicherheit und Schätzung
- · Datengetriebene Modelle
- · Grey-Box Modelle / Hybride Modelle

Datenanalyse

- Anforderungen an Datenanalyse in der Prozessindustrie
- Wirtschaftlichkeit und Priorisierung von Prozessanalysen
- Datenvorbehandlung
- · Anwendung von Data Mining und maschinellem Lernen
- Online-Verfahren

Exkursion

· Exkursion zu BASF Ludwigshafen

Hausarbeit 1: Prozessmodell und Simulation.

Hausarbeit 2: Identifikation und Analyse.

Hausarbeit 3: Predictive Maintenance.

Arbeitsaufwand

28 Stunden Lehre,

30 St. Hausarbeiten,

32 St. Vor- und Nachbereitung, Prüfungsvorbereitung und -durchführung.

Empfehlungen

Grundlagen in: Mathematik, Differentialgleichungen, Lineare Algebra, Statistik, Grundkenntnisse in Matlab

Literatur

Bequette (1998). Process Dynamics: Modeling, Analysis and Simulation. Prentice Hall.

Russel & Novig (2016). Artificial Intelligence – A modern approach. Pearson.

Matlab Documentation (In2019). Mathworks.

5.114 Modul: Prozessmodellierung in der Aufarbeitung [M-CIWVT-103066]

Verantwortung: apl. Prof. Dr. Matthias Franzreb

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Biopharmazeutische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-106101	Prozessmodellierung in der Aufarbeitung	4 LP	Franzreb

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die für die Chromatografiemodellierung notwendigen Gleichgewichts- und Kinetikgleichungen darlegen und interpretieren. Sie können verdeutlichen welche Methoden zur Bestimmung der Gleichgewichts- und Kinetikparameter zum Einsatz kommen und diese an Beispielen erörtern. Sie verstehen die Funktionsweise komplexer Aufreinigungsverfahren wie "Simulated Moving Bed" und können die Unterschiede zur klassischen Chromatografie beschreiben. Die Studierenden können unter Einsatz einer Modellierungssoftware praxisrelevante Chromatografieprozesse simulieren und die Ergebnisse analysieren. Auf dieser Grundlage können sie Prozessparameter optimieren und an verschiedene Zielgrößen wie Reinheit oder Ausbeute anpassen. Die Studierenden sind in der Lage die unterschiedlichen Verfahren zu beurteilen und die für eine vorgegebene Aufgabenstellung beste Variante auszuwählen.

Inhalt

Grundlagen und praktische Übungen zur Chromatografie-modellierung, Auslegung von 'Simulated Moving Bed (SMB)'-Systemen, Versuchsplanung (DOE)

Arbeitsaufwand

Präsenszeit: 30hSelbststudium: 60h

Prüfungsvorbereitung: 30h

5.115 Modul: Raffinerietechnik - flüssige Energieträger [M-CIWVT-104291]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108831	Raffinerietechnik - flüssige Energieträger	6 LP	Rauch

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Prozesse und Verfahren zur Erzeugung flüssiger Energieträger bilanzieren und wesentliche Zusammenhänge und Herausforderungen im modernen Raffinerieverbund erkennen. Das hieraus ableitbare Wissen kann auf andere verfahrenstechnische Prozesse übertragen werden und hilft bei deren Bewertung und Weiterentwicklung.

Inhalt

Einführung in die flüssigen chemischen Brennstoffe: Quellen, Ressourcen/Reserven, Verbrauch, charakteristische Eigenschaften von Rohstoffen und Produkten, Verfahrensübersicht. Erdöl und Erdölverarbeitung: Charakterisierung von Erdöl und Erdölprodukten, physikalische Trennverfahren, chemische Umwandlungsverfahren (chemische Gleichgewichte, Reaktionstechnik etc.), Raffineriestrukturen. Nicht-konventionelle flüssige Brennstoffe z. B. aus Syntheseprozessen oder nachwachsenden Rohstoffen (Fettsäureester, Alkohole, synthetische Kraftstoffe).

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Das Modul darf nicht in Kombination mit dem Modul "Liquid Transportation Fuels" gewählt werden.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 75 h

· Prüfungsvorbereitung: 60 h

- Elvers, B. (Ed.): Handbook of Fuels, Energy Sources for Transportation, Wiley VCH 2008.
- Lucas, A. G. (Ed.): Modern Petroleum Technology, Vol. 2 Downstream, John Wiley 2000.
- Gary, J.; Handwerk, G., Kaiser, M. J.: Petroleum Refining, Technology and Economics, Fifth Edition, CRC Press 2007

5.116 Modul: Reactor Modeling with CFD [M-CIWVT-106537]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Englisch	4	1

Pflichtbestandteile			
T-CIWVT-113224	Reactor Modeling with CFD	4 LP	Wehinger

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art. Bewertet wird eine Präsentation und der schriftliche Abschlussbericht.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage:

- die mathematischen und physikalischen Grundlagen der numerischen Strömungsmechanik (CFD) zu beschreiben und anzuwenden,
- die kommerzielle CFD-Software STAR-CCM+ selbständig und gründlich anzuwenden (Preprocessing, Solving, Postprocessing),
- ein CFD-Reaktormodell für ein unbekanntes verfahrenstechnisches Problem zu entwickeln und darauf aufbauend alternative Reaktorauslegungen zu untersuchen,
- die erzielten Ergebnisse zu analysieren und zu beurteilen, auch unter Anwendung der virtuellen Realität (VR),
- Fehler und Unsicherheiten von CFD-Modellen zu identifizieren und zu bewerten,
- ihre CFD-Ergebnisse in Form eines Abschlussberichts zu visualisieren, zu präsentieren und kritisch zu diskutieren.

Inhalt

- 1. Erhaltungssätze für Impuls, Masse und Energie
- 2. Die Finite-Volumen-Methode, Lösungsalgorithmen und Randbedingungen
- 3. Rechennetze
- 4. CFD-Modellierung von chemischen Reaktoren
- 5. Einsatz der virtuellen Realität in CFD
- 6. Grundlagen der Gestaltung einer wissenschaftlichen Arbeit

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Anmerkungen

Es Studierenden rechnen auf ihren eigenen Laptops.

Die Veranstaltung ist auf 24 Studierende begrenzt. Es werden Studierende aus dem Vertiefungsfach CVT bevorzugt.

Arbeitsaufwand

- Präsenszeit: 45 h
- Selbststudium: 45 h
- Prüfungsvorbereitung: 30 h

- · Ferziger, Perić: Numerische Strömungsmechanik; 2020; Springer
- Versteeg, Malalasekera; An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition);
 2007; Pearson

5.117 Modul: Reaktionskinetik [M-CIWVT-104283]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefungsfach I / Chemische Verfahrenstechnik Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile			
T-CIWVT-108821	Reaktionskinetik	6 LP	Müller

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die Ursachen und die unterschiedlichen elementaren Schritte von chemisch homogenen Reaktionen grundlegend erörtern. Ferner sind sie mit diesen Grundlagen befähigt, Berechnungen von chemischen Reaktionen mittels Ergebnissen aus kinetischen Versuchen durchzuführen. Anhand verschiedener Beispiele können die Studierenden Reaktionen unterschiedlicher Elementarschritte identifizieren sowie analysieren und daher die Sachverhalte chemisch homogener Reaktionen beurteilen und kritisch bewerten.

Inhalt

Grundlagen: Theorie des aktivierten Komplexes, thermodynamische Aspekte, aktive Zentren, Kettenreaktionen. Anwendungen: Photochemie, Reaktionen in Lösungen, Poly-Reaktionen, Autokatalyse, Explosionen.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 34 hSelbststudium: 16 h

Prüfungsvorbereitung: 130 h

5.118 Modul: Regelung verteilt-parametrischer Systeme [M-CIWVT-106318]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Leistungspunkte

6 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester **Dauer** 1 Semester Sprache Deutsch/ Englisch

6 LP

Level 5

Meurer

Version 1

Dtl:	a h 4 k			lta:L
PTII	cnt	jest	anc	lteile

T-CIWVT-112826 Regelung verteilt-parametrischer Systeme

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 45 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden haben ein vertieftes Verständnis von Methoden des Regelungsentwurfs für verteilt-parametrische Systeme, deren mathematische Modellierung auf partielle Differentialgleichungen führt. Sie verstehen die zugrunde liegenden mathematischen Konzepte und sind in der Lage, diese auf neue Probleme anzuwenden. Die Studierenden sind in der Lage, die system- und regelungstheoretischen Eigenschaften von verteilt-parametrischen Systemen zu analysieren und zu verifizieren. Sie verfügen über ein umfassendes Verständnis der Methoden des Regelungsentwurfs und sind in der Lage, diese Methoden selbständig auf Regelungsprobleme mit partiellen Differentialgleichungen anzuwenden.

Inhalt

Dieses Modul gibt eine Einführung in die Modellierung, Analyse, Regelung und numerische Simulation von verteiltparametrischen Systemen, die durch partielle Differentialgleichungen (PDgln.) beschrieben werden. Die Modellierung von Prozessen führt zu einer verteilt-parametrischen Beschreibung in Form von PDgln., wenn neben der zeitlichen Dynamik auch räumliche oder eigenschaftsverteilte Effekte berücksichtigt werden müssen. Beispiele umfassen u.a. Diffusions-Konvektions-Reaktionssysteme in der Verfahrenstechnik, flexible Strukturen in der Mechanik und Mechatronik, gekoppelte Multiagentensysteme in der Robotik, oder quantenmechanische sowie fluiddynamische Systeme. Das Modul behandelt die folgenden Themen:

- Einführung in Regelstrecken mit verteilten Parametern (Mathematische Modellbildung, Klassifikation, Lösungsverfahren, Grundprinzipien des Regelungs- und Beobachterentwurfs)
- · Analyse und Synthese im Frequenzbereich (Eingangs-Ausgangs-Stabilität, Ausgangsrückführung)
- Analyse und Synthese im Zustandsraum (Steuerbarkeit und Beobachtbarkeit, Stabilitätstheorie für verteilt-parametrische Systeme, Regelungsentwurf durch Zustandsrückführung, Backstepping)
- Flachheitsbasierte Methoden zur Trajektorienplanung und Folgeregelung

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: Vorlesung 30 h, Übung 15 h

Selbststudium: 60 h

Prüfungsvorbereitung: 75 h

- T. Meurer: Regelung verteilt-parametrischer Systeme, Vorlesungsskript.
- R. Curtain, H. Zwart: An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 2012.
- M. Krstic, A. Smyshlyaev: Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, 2008.
- Z. Luo, B. Guo, O. Morgül: Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag, 2012
- T. Meurer: Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs, Springer-Verlag, 2012.

5.119 Modul: Rheologie Disperser Systeme [M-CIWVT-104391]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
2 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108963	Rheologie Disperser Systeme	2 LP	Willenbacher

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage das rheologische Verhalten komplexer Fluide wie Suspensionen, Emulsionen und Schäume zu beschreiben. Sie haben den Zusammenhang zwischen Fließverhalten, Partikel- bzw. Tropfenwechselwirkung und Mikrostruktur der Fluide verstanden. Sie kennen den Zusammenhang zwischen dem Fließ- und dem verfahrenstechnischen Verhalten der komplexen Fluide und Möglichkeiten ein gewünschtes Verhalten einzustellen.

Inhalt

Grundlagen der Rheometrie, Rheologische Phänomene, Lineare Viskoelastizität

Suspensionen und Dispersionen

Grundlagen DLVO-Theorie, Fließverhalten elektrostatistisch, sterisch und elektrosterisch stabilisierte Systeme

Harte Kugeln und repulsive wechselwirkende Partikel, Scherverdickung

Rheologie und maximale Packungsdichte, Kugeln, Stäbchen, Plättchen

Partikelgrößenverteilung und Viskosität, Attraktiv wechselwirkende Partikel und aggregierte Suspensionen und Gele Emulsionen und Schäume

Herstellung von Emulsionen, Emulsionsstabilität, Tropfendeformation und –aufbruch, Fließeigenschaften verdünnte und halbverdünnte Emulsionen, konzentrierte Emulsionen und Schäume
Tenside

Tensidstrukturen, Phasendiagramme, Struktur und Rheologie.

Arbeitsaufwand

Präsenzzeit: 15 hSelbststudium: 35 h

· Prüfungsvorbereitung: 10 h

5.120 Modul: Rheologie komplexer Fluide und moderne rheologische Messmethoden [M-CIWVT-104331]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile						
T-CIWVT-108886	Rheologie komplexer Fluide und moderne rheologische Messmethoden	4 LP	Oelschlaeger, Willenbacher			

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Die Prüfungsdauer weicht im Fall einer Vertiefungsfach-Gesamtprüfung ab und beträgt ca. 15 Minuten.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können wesentliche Grundlagen zur Struktur und zur Herstellung von Dispersionen und Emulsionen erläutern. Sie können diese zur Erreichung bestimmter rheologischer Eigenschaften von komplexen Fluiden in verfahrenstechnischen Prozesse anwenden.

Die Studierenden kennen das Prinzip der Mikrorheologie und die verschiedenen Methoden, welche in Abhängigkeit vom Stoffsystem verwendet werden können. Die Studierenden sind insbesondere mit Diffusing Wave Spectroscopy und Multiple Particle Tracking Methoden vertraut. Aus rheologischen Daten der DWS können sie auf die Biegesteifigkeit semiflexibler Objekte (Mizellen, Polymere, Fasern) zurückschließen. Mit der MPT können die Studierenden rheologische Eigenschaften ortsaufgelöst auf mikroskopischer Ebene erfassen.

Die Studierenden sind mit den verschiedenen Hochfrequenz Methoden vertraut. Sie können aus den linear-viskoelastischen Eigenschaften bei hohen Frequenzen auf den Stabilisierungsmechanismus konzentrierter Dispersionen und auf Informationen über Struktur und Dynamik komplexer Fluide zurückschließen.

Inhalt

Rheologie disperser Systeme

Suspensionen und Dispersionen:

Grundlagen DLVO-Theorie, Fließverhalten elektrostatistisch, sterisch und elektrosterisch stabilisierte Systeme, harte Kugeln und repulsive wechselwirkende Partikel, Scherverdickung

Rheologie und maximale Packungsdichte, Kugeln, Stäbchen, Plättchen

Partikelgrößenverteilung und Viskosität, Attraktiv wechselwirkende Partikel und aggregierte Suspensionen und Gele

Emulsionen und Schäume:

Herstellung von Emulsionen, Emulsionsstabilität, Tropfendeformation und -aufbruch,

Fließeigenschaften verdünnter und halb-verdünnter Emulsionen, konzentrierte Emulsionen und Schäume

Tenside:

Tensidstrukturen, Phasendiagramme, Struktur und Rheologie

Mikrorheologie und Hochfrequenzrheometrie

Grundlagen und experimentelle Methoden. Aktive Mikrorheologie: Optische und magnetische Pinzetten - Atomic-force Mikroskopie. Passive Mikrorheologie: Dynamische Lichtstreuung - Diffusing Wave Spectroscopy (DWS) - Multiple Particle Tracking (MPT). Vergleich der Frequenz- und Moduli- Bereiche. Einführung in die Brownsche Bewegung und die mittlere quadratische Verschiebung von Tracer-Partikeln. Partikel Bewegung in einem rein viskosen, viskoelastichen und rein elastischem Medium. Diffusion und verallgemeinerte Stokes-Einstein Gleichungen. Anwendungsbeispiele: DWS: Tenside, Polysaccharid- (Hyaluronsäure) Lösungen. Bestimmung der Biegefestigkeit.

MPT: Polymere Verdicker - Polystyrol Dispersionen - Hyaluronsäure-Collagen Cryogele für Tissue Engineering. Untersuchung mikro-struktureller, mikro-mechanischer Eigenschaften und Heterogenitäten.

Hochfrequenzrheologie: Mechanische Methoden: Oszillatorische Scherung (PRV) und Quetschströmung (PAV) – Torsionsresonanzoszillation - Ultraschall Scherrheometer. Anwendungsbeispiele: Tensidlösungen - konzentrierte Suspensionen.

Zusammensetzung der Modulnote Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

• Präsenzzeit: 30 h • Selbststudium: 70 h

• Prüfungsvorbereitung: 20 h

5.121 Modul: Rheologie von Polymeren [M-CIWVT-104329]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-108884	Rheologie von Polymeren	4 LP	Willenbacher

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Die Prüfungsdauer weicht im Fall einer Vertiefungsfach-Gesamtprüfung ab und beträgt ca. 15 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen Merkmale und Eigenschaften von Polymermolekülen und die molekularen Ursachen für das makroskopische viskoelastische Verhalten.

Die Studierenden sind mit den wichtigsten Modellen zur Beschreibung des Fließverhaltens von Polymerschmelzen, -lösungen und -gelen vertraut. Aus rheologischen Daten können sie auf den molekularen Aufbau der entsprechenden Polymere zurückschließen.

Die Studierenden können das Verarbeitungsverhalten von Polymeren an Hand rheologischer Daten beurteilen.

Inhalt

Grundlagen der (Scher)-Rheometrie & Rheologische Phänomene, Lineare Viskoelastizität, Polymere in Natur und Technik, Was ist ein Polymer? Kettenmodelle und -statistik, verdünnte und mäßig konzentrierte Lösungen, Rouse-Modell - vom Molekül zum Modul!

Zimm-Modell - Intrinsische Viskosität, Molmasse, Molekülarchitektur, Einfluss von Polymerkonzentration und Lösemittelgüte, konzentrierte Lösungen und Schmelzen, Entanglement-Konzept, Röhrenmodelle und Reptation, Einfluss von Molmassenverteilung und Glastemperatur, Zeit-Temperatur Superposition, Gele und Netzwerke, Verdickerlösungen.

Dehnrheologie und Beschichtungsprozesse, Technische Bedeutung - Beispiele aus der industriellen Praxis.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 70 hPrüfungsvorbereitung: 20 h

5.122 Modul: Seminar [M-MATH-103276]

Verantwortung: PD Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3 LP	best./nicht best.	Jedes Semester	1 Semester	Deutsch	5	1

Pflichtbestandteile				
T-MATH-106541	Seminar Mathematik	3 LP		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines Vortrags von mindestens 45 Minuten Dauer.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sollen am Ende des Moduls

- ein abgegrenztes Problem in einem speziellen Gebiet analysiert haben,
- fachspezifische Probleme innerhalb der vorgegebenen Aufgabenstellung erörtern, mit geeigneten Medien präsentieren und verteidigen können,
- · Zusammenfassungen der wichtigsten Ergebnisse des Themas selbständig erstellt haben,
- über kommunikative, organisatorsiche und didaktische Kompetenzen bei komplexen Problemanalysen verfügen. Sie können Techniken des wissenschaftlichen Arbeitens anwenden.

Inhalt

Der konkrete Inhalt richtet sich nach den angebotenen Seminarthemen.

Zusammensetzung der Modulnote

Entfällt, da unbenotet.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 90 Stunden

Präsenzzeit: 30 Stunden Selbststudium: 60 Stunden

- Erarbeitung der fachlichen Inhalte des Vortrags
- · Didaktische Aufbereitung der Vortragsinhalte
- Konzeption desTafelbildes bzw. der Beamerpräsentation
- Übungsvortrag, eventuell Erstellung eines Handouts

5.123 Modul: Seminar Lebensmittelverarbeitung in der Praxis [M-CIWVT-105932]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
2 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-109129	Seminar Lebensmittelverarbeitung in der Praxis mit Exkursion	2 LP	Leister

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten.

Qualifikationsziele

Die Studierenden können ihr bisher erworbenes Wissen bezüglich der Herstellung und Charakterisierung von Lebensmitteln auf praxisrelevante Verfahren übertragen und diese Verfahren evaluieren. Außerdem sind die Studierenden in der Lage komplexe Fragestellungen zur Herstellung und Bewertung von Lebensmitteln aus der beruflichen Praxis in Kleingruppen zu bearbeiten und zu diskutieren und die Ergebnisse ihrer Arbeit einem Fachpublikum verständlich vorzustellen.

Inhalt

Anhand ausgewählter Herstellprozesse werden aktuelle Fragestellungen bei der industriellen Herstellung den Lebensmittelprodukten in Kleingruppen erarbeitet und im Plenum diskutiert. Begleitet wird das Seminar durch eine Exkursion zu entsprechenden lebensmittelverarbeitenden Betrieben.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 15 h

• Prüfungsvorbereitung: 15 h

5.124 Modul: Sicherheitstechnik für Prozesse und Anlagen [M-CIWVT-104352]

Verantwortung: Hon.-Prof. Dr. Jürgen Schmidt

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Umweltschutzverfahrenstechnik Vertiefungsfach I / Thermische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile				
T-CIWVT-108912	Sicherheitstechnik für Prozesse und Anlagen	4 LP	Schmidt	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Vorlesungsblocknote ist die Note der mündlichen Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, Risiken von technischen Anlagen systematisch abzuschätzen, Auswirkungen von möglichen Störfällen zu bewerten und geeignete sicherheitstechnische Gegenmaßnahmen zu definieren. Die Vorlesung ist in Themenblöcke aufgeteilt.

Themenblöcke:

- 1. Einführung in das Thema
- 2. Risikomanagement
- 3. Gefahrstoffe
- 4. Exotherme Chemische Reaktionen / Runaway
- 5. Sicherheitseinrichtungen
- 6. Rückhalteeinrichtungen
- 7. Ausbreitung von Gefahrstoffen
- 8. PLT Schutzeinrichtungen
- 9. Explosionsschutz
- 10. Elektrostatik

Inhalt

Einführung in die Absicherung von Prozessen und Anlagen zum Schutz von Mensch und Umwelt vor möglichen Gefahren von technischen Anlagen in der Chemie, Petrochemie, Pharmazie und im Bereich Öl und Gas. Durch Risikomanagement lassen sich Störfälle vermeiden und die Auswirkungen von Ereignissen begrenzen. Dazu zählen Themen wie Technische Sicherheit von Anlagen, Risikomanagement, Vermeidung von Gefahren durch Stoffe und gefährliche chemische Reaktionen, Auslegung von Schutzeinrichtungen für Notentlastungen wie Sicherheitsventile, Berstscheiben und nachgeschaltete Rückhalteeinrichtungen. Moderne prozessleittechnische Systeme, Emission und Ausbreitung von Gefahrstoffen in der Atmosphäre sowie Explosionsschutz und Brandschutz.

Anmerkungen

Die Vorlesung wird als Blockvorlesung mit Exkursion in einen Störfallbetrieb gehalten.

Arbeitsaufwand

- Präsenzzeit: 30 hSelbststudium: 30 h
- Prüfungsvorbereitung: 60 h

5.125 Modul: Simulationstechnik [M-CIWVT-107038]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Automatisierung und Systemverfahrenstechnik

Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile				
T-CIWVT-114104	Simulationstechnik - Prüfung	3 LP	Meurer	
T-CIWVT-114141	Simulationstechnik - Vorleistung	3 LP	Meurer	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Prüfungsleistung anderer Art: Schriftliche Ausarbeitung einer Programmieraufgabe zur Simulationstechnik.
- 2. Mündliche Prüfung im Umfang von ca. 45 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die grundlegenden Methoden und Werkzeuge zur Simulation von dynamischen kontinuierlichen Systemen und von Stückprozessen und beherrschen deren Anwendung. Sie sind in der Lage, numerische Fragestellungen in eine Simulationsumgebung zu überführen, geeignet zu parametrieren und die Ergebnisse im Kontext der Anwendung zu interpretieren.

Inhalt

Gegenstand des Moduls sind Methoden, Werkzeuge und Anwendungen für die Simulation von dynamischen Systemen. Dies umfasst kontinuierliche Modelle, welche z.B. in der Verfahrenstechnik, Mechatronik oder Regelungstechnik in vielfältiger Weise auftreten, und diskrete Warte-Bedien-Modelle zur Abbildung von Stückprozessen. Letztere treten z.B. in der Logistik oder Produktionstechnik auf.

Der methodische Teil befasst sich mit der stationären und dynamischen Analyse von Simulationsmodellen und der numerischen Lösung von algebraischen Gleichungssystemen und gewöhnlichen Differentialgleichungen mit Anfangs- oder Randbedingungen. Eigenschaften wie Fehlerordnung, Stabilität und Konvergenz der numerischen Verfahren werden erläutert und analysiert. Zudem werden Warte-Bedien-Systeme beschrieben und entsprechende Kenngrößen aus der Warteschlangentheorie eingeführt.

Die Beispiel für ein sowohl gleichungs- als auch blockdiagramm-orientiertes Simulationswerkzeug wird MATLAB/SIMULINK zur Simulation und dynamischen Analyse von kontinuierlichen Systemen und Stückprozessen eingeführt.

Die in den Übungen behandelten Anwendungsbeispiele werden durch die vorrangig eigenständige praktische Umsetzung ergänzt.

Zusammensetzung der Modulnote

Die Modulnote ist das LP-gewichtete Mittel der beiden Teilleistungen.

Arbeitsaufwand

Präsenszei 45 h:

- Vorlesung 30 h
- Übung 15 h

Selbststudium 135 h:

- Programmieraufgabe und schriftliche Ausarbeitung: 30 h
- Vor- und Nachbereitung der Lehrveranstaltungen: 45 h
- Prüfungsvorbereitung: 60 h

- Vorlesungsunterlagen
- Schwarz, H.R.; Köckler, N.: Numerische Mathematik, Vieweg+Teubner Verlag Wiesbaden, 2011
 Hoffmann, J.: MATLAB und SIMULINK. Beispielorientierte Einführung in die Simulation dynamischer Systeme. Addison-Wesley 1998

5.126 Modul: Single-Cell Technologies [M-CIWVT-106564]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile				
T-CIWVT-113231	Single-Cell Technologies	4 LP	Grünberger	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einem Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Upon completion of the course, the students are able to:

- Know the fields and interdisciplinary nature of single-cell technologies
- Know basic methods in the field of single-cell technologies
- Are able to evaluate single-cell technologie
- · Are able to choose single-cell platforms for specific biological questions
- · Are aware of the complexity of the development of single-cell technologies

Inhalt

Während Zellpopulationen in der Vergangenheit als sich homogen verhaltende Individuen betrachtet wurden, zeigen neue Forschungsergebnisse, dass es in allen biologischer Systeme Heterogenität von Zelle zu Zelle gibt. Während die meisten Messungen auf Durchschnittswerten basieren, können einzelne Zellen dramatische Unterschiede in ihren Eigenschaften wie Wachstum, Teilung und Stoffwechselaktivität aufweisen. Einzelzelltechnologien haben unsere Fähigkeit, in die das Verhalten einzelner Zellen einzutauchen, revolutioniert. Durch die Analyse einzelner Zellen liefern diese hochmodernen Techniken Einblicke in die zelluläre Heterogenität seltene Zellpopulationen und dynamische Prozesse. Die Einzelzelltechnologien reichen von der Einzelzellmikroskopie über die Einzelzell-Omics bis hin zur Einzelzellkultivierung. Sie alle können eingesetzt werden, um verborgene Komplexitätsschichten einer Vielzahl von Zelltypen aufzudecken. Diese Technologien zeigen ein transformatives, vielleicht sogar revolutionierendes Potenzial in vielen Bereichen der Grundlagen- und angewandten Forschung verschiedener wissenschaftlicher Disziplinen. Dies reicht von Mikrobiologie, biomedizinischer Forschung, Arzneimittelforschung, Biotechnologie und Bioverfahrenstechnik.

Ziel der Vorlesung "Einzelzelltechnologien" ist es, eine Einführung und einen Überblick in die Einzelzelltechnologien zu geben und den Studierenden ein umfassendes Verständnis der Grundprinzipien und praktischen Anwendungen der Einzelzellforschung zu vermitteln. Nach einer kurzen Einführung in das Fachgebiet beschäftigen sich die Vorlesung mit verschiedenen Einzelzellentechnologien. Der Schwerpunkt liegt auf dem aufstrebenden Gebiet der mikrofluidischen Einzelzellkultivierungsmethoden und deren Anwendung. Anhand aktueller Beispiele aus Wissenschaft und Forschung werden die charakteristischen Merkmale und Funktionsweisen ausgewählter Systeme erläutert. Einsatzmöglichkeiten in der Biotechnologie und Mikrobiologie werden diskutiert. Der letzte Teil der Vorlesung bietet einen Einblick in die Analyse von Einzelzelldaten und zukünftige Herausforderungen auf diesem Gebiet. Die interdisziplinäre und anwendungsorientierte Vorlesung richtet sich an technisch interessierte Studierende der Molekularen Biotechnologie, Mikrobiologie, Biochemie, Bioverfahrenstechnik, Chemieingenieurwesen sowie alle interessierten Studierenden der Lebenswissenschaften, Chemie und Physik.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- · Präsenzzeit: Vorlesung und Übung 30 h
- Selbststudium: Vor- und Nachbereitung der Lehrveranstaltungen: 50 h
- Prüfungsvorbereitung: 40 h

Literatur

No specific textbook is recommended.

5.127 Modul: Sol-Gel-Prozesse [M-CIWVT-104489]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108822	Sol-Gel-Prozesse	4 LP	Müller

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind befähigt das komplette Verfahren, ausgehend von der chemischen Sol-Bildung (Sol = Dispersionskolloid) bis hin zum fertigen Produkt, wie etwa einer Keramik, zu beschreiben und zu analysieren. Sie sind befähigt die einzelnen Schritte bis dorthin kritisch zu beurteilen und zu bewerten.

Inhalt

Herstellung von funktionalen Materialien durch Sol-Gel-Prozesse; Sol-Bildung: Hydrolyse und Kondensation; Vernetzung, Gelierung und Alterung; Deformation und Fließen von Gelen; Trocknung und Rissbildung; Struktur von Aero- und Xerogelen; Oberflächenchemie und Modifikation; Sinterung; Anwendungen: Pulver, Keramiken, Gläser, Filme, Membranen.

Anmerkungen

Zu diesem Modul wird ein Praktikum angeboten. Wird das Praktikum belegt, ist das Modul "Sol-Gel-Prozesse mit Praktikum" mit einem Umfang von 6 LP zu wählen.

Arbeitsaufwand

Präsenzzeit: 22,5 hSelbststudium: 16 h

· Prüfungsvorbereitung: 80 h

5.128 Modul: Sol-Gel-Prozesse mit Praktikum [M-CIWVT-104284]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Verfahrenstechnik

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1	

Pflichtbestandteile				
T-CIWVT-108822	Sol-Gel-Prozesse	4 LP	Müller	
T-CIWVT-108823	Sol-Gel-Prozesse Praktikum	2 LP	Müller	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- 1. Mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.
- 2. Praktikum: Unbenotete Studienleistung nach § 4 Abs. 3 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind befähigt das komplette Verfahren, ausgehend von der chemischen Sol-Bildung (Sol = Dispersionskolloid) bis hin zum fertigen Produkt, wie etwa einer Keramik, zu beschreiben und zu analysieren. Sie sind befähigt die einzelnen Schritte bis dorthin kritisch zu beurteilen und zu bewerten.

Inhalt

Herstellung von funktionalen Materialien durch Sol-Gel-Prozesse; Sol-Bildung: Hydrolyse und Kondensation; Vernetzung, Gelierung und Alterung; Deformation und Fließen von Gelen; Trocknung und Rissbildung; Struktur von Aero- und Xerogelen; Oberflächenchemie und Modifikation; Sinterung; Anwendungen: Pulver, Keramiken, Gläser, Filme, Membranen.

Anmerkungen

Das Modul kann in manchen Vertiefungsfächern auch ohne Praktikum gewählt werden, Umfang 4 LP.

Arbeitsaufwand

· Präsenzzeit: 22,5 h

Praktikum: 11,5 h, 4 Versuche

· Selbststudium: 16 h

Prüfungsvorbereitung: 130 h

5.129 Modul: Stabilität disperser Systeme [M-CIWVT-104330]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Angewandte Rheologie

Vertiefungsfach I / Entrepreneurship in der Verfahrenstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108885	Stabilität disperser Systeme	4 LP	Willenbacher

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Die Prüfungsdauer weicht im Fall einer Vertiefungsfach-Gesamtprüfung ab und beträgt ca. 15 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die Phänomene, die zur der De-Stabilisierung kolloidaler Systeme führen und können diese Vorgänge quantitativ beschreiben. Sie kennen die wichtigsten Mechanismen zur Stabilisierung von Dispersionen, Emulsionen und Schäumen und können Produkteigenschaften entsprechend gestalten.

Inhalt

Kolloidale Wechselwirkungen, DLVO-Theorie, Polymeradsorption und sterische Wechselwirkungen, sog. Verarmungs-(depletion) Wechselwirkung.

Dispersionen: elektrostatische und sterische Stabilisierung, Flockung und Koagulation, schnelle Koagulation (Smoluchowski-Gleichung), langsame Koagulation, strömungsinduzierte Koagulation

Emulsionen: Herstellung von Emulsionen, mechanische Beanspruchung, Stabilisierung durch Tenside, Thermodynamik von Oberflächen, Gibbs Adsorptionsgleichung, Grenz- und Oberflächenspannung/ Benetzung, Aufrahmung und Sedimentation, Koaleszenz, Ostwald-Reifung

Stabilisierung durch Polymere, Proteine, feste Partikel (Pickering Emulsionen)

Schäume: Struktur- und Topologie, Koaleszenz, Disproportionierung, Drainage, Filmstabilität und -kollaps, Entschäumen

Messmethoden: optische Methoden: statische und dynamische Lichtstreuung, Trübung, DWS

Zentrifugation, Elektrokinetik, dielektrische Spektroskopie, Leitfähigkeit, Ultraschall, Rheologie, Kalorimetrie, statische und dynamische Schäumtests

Praxisbeispiele

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 70 h

· Prüfungsvorbereitung: 20 h

5.130 Modul: Statistische Thermodynamik [M-CIWVT-103059]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

> Vertiefungsfach I / Thermische Verfahrenstechnik Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte

Notenskala 6 LP Zehntelnoten

Turnus Jedes Sommersemester

Dauer Semester **Sprache** Deutsch/ Englisch

Level 4

Version 3

Pflichtbestandteile			
T-CIWVT-106098	Statistische Thermodynamik	6 LP	Enders

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Thermodynamik III

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-CIWVT-103058 - Thermodynamik III muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden verstehen die Grundprinzipien der statistischen Mechanik und erkennen Vor- und Nachteile bei der Anwendung in der Verfahrenstechnik.

Inhalt

Boltzmann-Methode, Gibbs-Methode, Reale Gase, Zustandsgleichungen, Polymere

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Bei Bedarf wird die Lehrveranstaltung in englischer Sprache angeboten.

Arbeitsaufwand

Präsenzzeit: 60 h Selbststudium: 60 h

Prüfungsvorbereitung: 60 h

- J. Blahous, Statistische Thermodynamik, Hirzel Verlag Stuttgart, 2007.
- · H.T. Davis, Statistical Mechanics of Phases, Interfaces, and Thin Films, Wiley-VCH, New York, 1996.
- G.G, Gray, K.E. Gubbins, Theory of Molecular Fluids Fundamentals. Clarendon, Press Oxford, 1984.
- J.P. Hansen, I.R. McDonald, Theory of Simple Liquids with Application to Soft Matter. Fourth Edition, Elsevier. Amsterdam, 2006.
- · G.H. Findenegg, T. Hellweg, Statistische Thermodynamik, 2. Auflage,
- · Springer Verlag, 2015.
- J.O. Hirschfelder, C.F. Curtis, R.B. Bird, Molecular Theory of Gases and Liquids. John-Wiley & Sons, New York, 1954.

5.131 Modul: Stoffübertragung II [M-CIWVT-104369]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-108935	Stoffübertragung II	6 LP	Dietrich

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die Stofftransportgleichung herleiten und unter Berücksichtigung diverser Vereinfachungen eine analytische Lösung zur Beschreibung der Diffusion in ruhenden Fluidschichten ableiten. Sie sind zudem in der Lage, für verschiedene Systemarten Diffusionskoeffizienten zu ermitteln. Die Studierenden können für ausgewählte fortgeschrittene und praxisrelevante Stoffübertragungsfälle die grundlegenden Berechnungsvorschriften selbständig formulieren und analytisch oder numerisch lösen.

Inhalt

Fortgeschrittene Themen der Stoffübertragung: Numerische und analytische Methoden zur Lösung der Stofftransportgleichung; Abschätzung von Diffusionskoeffizienten; vertieftes Verständnis von praxisrelevanten Stoffübertragungsfällen: Membrandiffusion, Gemischverdunstung, Physikalische Absorption und Chemische Absorption, Stofftransport in komplexen Netzwerkstrukturen (Vorlesungsinhalte werden begleitet durch praktische Veranstaltungen in Form von numerische Simulationsstudien in OpenFoam und ausgewählten praktischen Versuchen im Labor mit Ausarbeitung im Team).

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 75 hPrüfungsvorbereitung: 60 h

5.132 Modul: Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen [M-CIWVT-104294]

Verantwortung: Prof. Dr.-Ing. Horst Büchner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108834	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen	4 LP	Büchner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Der Hörer versteht die physikalischen Mechanismen, die zum ungewollten Auftreten periodischer Verbrennungsinstabilitäten in technischen Feuerungssysteme führen, und kann diese zielgerichtet und effizient beseitigen.

Inhalt

Die Vorlesung umfasst die theoretischen Grundlagen für die Entstehung selbsterregter Strömungs- und Verbrennungsinstabilitäten in technischen Verbrennungssystemen. Hierzu wird die messtechnische Erfassung wie auch die Bedeutung dynamischer, d.h. zeitabhängiger Flammeneigenschaften besprochen und Flammenfrequenzgänge definiert und physikalisch interpretiert. Schließlich wird beispielhaft das Resonanzverhalten einer Modellbrennkammer modelliert und eine vollständige Stabilitätsanalyse eines Vormisch-Verbrennungssystems durchgeführt.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 hSelbststudium: 30 h

Prüfungsvorbereitung: 60 h

5.133 Modul: Students Innovation Lab [M-CIWVT-106017]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** Vertiefungsfach I / Entrepreneurship in der Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 LP	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch/Englisch	5	5

Pflichtbestandteile						
T-WIWI-102864	Entrepreneurship	3 LP	Terzidis			
T-WIWI-110166	SIL Entrepreneurship Projekt	3 LP	Terzidis			
Innovationsprojekt						
T-CIWVT-112201	Innovationsprojekt poröse Keramik aus dem 3D Drucker	6 LP	Willenbacher			
T-CIWVT-113226	Innovationsprojekt Innovative Elektronik aus druckbaren, leitfähigen Materialien	6 LP	Willenbacher			

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus drei Teilleistungen:

- schriftliche Prüfung über die Inhalte der Vorlesung Entrepreneurship mit einer Dauer von 60 Minuten.
- Prüfungsleistung anderer Art: SIL Entrepreneurship Projekt: Bewertet werden die Seminarrarbeit und deren Präsentation, sowie der aktiven Beteiligung an der Seminarveranstaltung.
- · Prüfungsleistung anderer Art: Innovationsprojekt. Die Details sind den zur Wahl stehenden Teilleistungen zu entnehmen.

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden werden grundsätzlich an die Thematik Entrepreneurship herangeführt. Nach erfolgreichem Besuch der Veranstaltung sollen sie einen Überblick über die Teilbereiche des Entrepreneurships haben und in der Lage sein, Grundkonzepte des Entrepreneurships zu verstehen.

Auf der Basis bekannter ingenieurwissenschaftlicher Erkenntnisse sind die Studierenden in der Lage eigenständig technische Prototypen für die Markteinführung einer Innovation zu entwickeln. Sie können einen Projektplan von der Idee bis zur Umsetzung zu erarbeiten. Sie übertragen das verfahrenstechnische Wissen auf nutzerüberzeugende Produktinnovationen. Die Studierenden können wichtige wirtschaftliche Aspekte analysieren und beurteilen. Sie sind in der Lage Konzepte für die Rohstoffbeschaffung und die Skalierung der Produkt-Herstellung in den jeweils relevanten industriellen Maßstab zu erstellen. Sie können Markt- und Kostenanalysen sowie Marketing- und Vertriebsstrategien erarbeiten. Die Studierenden sind in der Lage ihr Produkt in Form eines Pitch-Deck vor potentiellen Kunden klar und überzeugend präsentieren.

Inhalt

Vorlesung Entrepreneurship:

Die Vorlesung Entrepreneurship führt in die Grundkonzepte von Entrepreneurship ein. Dabei werden die einzelnen Stufen der dynamischen Unternehmensentwicklung behandelt. Schwerpunkte bilden hierbei die Einführung in Methoden zur Generierung innovativer Geschäftsideen, zur Übersetzung von Patenten in Geschäftskonzepte sowie allgemeine Grundlagen der Geschäftsplanung. Weitere Inhalte sind die Konzeption und Nutzung serviceorientierter Informationssysteme für Gründer, Technologiemanagement und Business Model Generation sowie Lean-Startup-Methoden für die Umsetzung von Geschäftsideen auf dem Wege kontrollierter Experimente im Markt.

Students Innovation Lab: Es kann eines aus mehreren Projekten gewählt werden:

· Innovationsprojekt Poröse Keramik aus dem 3D Drucker

Poröse Keramiken können vielfältig eingesetzt werden, beispielsweise als:

- Heißgasfilter für industrielle Prozesse
- Trinkwasserfilter zur Entfernung von Verunreinigungen wie z.B. Schwermetalle oder Viren
- · Katalysatorträger für den Abbau von Schadstoffen, die Umweltsanierung oder die Wasserstoffproduktion
- Leichtbau-Werkstoffe mit hoher spezifischer Festigkeit und Temperaturbeständigkeit
- biomimetische Materialien, z. B. als Knochenersatz

In diesem Innovationsprojekt entwickelt Ihr einen Prototyp bestehend aus einer innovativen porösen Keramik und dokumentiert seine technische Marktreife. Ihr entwickelt ein Konzept für die Herstellung im industriellen Maßstab und plant die Vermarktung. Hierzu führt ihr eine Marktanalyse durch und entwickelt ein Geschäftsmodell inkl. Preiskalkulation, Kosten- und Finanzplanung sowie Marketing- und Vertriebsstrategie.

· Innovationsprojekt Innovative Elektronik aus druckbaren, leitfähigen Materialien

Druckbare, leitfähige Materialien können auf unterschiedliche Weise zu elektronischen Bauteilen verarbeitet werden, z.B.:

- mittels Siebdruckverfahren:
 - Massenproduktion von elektrischen Schaltungen
 - Kontaktierung von Solarzellen
- o im 3D-Druck:
 - Anwendungen im Smart- und IoT-Bereich
 - Rapid Prototyping
 - Integration komplexer elektrischer Strukturen im Bauteil ohne zusätzliche Prozessschritte
- In diesem Innovationsprojekt entwickelt Ihr einen Prototyp bestehend aus einem druckbaren, leitfähgen Material und dokumentiert seine technische Marktreife. Ihr entwickelt ein Konzept für die Herstellung im industriellen Maßstab und plant die Vermarktung. Hierzu führt ihr eine Marktanalyse durch und entwickelt ein Geschäftsmodell inkl. Preiskalkulation, Kosten- und Finanzplanung sowie Marketing- und Vertriebsstrategie.

Zusammensetzung der Modulnote

Modulnote ist das LP-gewichtete Mittel der drei Teilleistungen.

Arbeitsaufwand

Teil Entrepreneurship und SIL-Projekt

Präsenszeit: 30 hSelbststudium: 80 hPrüfungsvorbereitung: 30 h

Vorbereitung der Präsentationen: 40 h

Teil Innovationsprojekt

Präsenzzeit: 100 hSelbststudium: 40 h

Prüfungsvorbereitung (Bericht und Vortrag): 40 h

Lehr- und Lernformen

Die beiden Teilleistungen SIL Entrepreneurship Projekt und Innovationsprojekt kann nur gemeinsam im selben Semester durchgeführt werden.

- Füglistaller, Urs, Müller, Christoph und Volery, Thierry (2008): Entrepreneurship.
- · Ries, Eric (2011): The Lean Startup.
- Osterwalder, Alexander (2010): Business Model Generation.

5.134 Modul: Thermische Verfahrenstechnik II [M-CIWVT-107039]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (CIW)
Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-114107	Thermische Verfahrenstechnik II	6 LP	Zeiner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 180 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, selbstständig Verfahren zur Trennung von Stoffgemischen zu evaluieren und diese zu modellieren. Ferne können sie diese Grundoperationen für spezifische Trennungen optimieren.

Inhalt

Die Vorlesung behandelt die Erweiterung der thermischen Grundoperation. Hierbei werden Trocknung, Membranverfahren und Chromatographie als Trennmethode neu eingeführt. Zudem wird die Rektifikation realer Systeme und die Mehrstoffrektifikation betrachtet. Darüber hinaus wird die Kristallisation vertieft. Ein weiterer Fokus liegt auf der Prozess-Intensivierung und -Synthese, um Prozesse effizienter und ressourcenschonender zu gestalten. Abschließend werden Möglichkeiten der Prozesssimulation vorgestellt.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 90 h

• Prüfungsvorbereitung: 45 h

5.135 Modul: Thermische Verfahrenstechnik III [M-CIWVT-107040]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik Vertiefungsfach I / Modellierung und Simulation

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	5	1

Pflichtbestandteile			
T-CIWVT-114108	Thermische Verfahrenstechnik III	6 LP	Zeiner

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Die Studierenden führen selbständig eine Simulationsprojekt eines thermischen Trennprozesses in einem kommerziellen Prozesssimulator durch.

Voraussetzungen

Die Inhalte des Moduls Thermische Verfahrenstechnik II werden voraussgesetzt.

Qualifikationsziele

Kenntnisse der Prozessynthese von thermischen Trennprozessen, Erlernen der Grundlagen zum Aufbau stationärer und dynamischer Prozessfließbilder, Methoden zur Berechnung thermodynamischer Größen und Transportgrößen, Einsatz der Prozesssimulation zur Analyse und Optimierung von komplexen Prozessen anwenden, Fähigkeit zum Aufbau von Fließbilder und deren Initialisierung.

Inhalt

Prozessynalyse, Stationäre und Dynamische Simulationen, Flowsheet-Simulationen, Algorithmen zur Lösung stationärer und dynamischer Fließbilder, Designspezifikationen, Verbesserung Konvergenzverhalten, Ergebnisinterpretationen, Nutzung gängiger Flowsheetsimulatoren.

Zusammensetzung der Modulnote

Modulnote ist die Note der Prüfungsleistung anderer Art.

Arbeitsaufwand

- Präsenszeit: 60 h (15 x 4h Vorlesung mit integrierter Übung)
- · Selbststudium: 60 h
- · Prüfung 60 h

Empfehlungen

Modul Thermodynamik III

5.136 Modul: Thermodynamik III [M-CIWVT-103058]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Erweiterte Grundlagen (CIW)
Technisches Ergänzungsfach

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106033	Thermodynamik III	6 LP	Enders

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind vertraut mit den grundlegenden Prinzipien zur Beschreibung von komplexen Mischphasen und von Gleichgewichten einschließlich Gleichgewichten mit chemischen Reaktionen. Sie sind in der Lage, geeignete Stoffmodelle auszuwählen und die Zustandsgrößen realer Mehrstoffsysteme zu berechnen.

Inhalt

Phasen- und Reakationsgleichgewichte realter Systeme, Zustandsgleichungen für reale Mischungen, Aktivitätskoeffizientenmodelle, Polymerlösungen, Proteinlösungen, Elektrolytlösungen.

Zusammensetzung der Modulnote

Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 60 hSelbststudium: 90 h

• Prüfungsvorbereitung. 30 h

Empfehlungen

Thermodynamik I und II

- 1. Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik, Band 2, 15. Auflage, Springer Verlag, 2010.
- 2. Sandler, S. I.: Chemical, Biochemical and Engineering Thermodynamics, J. Wiley & Sons, 2008.
- Gmehling, J, Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulations, Wiley-VCG Verlag, 2012

5.137 Modul: Trocknungstechnik - dünne Schichten und poröse Stoffe [M-CIWVT-104370]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik Vertiefungsfach I / Angewandte Rheologie Vertiefungsfach I / Thermische Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108936	Trocknungstechnik - dünne Schichten und poröse Stoffe	6 LP	Schabel

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO 2016.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage Anforderungen an ein geeignetes Trocknungsverfahren zu identifizieren. Sie haben einen Überblick über den Stand der Wissenschaft und Technik und sind in der Lage ein solches Verfahren auszulegen, zu bewerten und auszuwählen.

Das Qualifikationsziel ist es eine methodische Vorgehensweise zu erlernen, um die grundlegenden Erkenntnisse auf neue Prozesse und Apparate zu übertragen.

Inhalt

Einführung und industrielle Anwendungen zur Trocknungstechnik; Trocknungsverfahren und Modellbildung; Modellierung der Wärme- Stoffübertragung bei der Trocknung; Bestimmung von Materialeigenschaften, Feuchteleitung, Sorption, Diffusion; Trocknungsverlaufskurve, Trocknungsabschnitte; Anwendung der Grundlagen auf die Trocknung dünner Schichten und poröser Stoffe; Prinzipien der Sprüh-, Wirbelschicht-, Mikrowellen-, Infrarot- und Gefriertrocknung.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

- Präsenzzeit: 45 h
- · Selbststudium: 90 h
- Prüfungsvorbereitung: 45 h

5.138 Modul: Vakuumtechnik [M-CIWVT-104478]

Verantwortung: Dr.-Ing. Thomas Giegerich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Technische Thermodynamik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-109154	Vakuumtechnik	6 LP	Giegerich

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca.20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können grundlegende physikalische Zusammenhänge in der Vakuumwissenschaft erläutern. Darauf aufbauend können Sie in komplexes Vakuumsystem richtig und spezifikationsgerecht auslegen.

Inhalt

Grundlegende Begriffe; Vakuumpumpen; Praktische Vakuumlimits; Ausgasung und deren Minimierung; Sauberkeitsanforderungen; Vakuuminstrumente, Totaldruckmessung; Restgasanalyse; Lecksuche; Vakuumströmung; Auslegung von Vakuumsystemen; Technische Spezifikationen, Qualität; Beispiele großer Vakuumsysteme; Industrielle Anwendungen in der Verfahrenstechnik.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 60 h

· Selbststudium: 80 h

· Prüfungsvorbereitung: 40 h

Lehr- und Lernformen

22033 - Übung zu Vakuumtechnik

22034 - Vakuumtechnik

Literatur

K. Jousten (Ed.) - Wutz Handbuch Vakuumtechnik, 11. Auflage, Springer, 2013.

5.139 Modul: Verarbeitung nanoskaliger Partikel [M-CIWVT-103073]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-106107	Verarbeitung nanoskaliger Partikel	6 LP	Nirschl

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Fähigkeit zur Entwicklung eines Verarbeitungsprozesses für die Herstellung und Verarbeitung von nanoskaligen Partikeln

Inhalt

Ideenfindung für technische Prozesse; Toxizität, Messtechnische Methoden, Grenzflächeneffekte, Partikelsynthese, Verarbeitungsverfahren: Zerkleinern, Separieren, selektive Separation, Klassierung, Mischen, Granulieren; Apparatetechnische Grundlagen, Produktformulierung, Grundlagen der Simulation partikulärer Prozesse (SolidSim), Diskrete Simulationsmethoden.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 60 h Selbststudium: 60 h

Prüfungsvorbereitung: 60 h

Literatur

Skriptum zur Vorlesung

5.140 Modul: Verbrennung und Umwelt [M-CIWVT-104295]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Umweltschutzverfahrenstechnik

Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108835	Verbrennung und Umwelt	4 LP	Trimis

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden sind in der Lage zu beschreiben und zu erklären, warum es wichtig ist, die Umwelt zu schützen.
- Die Studierenden sind in der Lage, die wichtigsten Verbrennungsschadstoffe zu benennen und deren Auswirkungen auf die Umwelt zu beschreiben.
- Die Studierenden verstehen die physiko-chemischen Mechanismen der Bildung verschiedener Schadstoffe bei der Verbrennung.
- Die Studierenden sind in der Lage, primäre Maßnahmen zur Emissionsreduzierung zu benennen und zu beschreiben.
- Die Studierenden verstehen die Grenzen von Primärmaßnahmen und sind in der Lage, Sekundärmaßnahmen zur Emissionsminderung zu benennen und zu beschreiben.
- Die Studenten verstehen und k\u00f6nnen die Unterschiede der Emissionen aus der Verbrennung von Motoren und Gasturbinen beurteilen.

Inhalt

- Bedeutung des Umweltschutzes.
- Schadstoffe aus der Verbrennung und ihre Wirkung.
- · Mechanismen der Schadstoffbildung.
- Feuerungsbezogene Maßnahmen (Primärmaßnahmen) zur Emissionsminderung.
- · Rauchgasreinigung: Sekundärmaßnahmen zur Emissionsminderung.
- Emissionen bei motorischer Verbrennung und Verbrennung in Gasturbinen.

Arbeitsaufwand

Präsenszeit: 30 h Selbststudium: 60 h

Prüfungsvorbereitung: 30 h

5.141 Modul: Verbrennungstechnisches Praktikum [M-CIWVT-104321]

Verantwortung: Dr.-Ing. Stefan Raphael Harth

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte

4 LP

Notenskala Zehntelnoten Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch Level 4 Version 1

Pflichtbestandteile			
T-CIWVT-108873	Verbrennungstechnisches Praktikum	4 LP	Harth

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO über die Inhalte/ Versuche des Praktikums.

Modulnote ist die Note der mündlichen Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können verbrennungstechnische Versuchsergebnisse auswerten und die Messmethoden kritisch beurteilen.

Inhalt

Es werden Experimente zur Ermittlung der laminaren Flammengeschwindigkeit und des Stabilitätsbereiches von Brennersystemen, sowie auch zur Charakterisierung des Verbrennungsverlaufs durchgeführt. Bei der angewandten Messtechnik handelt es sich sowohl um konventionelle (Thermoelement, Abgassonden) als auch um optische Messtechnik.

Anmerkungen

Bei Bedarf wird die Veranstaltung auf Englisch durchgeführt.

Termine der Praktika werden in Absprache festgelegt. Anmeldungen bis spätestens 15. Mai per email an: stefan.harth@kit.edu

Arbeitsaufwand

- Präsenzzeit: 30 h (3-4 Experimente: Anzahl wird abhängig von der Komplexität der verwendeten Prüfstände festgelegt)
- · Selbststudium, Erstellung der Versuchsprotokolle: 50 h
- Prüfungsvorbereitung: 40 h

Empfehlungen

Die Teilnahme an den Versuchen ist erforderlich, da Versuchsaufbau, -durchführung und - auswertung Gegenstand der mündlichen Prüfung sind.

5.142 Modul: Verfahren und Prozessketten für nachwachsende Rohstoffe [M-CIWVT-104422]

Verantwortung: Prof. Dr. Nicolaus Dahmen

Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-108997	Verfahren und Prozessketten für nachwachsende Rohstoffe	6 LP	Dahmen, Sauer

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Gesamtprüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage,

- den technischen Hintergrund zu wichtigen Bestandteilen von Prozessketten zur Nutzung nachwachsender Rohstoffe zu verstehen und zu bewerten,
- die Fähigkeit für die Entwicklung von Prozessketten von der Pflanzenproduktion über die Umwandlungsverfahren bis zur Produktgestaltung aufzubauen,
- das gelernte Wissen zur Entwicklung geschlossener Prozessketten zur nachhaltigen Herstellung von Produkten (z.B. Plattform-chemikalien, Materialien) aus nachwachsenden Rohstoffen anzuwenden.

Inhalt

Die Lehrveranstaltung vermittelt folgende Inhalte:

- Einführung zur Herstellung einer gemeinsamen Wissensbasis, u.a. Vorstellung der heute wichtigsten Nutzungspfade für Biomasse, Biomassepotenziale, zukünftige Nutzungsszenarien,
- wesentliche technische Grundlagen der Prozesse zur Verarbeitung von Biomasse. Der Fokus liegt dabei auf der Verwendung von Lignozellulose-Biomasse. Verfahren zur Vorbehandlung, zum Aufschluss, Abbau und zur Umwandlung der jeweiligen Fraktionen werden erlernt,
- Systematik und Analyse von Prozessketten mit nachwachsenden Rohstoffen am Beispiel bereits etablierter Prozesse wie in Papier- oder Zuckermühlen. Erweiterung der Konzepte auf mögliche, zukünftige Bioraffinerien,
- In der Übung wird parallel zur Vorlesung das gelernte in die beispielhafte Entwicklung einer Bioraffinerie umgesetzt. Das Ergebnis wird in Form eines Seminarvortrags präsentiert.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung

Arbeitsaufwand

Präsenszeit: 45 h Selbststudium: 45 h

Vorbereitung der Übungen: 30

Vorbereitung der Übungspräsentation: 30

Prüfungsvorbereitung: 30 h

5.143 Modul: Verfahrensentwicklung in der Chemischen Industrie [M-CIWVT-104389]

Verantwortung: Hon.-Prof. Dr. Jürgen Dahlhaus

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Zusatzleistungen

Leistungspunkte
2 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108961	Verfahrensentwicklung in der Chemischen Industrie	2 LP	Dahlhaus

Erfolgskontrolle(n)

Erfolgskontrolle ist ein schriftlicher Test, der zum Ende der Veranstaltung durchgeführt wird.

Modulnote ist die Note des schriftlichen Tests.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden haben einen praxisnahen Einblick in die Erfordernisse und Vorgehensweisen bei der Prozessgestaltung in der Chemischen Industrie gewonnen. Sie sind in der Lage, einfache Zusammenhänge und Fragestellungen mit industriellem Kontext zu verstehen und kompetent zu beurteilen und dabei ihr im Studium erlerntes Wissen an praktischen Beispielen zu spiegeln.

Inhalt

In der Vorlesung werden anhand von Vorträgen, praktischen Beispielen, Übungen und Betriebsbesichtigungen die Erfordernisse an und die Vorgehensweise bei der Verfahrensentwicklung in der Chemischen Industrie behandelt.

Anmerkungen

Täglicher Bustransport von KIT-CS nach Ludwigshafen und zurück

Arbeitsaufwand

Präsenzzeit: ca. 30 h (3 x 10 h)

Empfehlungen

Das Modul wird Studierenden empfohlen, die bereits weit im Studium fortgeschritten sind.

Literatur

Skript

5.144 Modul: Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen [M-CIWVT-106698]

Verantwortung: Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte

Notenskala Zehntelnoten

TurnusJedes Wintersemester

Dauer 1 Semester

Sprache Deutsch Level 4 Version 1

Pflichtbestandteile			
T-CIWVT-113476	Verfahrenstechnik zur Herstellung von Lebensmitteln aus	4 LP	van der Schaaf
	pflanzlichen Rohstoffen		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können konventionelle Verfahren zur Herstellung unterschiedlicher, auch komplex aufgebauter Lebensmittel aus pflanzlichen Rohstoffen erläutern. Sie kennen die relevanten Grundoperationen und deren konventionellen Umsetzungskonzepte sowie innovative Ansätze. Die Prozessschritte können die Studierenden prinzipiell auslegen. Sie identifizieren Zusammenhänge zwischen Prozessparametern und qualitätsbestimmenden Eigenschaften von Lebensmitteln. Sie können Prozesswissen zwischen einzelnen Produktgruppen übertragen. Sie kennen wesentliche Aspekte, die zur energetischen Beurteilung der einzelnen Prozessschritte und –ketten herangezogen werden müssen, und Ansätze zur Steigerung der Energie- und Ressourceneffizienz.

Die Studierenden können Prinzipien der Produktgestaltung für die Herstellung von Lebensmitteln anwenden. Das beinhaltet das Identifizieren der Zusammenhänge zwischen Prozessparametern und der Struktur eines Lebensmittels (Prozessfunktion) sowie zwischen der Struktur und den konsumentenrelevanten Eigenschaften (Eigenschaftsfunktion). Darauf aufbauend sind sie in der Lage, Problemstellungen aus dem Bereich der Lebensmittelverfahrenstechnik mit wissenschaftlichen Methoden zu analysieren und zu lösen.

Die Studierenden können damit ein Verfahren im Hinblick auf die Eignung für Verarbeitungsschritte im Lebensmittelbereich beurteilen und dabei Aspekte wie Nachhaltigkeit, Energieeffizienz, Lebensmittelsicherheit und zu erwartende Produktqualität in die Betrachtungen mit einbeziehen.

Inhalt

Grundlagen zur Auslegung, energetische Aspekte und rohstoffbezogene Spezifika von Grundoperationen, sowie innovativer Verfahrenstansätze für die Herstellung ausgewählter Lebensmittel pflanzlicher Herkunft.

Arbeitsaufwand

Präsenszeit: 30 h Selbststudium: 60 h Prüfungsvorbereitung: 30 h

- H.P. Schuchmann und H. Schuchmann: Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte; Wiley VCH, 2005; ISBN: 978-3-527-66054-4 (auch als ebook)
- M. Loncin: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie; Aarau Verlag, 1969, ISBN 978-3794107209
- · Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)

5.145 Modul: Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen [M-CIWVT-106699]

Verantwortung: PD Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Vertiefungsfach I / Produktionsprozesse zur Stofflichen Nutzung Nachwachsender Rohstoffe

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4 LP	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	1

Pflichtbestandteile			
T-CIWVT-113477	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen	4 LP	Gaukel

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung des Vorlesungsinhalts im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können konventionelle Verfahren zur Herstellung unterschiedlicher, auch komplex aufgebauter Lebensmittel aus tierischen Rohstoffen erläutern. Sie kennen die relevanten Grundoperationen und deren konventionellen Umsetzungskonzepte sowie innovative Ansätze. Die Prozessschritte können die Studierenden prinzipiell auslegen. Sie identifizieren Zusammenhänge zwischen Prozessparametern und qualitätsbestimmenden Eigenschaften von Lebensmitteln. Sie können Prozesswissen zwischen einzelnen Produktgruppen übertragen. Sie kennen wesentliche Aspekte, die zur energetischen Beurteilung der einzelnen Prozessschritte und –ketten herangezogen werden müssen, und Ansätze zur Steigerung der Energie- und Ressourceneffizienz.

Die Studierenden können Prinzipien der Produktgestaltung für die Herstellung von Lebensmitteln anwenden. Das beinhaltet das Identifizieren der Zusammenhänge zwischen Prozessparametern und der Struktur eines Lebensmittels (Prozessfunktion) sowie zwischen der Struktur und den konsumentenrelevanten Eigenschaften (Eigenschaftsfunktion). Darauf aufbauend sind sie in der Lage, Problemstellungen aus dem Bereich der Lebensmittelverfahrenstechnik mit wissenschaftlichen Methoden zu analysieren und zu lösen.

Die Studierenden können damit ein Verfahren im Hinblick auf die Eignung für Verarbeitungsschritte im Lebensmittelbereich beurteilen und dabei Aspekte wie Nachhaltigkeit, Energieeffizienz, Lebensmittelsicherheit und zu erwartende Produktqualität in die Betrachtungen mit einbeziehen.

Inhalt

Grundlagen zur Auslegung, energetische Aspekte und rohstoffbezogene Spezifika von Grundoperationen, sowie innovative Verfahrensansätze für die Herstellung ausgewählter Lebensmittel tierischer Herkunft.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 30 h Selbststudium: 60 h Prüfungsvorbereitung 30 h

- Vorlesungsfolien & Vorlesungsvideos (ILIAS), FAQ zum Vorlesungsstoff und bereit gestellten Materialien (MS Teams)
- H.P. Schuchmann und H. Schuchmann: Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte; Wiley VCH, 2005; ISBN: 978-3-527-66054-4 (auch als ebook)
- H.G. Kessler: Lebensmittel- und Bioverfahrenstechnik Molkereitechnologie, Verlag A. Kessler, 1996, ISBN 3-9802378-4-2
- H.G. Kessler: Food and Bio Process Engineering Dairy Technology, Publishing House A. Kessler, 2002, ISBN 3-9802378-5-0
- M. Loncin: Die Grundlagen der Verfahrenstechnik in der Lebensmittelindustrie; Aarau Verlag, 1969, ISBN 978-3794107209

5.146 Modul: Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration [M-CIWVT-104351]

Verantwortung: Dr.-Ing. Manfred Nagel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Prozesse der Mechanischen Verfahrenstechnik

Leistungspunkte 4 LP **Notenskala** Zehntelnoten

Turnus Jedes Wintersemester **Dauer**1 Semester

Sprache
Deutsch

Level 4 Version 1

Pflichtbestandteile					
T-CIWVT-108910	Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration	4 LP	Nagel		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

Fähigkeit zur Entwicklung ganzheitlicher Verfahren zur Produktgestaltung. Kenntnis der Aufgaben von Ingenieuren in Unternehmen der Prozessindustrie.

Inhalt

Vermittlung von Methoden und die Sensibilisierung für Randbedingungen zur Systematik der ingenieurwissenschaftlichen Verfahrensentwicklung. Vor dem Vordiplom und in den verfahrenstechnischen Grundlagenfächern wurde die Beschreibung/ Analyse separater physikalischer Vorgänge behandelt. Ihre Verknüpfung bei der Auswahl, Dimensionierung, Verschaltung und Optimierung geeigneter Apparate und Maschinen und deren Integration bei der verfahrenstechnischen Prozessentwicklung soll dargelegt und anhand verschiedenster Beispiele aus der Praxis untermauert werden.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 hSelbststudium: 60 h

· Prüfungsvorbereitung: 30 h

5.147 Modul: Wärmeübertrager [M-CIWVT-104371]

Verantwortung: Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
3

Pflichtbestandteile			
T-CIWVT-108937	Wärmeübertrager	6 LP	Wetzel

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen wesentliche Berechnungsmethoden für die Auslegung und Nachrechnung von Wärmeübertragern und können diese selbständig auf ingenieurtechnische Problemstellungen anwenden und in Berechnungswerkzeuge implementieren.

Inhalt

Wärmeübertragertypen, log. Temperaturdifferenz, e-NTU-Methode, Zellenmethodik, Entwurf von Wärmeübertragern, Wärmeübergang in Rohren und Kanälen, Wärmeübergang in Ringspalten und bei Rohrbündeln, Umsetzung der theoretischen Grundlagen in Berechnungswerkzeuge für Wärmeübertrager

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 45 hSelbststudium: 90 hPrüfungsvorbereitung: 45 h

Literatur

Wird in der Veranstaltung vorgestellt.

5.148 Modul: Wärmeübertragung II [M-CIWVT-103051]

Verantwortung: Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Thermische Verfahrenstechnik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	4	4

Pflichtbestandteile			
T-CIWVT-106067	Wärmeübertragung II	6 LP	Wetzel

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die grundlegenden Differentialgleichungen der Thermofluiddynamik herleiten und kennen mögliche Vereinfachungen bis hin zur instationären Wärmeleitung in ruhenden Medien. Die Studierenden kennen verschiedene analytische und numerische Lösungsmethoden für die instationäre Temperaturfeldgleichung in ruhenden Medien. Die dabei eingesetzten Lösungsmethoden können die Studierenden selbständig auf stationäre Wärmeleitungsprobleme wie die Wärmeübertragung in Rippen und Nadeln anwenden.

Inhalt

Fortgeschrittene Themen der Wärmeübertragung: Thermofluiddynamische Transportgleichungen, Instationäre Wärmeleitung; Thermische Randbedingungen; Analytische Methoden (Kombinations- und Separationsansatz, Laplace-Transformation); Numerische Methoden (Finite Differenzen- und Volumenverfahren); Wärmeübertragung in Rippen und Nadeln.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 45 hSelbststudium: 75 h

· Prüfungsvorbereitung: 60 h

- Von Böckh/Wetzel: "Wärmeübertragung", Springer, 6. Auflage 2015
- VDI-Wärmeatlas, Springer-VDI, 10. Auflage, 2011

5.149 Modul: Wasserstoff in Materialien - Übungen und Laborkurs [M-MACH-107278]

Verantwortung: Dr. rer. nat. Stefan Wagner
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte 4 LP Notenskala Zehntelnoten **Turnus** Jedes Semester **Dauer** 1 Semester

Sprache Deutsch Level 4 Version 1

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden.

Wasserstoff in Mate	Wasserstoff in Materialien - Übungen und Laborkurs (Wahl: mind. 4 LP)		
T-MACH-112159	Hydrogen in Materials – Exercises and Lab Course	4 LP	Wagner
T-MACH-112942	Wasserstoff in Materialien - Übungen und Laborkurs	4 LP	Wagner

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung.

Voraussetzungen

keine

Qualifikationsziele

In dieser Übung mit Laborkurs vertiefen die Studierenden die in der Vorlesung "Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung" vermittelten Lehrinhalte. Die Studierenden kennen Unterschiede der Thermodynamik und der Kinetik der Wasserstoff-Wechselwirkung mit Speichermaterialien und mit Konstruktionswerkstoffen. Die Studierenden können die Wechselwirkung von Wasserstoff mit mikrostrukturellen Defekten in Materialien beschreiben, und sie kennen sich daraus ergebende Auswirkungen auf die mechanische Integrität der Materialien. Davon ausgehend können sie die Anforderungen an die jeweiligen Materialklassen formulieren und diese auf ingenieurtechnische Fragestellungen übertragen.

Mit geeigneten Versuchsaufbauten können die Studierenden Wasserstoff-induzierte Spannungen in Materialien sowie die Diffusionsgeschwindigkeit und das chemische Potential des Wasserstoffs messen. Die Studierenden sind in der Lage, aus den Messergebnissen Metall-Wasserstoff-Phasendiagramme zu konstruieren und die Defektdichte im Metall qualitativ abzuschätzen.

Inhalt

- o Wasserstoff-Aufnahmeverhalten verschiedener Elemente in der festen Lösung, Sievert's Gesetz
- o interstitielle Plätze und Gitterdehnung
- o Bewegung von Wasserstoff in Materialien, interstitielle Diffusion und quantenmechnisches Tunneln
- o Hydride, van't Hoff Plot, Phasenübergäng, Phasendiagramme
- o Einfluss von ternären Legierungspartnern
- o Wechselwirkung von Wasserstoff mit Defekten
- o Wasserstoffversprödung von Stählen, Versprödungsmodelle
- o Verhalten von Wasserstoff in nanoskaligen Systemen
- o Methoden zur Untersuchung des Verhaltens von Wasserstoff in Materialien.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Wasserstoff in Materialien - Übungen und Laborkurs" beträgt pro Semester 120 h und besteht aus Präsenz in den Vorlesungen (26 h) sowie Selbststudium für die Vorlesung (94 h).

Lehr- und Lernformen

Übungen (Pflicht)

Praktikum (Pflicht)

5.150 Modul: Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung [M-MACH-107277]

Verantwortung: Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau **Bestandteil von:** Technisches Ergänzungsfach

Leistungspunkte 4 LP Notenskala Zehntelnoten **Turnus** Jedes Semester **Dauer** 1 Semester

Sprache Deutsch Level 4 Version 1

Wahlinformationen

Das Modul kann entweder in Englisch oder Deutsch absolviert werden.

Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung (Wahl: mind. 4 LP)				
T-MACH-110923	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement	4 LP	Pundt	
	Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung	4 LP	Pundt	

Erfolgskontrolle(n)

mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

keine

Qualifikationsziele

In diesem Modul erlernen die Studierenden das Wasserstoff-Aufnahmeverhalten verschiedener Elemente zu verstehen und finden die Plätze im Gitter, die Wasserstoff einnimmt. Sie lernen die spezielle Bewegung von Wasserstoff in Materialien kennen, die einerseits über interstitielle Diffusion aber auch durch quantenmechnisches Tunneln erfolgen kann. Mithilfe des Sievertschen Gesetzes können die Studierenden Löslichkeiten in der festen Lösung beschreiben, über die van't Hoff Abhängigkeiten können sie Phasenübergänge thermodynamisch ausgewertet werden. Der Einfluss von ternären Legierungspartnern kann verstanden werden. Die Studierenden können die Wechselwirkung von Wasserstoff mit Defekten im Gitter beschreiben, insbesondere auch die Wasserstoffversprödung von Stählen. Die grundlegenden Versprödungsmodelle können erklärt werden. Des Weiteren wird das grundlegende Verhalten von Wasserstoff in nanoskaligen Systemen verstanden. Die Studierenden kennen zudem Methoden zur Untersuchung des Verhaltens von Wasserstoff in Materialien.

Inhalt

- o Wasserstoff-Aufnahmeverhalten verschiedener Elemente in der festen Lösung, Sievert's Gesetz
- o interstitielle Plätze und Gitterdehnung
- o Bewegung von Wasserstoff in Materialien, interstitielle Diffusion und quantenmechnisches Tunneln
- o Hydride, van't Hoff Plot, Phasenübergäng, Phasendiagramme
- o Einfluss von ternären Legierungspartnern
- o Wechselwirkung von Wasserstoff mit Defekten
- o Wasserstoffversprödung von Stählen, Versprödungsmodelle
- o Verhalten von Wasserstoff in nanoskaligen Systemen
- o Methoden zur Untersuchung des Verhaltens von Wasserstoff in Materialien.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul "Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung" beträgt pro Semester 120 h und besteht aus Präsenz in den Vorlesungen (26 h) sowie Selbststudium für die Vorlesung (94 h).

Lehr- und Lernformen

Vorlesungen (Pflicht)

5.151 Modul: Wasserstoff- und Brennstoffzellentechnologien [M-CIWVT-104296]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Verbrennungstechnik

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile			
T-CIWVT-108836	Wasserstoff- und Brennstoffzellentechnologien	4 LP	Trimis

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Qualifikationsziele

- Die Studierenden sind in der Lage Gemeinsamkeiten und Unterschiede verschiedener Brennstoffzellensysteme zu benennen.
- Die Studierenden sind in der Lage anhand der thermodynamischen Grundlagen verschiedene Brennstoffzellensysteme zu beurteilen.
- Die Studierenden können chemische und verfahrenstechnische Grundlagen von Brennstoffzellensystemen wiedergeben und darauf basierend Bedingungen für deren Einsatz benennen.
- Die Studierenden sind in der Lage Verfahren zur Wasserstofferzeugung zu benennen und zu beurteilen.
- Die Studierenden sind in der Lage spezifische Problemfelder der Wasserstoff- und Brennstoffzellentechnologie aufzuzeigen und zu beurteilen.

Inhalt

- Einführung und thermodynamische Grundlagen
- PEM-Brennstoffzellen
- Schmelzkarbonat Brennstoffzellen (MCFC)
- Festoxidbrennstoffzellen (SOFC)
- · Brennstoffzellen für flüssige und feste Brennstoffe
- · Wasserstoff als Energieträger
- Wasserstofferzeugung
- Elektrolyse
- Dampfreformierung
- Partielle Oxidation
- · Reformierverfahren für flüssige Brennstoffe
- · Konvertierung/Reinigung von Kohlenmonoxid; Entschwefelung
- Brennstoffzellensysteme: Peripheriekomponenten und Integration.

Zusammensetzung der Modulnote

Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenszeit: 30 h Selbststudium: 60 h

Prüfungsvorbereitung: 30 h

- Ledjeff-Hey, K.; Mahlendorf, F.; Roes, J.: Brennstoffzellen; Entwicklung, Technologie, Anwendung. C. F. Müller Verlag GmbH, Heidelberg 2001; ISBN 3-7880-7629-1
- Na, Woon Ki: Fuel cells: modeling, control, and applications. CRC Press; Boca Raton u.a. 2010, ISBN 978-1-4200-7161-0
- Vielstich, W.; Lamm, A.; Gasteiger, H.A.: Handbook of Fuel Cells Fundamentals, Technology and Applications. J. Wiley & Sons, Chichester UK, 2003, ISBN 0-471-49926-9
- Shekhawat, Spivey, Berry: Fuel cells: technologies for fuel processing. Elsevier, Amsterdam, 2011; ISBN 978-0-444-53563-4
- Hoogers, G (editor): Fuel Cell Technology Handbook. CRC Press, Boca Raton, London; 2003; ISBN: 0-8493-0877-1
- U.S. Department of Energy: Fuel Cell Handbook. 7th edition 2004. http://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/FCHandbook7.pdf

5.152 Modul: Wastewater Treatment Technologies [M-BGU-104917]

Verantwortung: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

PD Dr.-Ing. Stephan Fuchs

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Englisch	4	4

Pflichtbestandteile				
T-BGU-109948	Wastewater Treatment Technologies	6 LP	Azari Najaf Abad, Fuchs	

Erfolgskontrolle(n)

- Teilleistung T-BGÚ-109948 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verfügen über die Kenntnis typischer Verfahrenstechniken und Anlagen der Abwasserreinigung im In- und Ausland. Sie sind in der Lage, diese technisch zu beurteilen und unter Berücksichtigung rechtlicher Randbedingungen flexibel zu bemessen. Die Studierenden können die Anlagentechnik analysieren, beurteilen und betrieblich optimieren. Es gelingt eine energetisch effiziente Auslegung unter Berücksichtigung wesentlicher kostenrelevanter Faktoren. Die Studierenden können die Situation in wichtigen Schwellen- und Entwicklungsländern im Vergleich zu der in den Industrienationen analysieren und wasserbezogene Handlungsempfehlungen entwickeln.

Inhalt

Die Studierenden erlangen vertieftes Wissen über Bemessung und Betrieb von Anlagen der siedlungsgebundenen Abwasserbehandlung im In- und Ausland. Sie können die eingesetzten Verfahren analysieren, beurteilen und entscheiden, wann neue, stärker ganzheitlich orientierte Methoden eingesetzt werden können. Betrachtet werden verschiedene mechanische, biologische und chemische Behandlungsverfahren, wobei sowohl die Reinigung von Schmutzwasser aus Haushalt und Gewerbe als auch von Niederschlagswasser behandelt werden. Besichtigungen von mindestens einer kommunale Kläranlage in Deutschland runden die Veranstaltung ab. Der Kurs endet mit Laborarbeit in der Gruppe, um wesentliche Messverfahren für analytische Zwecke in Kläranlagen zu erlernen.

Zusammensetzung der Modulnote

Modulnote ist Note der Prüfung

Anmerkungen

Die Teilnehmerzahl in der Lehrveranstaltung ist auf 30 Personen begrenzt. Die Anmeldung erfolgt über ILIAS. Die Plätze werden unter Berücksichtigung des Studienfortschritts vergeben, vorrangig an Studierende aus *Water Science and Engineering*, dann *Bauingenieurwesen*, *Chemieingenieurwesen und Verfahrenstechnik*, *Geoökologie* und weiteren Studiengängen.

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

· Vorlesung/Übung: 60 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung/Übungen: 60 Std.
- · Prüfungsvorbereitung: 60 Std.

Summe: 180 Std.

Empfehlungen

Modul "Urban Water Infrastructure and Management"

Literatur

ATV-DVWK (1997) Handbuch der Abwassertechnik: Biologische und weitergehende Abwasserreinigung, Band 5, Verlag Ernst & Sohn, Berlin

ATV-DVWK(1997) Handbuch der Abwassertechnik: Mechanische Abwasserreinigung, Band 6, Verlag Ernst & Sohn , Berlin ATV-DVWK A 131 (2006): Bemessung von einstufigen Belebungsanlagen. Hennef, Germany.

Metcalf & Eddy, Abu-Orf, M., Bowden, G., Burton, F.L., Pfrang, W., Stensel, H.D., Tchobanoglous, G., Tsuchihashi, R. and AECOM (Firm), (2014). Wastewater engineering: treatment and resource recovery. McGraw Hill Education.

van Loosdrecht, M.C., Nielsen, P.H., Lopez-Vazquez, C.M. and Brdjanovic, D. eds., (2016). Experimental methods in wastewater treatment. IWA publishing.

5.153 Modul: Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation [M-CIWVT-106680]

Verantwortung: Prof. Dr. Andrea Iris Schäfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Leistungspunkte
5 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
5Version
1

Pflichtbestandteile			
T-CIWVT-113433	Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation	5 LP	

Erfolgskontrolle(n)

The Learning control is an examination of another type:

Research proposal of 10 pages and an oral presentation of 10 minutes (individual work). The grade will be a composite of the proposal (submission in week 13 before class) and oral & poster presentation (all day workshop with researcher participation).

Voraussetzungen

None

Qualifikationsziele

The goal of this course is to get an overview of current challenges in the circular economy focused on the water – energy – environment nexus. Based on individual student interest a topic will be identified and a research plan developed encompassing a thorough background research to establish the state-of-the-art, identification of a specific research problem and research questions suitable to solve this problem. Concepts of novelty and excellence will be explored in an international context. Following the individual topic choice, the research proposal will be developed individually in a tutor group (divided into water, energy, environment) while lectures on required skills will accompany this process. As an outlook beyond this course, criteria to consider when looking for research careers such as applying for funding/scholarships, considering choices in research environment and supervision, performance indicators in research and university rankings will be introduced to enable informed decisions. The proposal will be communicated in writing, as a brief presentation and as a poster, which equips students brilliantly not only for a masters thesis but also a future research publication or a PhD.

Inhalt

In a time of limiting resources, climate change and ever increasing demand for resources the concept of a circular economy is inevitable to create a more sustainable utilization of our key resources, water, energy and 'environment'. Concepts of zero liquid discharge, water reuse, carbon net zero, resource recovery and environmental pollution reduction are all part of this concept where where waste is returned to use. The water – energy – environment nexus is the particular focus of ths course. Global water issues, water and wastewater treatment, desalination, water reuse, micropollutants, decentralized systems, water & sanitation in international development, renewable energies, environmental pollution, climate change, resource recovery – and many more topics will inspire future research.

Zusammensetzung der Modulnote

The module grade is the grade of the examination of another type.

Arbeitsaufwand

- · Contact time: lectures and tutorials 60 hrs (4 SWS)
- · Group and self study: 50 hrs
- Preparation of assessments and participation at the group presentations (one full day): 30 hrs

5.154 Modul: Water Technology [M-CIWVT-103407]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Lebensmittelverfahrenstechnik

Vertiefungsfach I / Wassertechnologie

Vertiefungsfach I / Umweltschutzverfahrenstechnik

Leistungspunkte
6 LPNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
EnglischLevel
4Version
1

Pflichtbestandteile	Pflichtbestandteile		
T-CIWVT-106802	Water Technology	6 LP	Horn

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung,

Dauer: ca. 30 min.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind mit den Grundlagen der Wasserchemie hinsichtlich Art und Menge der Wasserinhaltsstoffe vertraut und können deren Wechselwirkungen und Reaktionen in aquatischen Systemen erläutern. Die Studierenden erhalten Kenntnisse zu den grundlegenden physikalischen und chemischen Prozessen der Trinkwasseraufbereitung. Sie sind in der Lage Berechnungen durchzuführen, die Ergebnisse zu vergleichen und zu interpretieren. Sie sind fähig methodische Hilfsmittel zu gebrauchen, die Zusammenhänge zu analysieren und die unterschiedlichen Verfahren kritisch zu beurteilen.

Inhalt

Wasserkreislauf, Nutzung, physikal.-chem. Eigenschaften, Wasser als Lösemittel, Härte des Wassers, Kalk-Kohlensäure-Gleichgewicht; Wasseraufbereitung (Siebung, Sedimentation, Flotation, Filtration, Flockung, Adsorption, Ionenaustausch, Gasaustausch, Entsäuerung, Enthärtung, Oxidation, Desinfektion); Anwendungsbeispiele, Berechnungen.

Arbeitsaufwand

Präsenzzeit: 45 h Vor-/Nachbereitung: 60 h

Prüfung + Prüfungsvorbereitung: 75 h

Literatur

Crittenden, J. C. et al. (2012): Water treatment, principles and design. 3. Auflage, Wiley & Sons, Hoboken. Jekel, M., Czekalla, C. (Hrsg.) (2016). DVGW Lehr- und Handbuch der Wasserversorgung. Deutscher Industrieverlag. Vorlesungsskript (ILIAS Studierendenportal), Praktikumsskript

5.155 Modul: Wirbelschichttechnik [M-CIWVT-104292]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Technisches Ergänzungsfach

Vertiefungsfach I / Chemische Energieträger - Brennstofftechnologie

Vertiefungsfach I / Energieverfahrenstechnik Vertiefungsfach I / Gas-Partikel-Systeme

Leistungspunkte
4 LPNotenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Pflichtbestandteile					
T-CIWVT-108832	Wirbelschichttechnik	4 LP	Rauch		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Verständnis für Wirbelschichten, Design Berechnung und Auslegung von Wirbelschichten inkl. Gasverteiler, Vor- und Nachteile von Wirbelschichten und industrielle Anwendungen.

Inhalt

Grundlagen der Wirbelschicht, Erklärung von stationärer Wirbelschicht, zirkulierende Wirbelschicht und Zweibettwirbelschicht, Berechnung von Lockerungspunkt und Schwebegeschwindigkeit, Klassifikation von Partikeln, Design von Gasverteilerboden, theoretische Grundlagen von Blasenbildung in der Wirbelschicht, Wärmeübergang, Kaltmodelle und CFD Simulation zur Auslegung von Wirbelschichten, industrielle Beispiele von Wirbelschichten

Arbeitsaufwand

Präsenzzeit: 30 Stunden Selbststudium 50 Stunden

Prüfungsvorbereitung und Prüfung: 40 Stunden

- Fluidized Beds, Jesse Zhu, Bo Leckner, Yi Cheng, and John R. Grace, Chapter 5 in Multiphase Flow Handbook. Sep 2005, ISBN: 978-0-8493-1280-9, https://doi.org/10.1201/9781420040470.ch5
- Glicksman L.R., Hyre M., Woloshun K., "Simplified scaling relationships for fluidized beds" Powder Technology, 77, (1993)
- Werther, Fluidised-Bed Reactors, in Ullmanns Encyclopedia of industrial chemistry, http://dx.doi.org/ 10.1002/14356007.b04_239.pub2

6 Teilleistungen

6.1 Teilleistung: Additive Manufacturing for Process Engineering - Examination [T-CIWVT-110902]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105407 - Additive Manufacturing for Process Engineering

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2025	2241020	Additive Manufacturing for Process Engineering	2 SWS	Vorlesung (V) / ♀ ⁴	Klahn
Prüfungsveranstaltungen					
SS 2025	7241020	Additive Manufacturing for Process Engineering - Examination			Klahn
WS 25/26	7241020	Additive Manufacturing for Process Engineering - Examination			Klahn

Legende: Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-110903 - Practical in Additive Manufacturing for Process Engineering muss erfolgreich abgeschlossen worden sein.

6.2 Teilleistung: Advanced Methods in Nonlinear Process Control [T-CIWVT-113490]

Verantwortung: Dr.-Ing. Pascal Jerono

Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106715 - Advanced Methods in Nonlinear Process Control

Teilleistungsart
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungspunkte
A LP
Notenskala
Drittelnoten
Jedes Sommersemester
1

Lehrveranstaltungen						
SS 2025	2243035	Advanced Methods in Nonlinear Control	2 SWS	Vorlesung (V) / 🗣	Meurer, Jerono	
Prüfungsveranstaltungen						
SS 2025	7243035	Advanced Methods in Nonlinear Process Control			Meurer, Jerono	
WS 25/26	7243035	Advanced Methods in Nonlinear Process Control			Meurer, Jerono	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 45 Minuten.

Voraussetzungen

Keine

6.3 Teilleistung: Alternative Protein Technologies [T-CIWVT-113429]

Verantwortung: PD Dr.-Ing. Azad Emin

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106661 - Alternative Protein Technologies

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen					
SS 2025	2211330	Alternative Protein Technologies	2 SWS	Block (B) / 🗣	Emin
Prüfungsveranstaltungen					
SS 2025	7211330	Alternative Protein Technologies			Emin

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einem Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

6.4 Teilleistung: Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme [T-CIWVT-113692]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106823 - Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich8 LPDrittelnoten1

Lehrveranstaltungen					
WS 25/26	2260230	Angewandte Stoffübertragung – Energie- und Dünnschichtsysteme	2 SWS	Vorlesung (V) /	Schabel, Scharfer
WS 25/26	2260231	Übung zu 2260230 Angewandte Stoffübertragung – Energie- und Dünnschichtsysteme	2 SWS	Übung (Ü) / 🗣	Schabel, Scharfer, und Mitarbeitende
Prüfungsv	Prüfungsveranstaltungen				
SS 2025	7200061	Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme Schabel			Schabel
WS 25/26	7200061	Angewandte Stoffübertragung - Energie- und Dünnschichtsysteme			Schabel
WS 25/26	7260230	Angewandte Stoffübertragung - Ene	Schabel		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

Keine.

6.5 Teilleistung: Anmeldung zur Zertifikatsausstellung - Begleitstudium Wissenschaft, Technologie und Gesellschaft [T-FORUM-113587]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Studienleistung Leistungspunkte 0 LP Notenskala best./nicht best.

Turnus Jedes Semester Version 1

Voraussetzungen

Für die Anmeldung ist es verpflichtend, dass die Grundlageneinheit und die Vertiefungseinheit vollständig absolviert wurden und die Benotungen der Teilleistungen in der Vertiefungseinheit vorliegen.

Die Anmeldung als Teilleistung bedeutet konkret die Ausstellung von Zeugnis und Zertifikat.

6.6 Teilleistung: Auslegung von Mikroreaktoren [T-CIWVT-108826]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104286 - Auslegung von Mikroreaktoren

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2220220	Auslegung von Mikroreaktoren	3 SWS	Vorlesung / Übung (VÜ) / ⊈	Pfeifer	
Prüfungsve	eranstaltungen					
SS 2025	7210210	Auslegung von Mikroreaktoren			Pfeifer	
WS 25/26	7210210	Auslegung von Mikroreaktoren			Pfeifer	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.7 Teilleistung: Batterie- und Brennstoffzellensysteme [T-ETIT-100704]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100377 - Batterie- und Brennstoffzellensysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3 LP	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2025	2304214	Batterie- und Brennstoffzellensysteme	2 SWS	Vorlesung (V) /	Weber	
Prüfungsve	eranstaltungen					
SS 2025	7304214	Batterie- und Brennstoffzellensysteme			Weber	
WS 25/26	7304214	Batterie- und Brennstoffzellensysteme			Weber	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Die Teilleistung "T-ETIT-114097 - Batterien, Brennstoffzellen und ihre Systeme" darf nicht begonnen sein.

Empfehlungen

Die Inhalte der Vorlesung "Batterien und Brennstoffzellen" werden als bekannt vorausgesetzt. Studierenden, die diese Vorlesung (noch) nicht gehört haben, wird empfohlen das Skript zu dieser Vorlesung vorab durchzuarbeiten.

6.8 Teilleistung: Batteries, Fuel Cells, and Electrolysis [T-ETIT-113986]

Verantwortung: Prof. Dr.-Ing. Ulrike Krewer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-107005 - Batteries, Fuel Cells, and Electrolysis

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Wintersemester	2

Lehrverans	Lehrveranstaltungen						
WS 25/26	2304240	Batteries, Fuel Cells and Electrolysis	2 SWS	Vorlesung (V) / 🕃	Krewer		
WS 25/26	2304241	Practical Exercise to 2304240 Batteries, Fuel Cells and Electrolysis	2 SWS	Übung (Ü) / 😘	Krewer, Sonder		
Prüfungsv	Prüfungsveranstaltungen						
WS 25/26	7304240	Batteries, Fuel Cells, and Electrolysis			Krewer		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Success control takes place in the form of a written examination lasting 120 minutes.

Voraussetzungen

The following module components must not have started:

- T-ETIT-100983 Batterien und Brennstoffzellen
- T-ETIT-114097 Batterien, Brennstoffzellen und ihre Systeme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-ETIT-100983 - Batterien und Brennstoffzellen darf nicht begonnen worden sein.

6.9 Teilleistung: Berufspraktikum [T-CIWVT-109276]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104527 - Berufspraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung praktisch	14 LP	best./nicht best.	Jedes Semester	1

Prüfungsveranstaltungen				
SS 2025	7200000	Berufspraktikum	Bajohr	
WS 25/26	7200000	Berufspraktikum	Bajohr	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung nach § 4 Abs. 3 SPO Master Chemieingenieurwesen und Verfahrenstechnik 2016.

Zur Prüfung und Anerkennung des Berufspraktikums sind dem Praktikantenamt der Fakultät nach Abschluss der Tätigkeit die vorab erteilte Genehmigung für das Praktikum, und das Arbeitszeugnis vorzulegen.

WICHTIG: Die geleisteten Tätigkeiten müssen aus dem Arbeitszeugnis eindeutig hervorgehen. Ist dies nicht der Fall, hat der Studierende eine Tätigkeitsbeschreibung zu erstellen und von dem Betrieb gegenzeichnen zu lassen.

Voraussetzungen

6.10 Teilleistung: Biobasierte Kunststoffe [T-CIWVT-109369]

Verantwortung: Prof. Dr. Ralf Kindervater

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104570 - Biobasierte Kunststoffe

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2212820	Biobasierte Kunststoffe	2 SWS	Vorlesung (V) / 🗣	Kindervater, Syldatk, Schmiedl	
Prüfungsve	eranstaltungen					
SS 2025	7212820-VT-BK	Biobasierte Kunststoffe			Kindervater	
WS 25/26	7212820-VT-BK	Biobasierte Kunststoffe			Kindervater	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Vertiefungsfach: Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Technisches Ergänzungsfach bzw. große Teilnehmerzahl im Vertiefungsfach: schriftliche Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

6.11 Teilleistung: Biofilm Systems [T-CIWVT-106841]

Verantwortung: Dr. Andrea Hille-Reichel

Dr. Michael Wagner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103441 - Biofilm Systems

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2233820	Biofilm Systems	2 SWS	Vorlesung (V) / 🗣	Hille-Reichel, Wagner		
Prüfungsv	eranstaltungen						
SS 2025	7233820	Biofilm Systems			Horn, Hille-Reichel, Wagner		
WS 25/26	7233820	Biofilm Systems			Horn, Hille-Reichel, Wagner		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung,

Dauer: ca. 20 min, gemäß SPO § 4 Abs. 2 Nr. 1.

3

6.12 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I [T-MACH-100966]

Verantwortung: Prof. Dr. Andreas Guber Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-100489 - BioMEMS - Mikrosystemtechnik für Life-Science und Medizin I

Teilleistungsart Leistungspunkte Notenskala Turnus Version Prüfungsleistung schriftlich Jedes Wintersemester 4 LP Drittelnoten

Lehrveranstaltungen						
WS 25/26	2141864	BioMEMS I - Mikrosystemtechnik für Life-Sciences und Medizin	2 SWS	Vorlesung (V) / ♀ ⁴	Guber, Ahrens	
Prüfungsve	Prüfungsveranstaltungen					
SS 2025	76-T-MACH-100966	BioMEMS - Mikrosystemtechnik fü	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I			
WS 25/26	76-T-MACH-100966	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin I			Guber	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (75 Min.)

Voraussetzungen

keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten

Arbeitsaufwand

6.13 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II [T-MACH-100967]

Verantwortung: Prof. Dr. Andreas Guber **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-100490 - BioMEMS - Mikrosystemtechnik für Life-Science und Medizin II

Teilleistungsart Leist Prüfungsleistung schriftlich

Leistungspunkte Notenskala 4 LP Drittelnoten

otenskala Turnus ittelnoten Jedes Sommersemester Version 3

Lehrveranstaltungen					
SS 2025	2142883	BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II	2 SWS	Vorlesung (V) / 🗣	Guber, Ahrens
Prüfungsv	eranstaltungen				
SS 2025	76-T-MACH-100967	BioMEMS - Mikrosystemtechnik fi	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II		
WS 25/26	76-T-MACH-100967	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II			Guber

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Schritliche Prüfung (75 Min.)

Voraussetzungen

keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten

Arbeitsaufwand

6.14 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III [T-MACH-100968]

Verantwortung: Prof. Dr. Andreas Guber **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-100491 - BioMEMS - Mikrosystemtechnik für Life-Science und Medizin III

TeilleistungsartPrüfungsleistung schriftlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten **Turnus**Jedes Sommersemester

Version 3

Lehrveranstaltungen							
SS 2025	2142879	BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III	2 SWS	Vorlesung (V) / 🗣	Guber, Ahrens		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	76-T-MACH-100968	BioMEMS - Mikrosystemtechnik fü	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III				
WS 25/26	76-T-MACH-100968	BioMEMS - Mikrosystemtechnik fü	BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (75 Min.)

Voraussetzungen

keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten

Arbeitsaufwand

6.15 Teilleistung: Biopharmazeutische Aufarbeitungsverfahren [T-CIWVT-106029]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-103065 - Biopharmazeutische Aufarbeitungsverfahren

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	1

Lehrveranstaltungen							
WS 25/26	2214010	Biopharmazeutische Aufarbeitungsverfahren	3 SWS	Vorlesung (V) / 🗣	Hubbuch, Franzreb		
WS 25/26	2214011	Übung zu 2214010 Biopharmazeutische Aufarbeitungsverfahren	1 SWS	Übung (Ü) / 🗣	Hubbuch, Franzreb		
Prüfungsv	eranstaltungen	•		•	•		
SS 2025	7223011	Biopharmazeutische Aufarbeitu	Biopharmazeutische Aufarbeitungsverfahren				
WS 25/26	7214010	Biopharmazeutische Aufarbeitu	Biopharmazeutische Aufarbeitungsverfahren				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von ca. 120 Minuten (Gesamtprüfung im nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

6.16 Teilleistung: Bioprocess Development [T-CIWVT-112766]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106297 - Bioprocess Development

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	2213020	Bioprocess Development	2 SWS	Vorlesung (V) / 🗣	Grünberger	
SS 2025	2213021	Bioprocess Development - Exercises	2 SWS	Übung (Ü) / 🗣	Grünberger	
Prüfungsv	eranstaltungen					
SS 2025	7222001	Bioprocess Development			Grünberger	
WS 25/26	7222001	Bioprocess Development			Grünberger	

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

6.17 Teilleistung: Bioprocess Scale-up [T-CIWVT-113712]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106837 - Bioprocess Scale-up

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester2

Lehrverans	Lehrveranstaltungen						
WS 25/26	2213040	Bioprocess Scale-Up	2 SWS	Vorlesung (V) /	Grünberger		
WS 25/26	2213041	Exercises to 2213040 Bioprocess Scale-Up	1 SWS	Übung (Ü) / 🖥	Grünberger		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7213040	Bioprocess Scale-up			Grünberger		
WS 25/26	7213040	Bioprocess Scale-up			Grünberger		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Voraussetzungen

6.18 Teilleistung: Bioreaktorentwicklung [T-CIWVT-113315]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106595 - Bioreaktorentwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art4 LPDrittelnoten2

Lehrverans	Lehrveranstaltungen						
SS 2025	2210020	Teamprojekt "99€-Bioreaktor": Entwicklung eines innovativen Bioreaktorkonzeptes	2 SWS	Projekt (PRO) / 🗣	Grünberger, Holtmann		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7210020-BRE	Bioreaktorentwicklung			Holtmann, Grünberger		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

6.19 Teilleistung: Biosensors [T-CIWVT-113714]

Verantwortung: Dr. Gözde Kabay

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106838 - Biosensors

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2214810	Biosensors	2 SWS	Vorlesung (V) / 🕃	Kabay		
WS 25/26	2214810	Biosensors	2 SWS	Vorlesung (V) / 🕃	Kabay		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7214810	Biosensoren			Kabay		
WS 25/26	7214810	Biosensors			Kabay		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

6.20 Teilleistung: Biotechnologische Nutzung nachwachsender Rohstoffe [T-CIWVT-113237]

Verantwortung: Prof. Dr. Christoph Syldatk

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105295 - Biotechnologische Nutzung nachwachsender Rohstoffe

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2212210	Biotechnologische Nutzung nachwachsender Rohstoffe	2 SWS	Vorlesung (V) / €	Syldatk		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7212210-VT-BR	Biotechnologische Nutzung nachwa	Biotechnologische Nutzung nachwachsender Rohstoffe				
WS 25/26	7212210-VT-BR	Biotechnologische Nutzung nachwachsender Rohstoffe			Syldatk		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.21 Teilleistung: Brennstofftechnik [T-CIWVT-108829]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104289 - Brennstofftechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2231020	Grundlagen der Brennstofftechnik	2 SWS	Vorlesung (V) / 🗣	Scheiff		
WS 25/26	2231021	Übungen zu 2231020 Grundlagen der Brennstofftechnik	1 SWS	Übung (Ü) / 🗣	Scheiff, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7230013	Brennstofftechnik			Kolb, Scheiff		
WS 25/26	7230013	Brennstofftechnik			Scheiff, Kolb		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.22 Teilleistung: C1-Biotechnologie mündliche Prüfung [T-CIWVT-113677]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106816 - C1-Biotechnologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich4 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2212130	C1-Biotechnologie	2 SWS	Vorlesung (V) / €	Neumann	
WS 25/26	2212131	Übung zu 2212130 C1- Biotechnologie	1 SWS	Übung (Ü) / 🗣	Neumann	
Prüfungsveranstaltungen						
WS 25/26	7212130-VL-C1	C1-Biotechnologie mündliche Prüfung			Neumann	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113678 - C1-Biotechnologie Präsentation muss erfolgreich abgeschlossen worden sein.

6.23 Teilleistung: C1-Biotechnologie Präsentation [T-CIWVT-113678]

Verantwortung: Dr. Anke Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106816 - C1-Biotechnologie

Teilleistungsart
StudienleistungLeistungspunkte
2 LPNotenskala
best./nicht best.Version
2

Lehrveranstaltungen							
WS 25/26	2212130	C1-Biotechnologie	2 SWS	Vorlesung (V) / 🗣	Neumann		
WS 25/26	2212131	Übung zu 2212130 C1- Biotechnologie	1 SWS	Übung (Ü) / ♀	Neumann		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7212131-Pr-C1	C1-Biotechnologie Präsentation			Neumann		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

6.24 Teilleistung: Chemical Hydrogen Storage [T-CIWVT-113234]

Verantwortung: TT-Prof. Dr. Moritz Wolf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106566 - Chemical Hydrogen Storage

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2231420	Chemical Hydrogen Storage	2 SWS	Vorlesung (V) / 🗣	Wolf, Sauer	
Prüfungsveranstaltungen						
SS 2025	7231420	Chemical Hydrogen Storage			Wolf	
WS 25/26	7231420	Chemical Hydrogen Storage			Wolf	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

6.25 Teilleistung: Chemische Verfahrenstechnik II [T-CIWVT-108817]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104281 - Chemische Verfahrenstechnik II

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2220020	Chemische Verfahrenstechnik II	2 SWS	Vorlesung (V) / 🗣	Wehinger		
WS 25/26	2220021	Übung zu 2220020 Chemische Verfahrenstechnik II	1 SWS	Übung (Ü) / 🗣	Wehinger		
Prüfungsve	eranstaltungen						
SS 2025	7210104	Chemische Verfahrenstechnik II			Wehinger		
WS 25/26	7210104	Chemische Verfahrenstechnik II			Wehinger		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.26 Teilleistung: Chem-Plant [T-CIWVT-109127]

Verantwortung: Prof. Dr. Sabine Enders

Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104461 - Chem-Plant

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2260170	ChemPlant	2 SWS	Kolloquium (KOL) /	Zeiner, Enders	
Prüfungsve	eranstaltungen					
SS 2025	7200101	Chem-Plant			Enders, Zeiner	
WS 25/26	7200101	Chem-Plant			Enders	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleitung anderer Art: die Präsentation in Form eines Berichtes, eines Posters und eines Vortrages.

Voraussetzungen

Keine

Empfehlungen

Thermodynamik III, Prozess- und Anlagentechnik empfohlen

Anmerkungen

Dieses Projekt schließt die aktive Teilnahme an einer wissenschaftlichen Tagung (Process-Net Jahrestagung oder ein Fachausschusstreffen) ein. Die Teilnehmerzahl ist auf 5 Studierende beschränkt.

6.27 Teilleistung: Computational Fluid Dynamics and Simulation Lab [T-MATH-113373]

Verantwortung: Prof. Dr. Martin Frank

PD Dr. Mathias Krause Dr. Stephan Simonis PD Dr. Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-106634 - Computational Fluid Dynamics and Simulation Lab

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art4 LPDrittelnoten1

Lehrveranstaltungen						
SS 2025	0161700	Computational Fluid Dynamics and Simulation Lab	4 SWS	Praktikum (P)	Thäter, Krause, Simonis	
Prüfungsveranstaltungen						
SS 2025	7700126	Computational Fluid Dynamics and	Computational Fluid Dynamics and Simulation Lab			

Voraussetzungen

Keine

Arbeitsaufwand

6.28 Teilleistung: Computer-Aided Reactor Design [T-CIWVT-113667]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106809 - Computer-Aided Reactor Design

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art6 LPDrittelnoten1

Lehrverans	staltungen				
WS 25/26	2220070	Computer-Aided Reactor Design	1 SWS	Vorlesung (V) / 🗣	Kutscherauer, Wehinger
WS 25/26	2220071	Exercises on 2220070 Computer- Aided Reactor Design	2 SWS	Übung (Ü) / 🗣	Kutscherauer, Hahn, Wehinger
Prüfungsv	eranstaltungen				
WS 25/26	7220070	Computer-Aided Reactor Design			Kutscherauer, Wehinger

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bewertet wird die Projektaufgabe anhand des Quellcodes, des Posters und dessen Präsentation.

Voraussetzungen

6.29 Teilleistung: Cryogenic Engineering [T-CIWVT-108915]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104356 - Cryogenic Engineering

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2250140	Cryogenic Engineering	2 SWS	Vorlesung (V) / 🗣	Grohmann	
WS 25/26	2250141	Cryogenic Engineering - Exercises	1 SWS	Übung (Ü) / 🗣	Grohmann	
Prüfungsve	eranstaltungen					
SS 2025	7250140	Cryogenic Engineering			Grohmann	
WS 25/26	7250140	Cryogenic Engineering			Grohmann	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.30 Teilleistung: Data-Based Modeling and Control [T-CIWVT-112827]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106319 - Data-Based Modeling and Control

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrveranstaltungen							
WS 25/26	2243070	Data-Based Modeling and Control	3 SWS	Vorlesung / Übung (VÜ) / ♀ ⁵	Meurer		
Prüfungsve	eranstaltungen						
SS 2025	7243070	Data-Based Modeling and Control			Meurer		
WS 25/26	7243070	Data-Based Modeling and Control			Meurer		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

6.31 Teilleistung: Datenanalyse und Statistik [T-CIWVT-108900]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104345 - Datenanalyse und Statistik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2245120	Datenanalyse und Statistik MVM	2 SWS	Vorlesung (V) / 🗣	Guthausen	
Prüfungsveranstaltungen						
SS 2025	7291120	Datenanalyse und Statistik			Guthausen	
WS 25/26	7291120	Datenanalyse und Statistik			Guthausen	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.32 Teilleistung: Datengetriebene Modellierung in Python - verfahrenstechnisches Projekt [T-CIWVT-113708]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106835 - Datengetriebene verfahrenstechnische Modelle in Python

Teilleistungsart
StudienleistungLeistungspunkte
3 LPNotenskala
best./nicht best.Version
1

Lehrveran	Lehrveranstaltungen							
WS 25/26	2245320	Datengetriebene Modellierung mit Python	2 SWS	Vorlesung (V) / ♣	Rhein			
WS 25/26	2245321	Projektarbeit zu 2245320 Datengetriebene Modellierung mit Python	1 SWS	Übung (Ü) / 🗣	Rhein			
Prüfungsv	eranstaltungen			•				
WS 25/26	7291320	Datengetriebene Modellierung mit Python - Projekt			Rhein			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgkontrolle ist eine Studienleistung: Unbenotete Projektarbeit.

Voraussetzungen

6.33 Teilleistung: Datengetriebene verfahrenstechnische Modelle in Python - Prüfung [T-CIWVT-113709]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106835 - Datengetriebene verfahrenstechnische Modelle in Python

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich1 LPDrittelnoten1

Prüfungsveranstaltungen					
SS 2025	7245320	Datengetriebene verfahrenstechnische Modelle in Python - Prüfung	Rhein		
WS 25/26	7245320	Datengetriebene verfahrenstechnische Modelle in Python - Prüfung	Rhein		

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113708 - Datengetriebene Modellierung in Python - verfahrenstechnisches Projekt muss erfolgreich abgeschlossen worden sein.

6.34 Teilleistung: Design of a Jet Engine Combustion Chamber [T-CIWVT-110571]

Verantwortung: Dr.-Ing. Stefan Raphael Harth

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105206 - Design of a Jet Engine Combustion Chamber

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 25/26	2232310	Design of a Jet Engine Combustion Chamber	2 SWS	Projekt / Seminar (PJ/S) / ⊈	Harth
Prüfungsveranstaltungen					
SS 2025	SS 2025 7232310 Design of a Jet Engine Combustion Chamber				Harth
WS 25/26	7232310	Design of a Jet Engine Combustion Chamber			Harth

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Projekt: Bewertet werden Mitarbeit und Präsentation sowie eine mündliche Abschlussprüfung im Umfang von max. 30 Minuten.

Voraussetzungen

6.35 Teilleistung: Digital Design in Process Engineering - Laboratory [T-CIWVT-111582]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-105782 - Digital Design in Process Engineering

> **Teilleistungsart** Studienleistung praktisch

Leistungspunkte 3 LP Notenskala best./nicht best.

Version 1

Lehrveranstaltungen					
WS 25/26	2241031	Practical Course Digital Design in Process Engineering	2 SWS	Praktikum (P) / 🗣	Klahn, Jayavelu
Prüfungsveranstaltungen					
WS 25/26 7241031 Digital Design in Process Engineering - Laboratory					Klahn

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Studienleistung, unbenotet.

Voraussetzungen

6.36 Teilleistung: Digital Design in Process Engineering - Oral Examination [T-CIWVT-111583]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105782 - Digital Design in Process Engineering

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 3 LP Notenskala Drittelnoten Version 1

Lehrverans	Lehrveranstaltungen					
WS 25/26	2241030	Digital Design in Process Engineering	2 SWS	Vorlesung (V) / ♣	Klahn	
Prüfungsve	eranstaltungen					
SS 2025	SS 2025 7241030 Digital Design in Process Engineering - Oral Examination				Klahn	
WS 25/26	7241030	Digital Design in Process Engineering - Oral Examination			Klahn	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca, 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Teilnahme am Praktikum.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-CIWVT-111582 - Digital Design in Process Engineering - Laboratory muss erfolgreich abgeschlossen worden sein.

6.37 Teilleistung: Digitalisierung in der Partikeltechnik [T-CIWVT-110111]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104973 - Digitalisierung in der Partikeltechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2245220	Digitalisierung in der Partikeltechnik	2 SWS	Vorlesung (V) / 🗣	Gleiß, und Mitarbeitende	
Prüfungsve	Prüfungsveranstaltungen					
SS 2025 7291922 Digitalisierung in der Partikeltechnik					Gleiß	
WS 25/26	WS 25/26 7245220 Digitalisierung in der Partikeltechnik			Gleiß		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.38 Teilleistung: Digitalisierung in der Partikeltechnik - Projektarbeit [T-CIWVT-114694]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104973 - Digitalisierung in der Partikeltechnik

Teilleistungsart Studienleistung praktisch Leistungspunkte 2 LP Notenskala best./nicht best. Version 1

Lehrveranstaltungen						
WS 25/26	2245221	Projektarbeit zu 2245220 Digitalisierung in der Partikeltechnik	1 SWS	Projekt (PRO) / 🗣	Gleiß, und Mitarbeitende	
Prüfungsv	Prüfungsveranstaltungen					
WS 25/26	7245221	Digitalisierung in der Partikeltechnik - Projektarbeit			Gleiß	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung: Durchführung und Vorstellung eines Projekts mit Abschlussvortrag.

Voraussetzungen

6.39 Teilleistung: Dynamik verfahrenstechnischer Systeme - Prüfung [T-CIWVT-114106]

Verantwortung: Dr.-Ing. Pascal Jerono

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-107037 - Dynamik verfahrenstechnischer Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2243120	Dynamik verfahrenstechnischer Systeme	2 SWS	Vorlesung (V) / 🗣	Jerono	
SS 2025	2243121	Übungen zu 2243120 Dynamik verfahrenstechnischer Systeme	1 SWS	Übung (Ü) / 🗣	Jerono	
Prüfungsv	eranstaltungen	•		•		
SS 2025	7243120	Dynamik verfahrenstechnischer Sy	Dynamik verfahrenstechnischer Systeme - Prüfung			
WS 25/26	7243120	Dynamik verfahrenstechnischer Sy	Dynamik verfahrenstechnischer Systeme - Prüfung			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgkontrolle ist eine mündliche Prüfung im Umfang von ca. 45 Minuten.

Voraussetzungen

Voraussetzung für die Teilnahme an der mündlichen Prüfung ist die schriftliche Ausarbeitung T-CIWVT-114105 - Dynamik verfahrenstechnischer Systeme - Vorleistung

6.40 Teilleistung: Dynamik verfahrenstechnischer Systeme - Vorleistung [T-CIWVT-114105]

Verantwortung: Dr.-Ing. Pascal Jerono

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-107037 - Dynamik verfahrenstechnischer Systeme

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2243120	Dynamik verfahrenstechnischer Systeme	2 SWS	Vorlesung (V) / 🗣	Jerono	
SS 2025	2243121	Übungen zu 2243120 Dynamik verfahrenstechnischer Systeme	1 SWS	Übung (Ü) / 🗣	Jerono	
Prüfungsv	eranstaltungen					
SS 2025	Dynamik verfahrenstechnischer Systeme - Vorleistung				Jerono	
WS 25/26	7243121	Dynamik verfahrenstechnischer Systeme - Vorleistung			Jerono	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bearbeitung von Aufgaben; schriftliche Ausarbeitung. Die zu bearbeitenden Aufgaben werden individuell abgeschimmt.

Voraussetzungen

6.41 Teilleistung: Einführung in die Sensorik mit Praktikum [T-CIWVT-109128]

Verantwortung: Dr. Heike Hofsäß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105933 - Einführung in die Sensorik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art2 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen					
SS 2025	6630	Einführung in die Sensorik mit Übungen	1 SWS	Vorlesung (V)	Hofsäß
Prüfungsve	eranstaltungen				
SS 2025	7220016	Einführung in die Sensorik mit Prakti	Einführung in die Sensorik mit Praktikum		
WS 25/26	7220016	Einführung in die Sensorik mit Praktikum			Hofsäß

Voraussetzungen

6.42 Teilleistung: Eingangsklausur Praktikum Prozess- und Anlagentechnik [T-CIWVT-106149]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104374 - Prozess- und Anlagentechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung schriftlich0 LPbest./nicht best.Jedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2231010	Prozess- und Anlagentechnik I - Grundlagen der Ingenieurstechnik	2 SWS	Vorlesung (V) / 🗣	Scheiff, Bajohr	
WS 25/26	2231012	Praktikum Prozess- und Anlagentechnik	1 SWS	Praktikum (P) / 🗣	Scheiff, und Mitarbeitende	
Prüfungsve	eranstaltungen					
WS 25/26	7230100	Eingangsklausur Praktikum Prozess- und Anlagentechnik			Scheiff	
WS 25/26	7230100-2	Eingangsklausur Praktikum Prozess- und Anlagentechnik			Scheiff	

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Studienleistung; unbenotete Eingangsklausur

Voraussetzungen

6.43 Teilleistung: Electrocatalysis [T-ETIT-111831]

Verantwortung: Dr. Philipp Röse

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105883 - Electrocatalysis

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2025	2304300	Electrocatalysis	3 SWS	Vorlesung (V) / 🗣	Röse	
SS 2025	2304301	Exercise to 2304300 Electrocatalysis	1 SWS	Übung (Ü) / 🗣	Röse	
Prüfungsveranstaltungen						
SS 2025	7300021	Electrocatalysis			Röse	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

The examination takes place in form of a written examination lasting 120 minutes.

6.44 Teilleistung: Elektrobiotechnologie [T-CIWVT-113148]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106518 - Elektrobiotechnologie

Teilleistungsart Prüfungsleistung mündlich	Leistungspunkte 4 LP	Notenskala Drittelnoten	Version 3

Lehrveranstaltungen						
WS 25/26	2212010	Elektrobiotechnologie	2 SWS	Vorlesung (V) / 🗣	Holtmann	
WS 25/26	2212011	Seminar zu 2212010 Elektrobiotechnologie	1 SWS	Seminar (S) / 🗣	Holtmann	
Prüfungsveranstaltungen						
SS 2025	7212010-VT-EBT	Elektrobiotechnologie			Holtmann	
WS 25/26	7212010-VT-EBT	Elektrobiotechnologie			Holtmann	

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einem Umfang von ca. 20 Minuten.

Voraussetzungen

Keine.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113829 - Elektrobiotechnologie Seminar muss erfolgreich abgeschlossen worden sein.

6.45 Teilleistung: Elektrobiotechnologie Seminar [T-CIWVT-113829]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106518 - Elektrobiotechnologie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art2 LPDrittelnoten1

Lehrveranstaltungen							
WS 25/26	2212010	Elektrobiotechnologie	2 SWS	Vorlesung (V) / 🗣	Holtmann		
WS 25/26	2212011	Seminar zu 2212010 Elektrobiotechnologie	1 SWS	Seminar (S) / ♀ ⁵	Holtmann		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7212011-S-EBT	Elektrobiotechnologie Seminar			Holtmann		
WS 25/26	7212011-S-EBT	Seminar Elektrobiotechnologie			Holtmann		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art, aktive Teilnahme am Seminar, Anwesenheitspflicht bei mindestens 80 % der Termine, benoteter Seminarvortrag mit einer Dauer von ca. 10 Minuten.

Voraussetzungen

6.46 Teilleistung: Elektrochemie [T-CHEMBIO-109773]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-106697 - Elektrochemie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3 LP	Drittelnoten	Unregelmäßig	1

Prüfungsveranstaltungen				
SS 2025	7100101EC	Elektrochemie	Schuster, Nattland, Passerini	
SS 2025	7100101EC_2	Elektrochemie	Schuster, Nattland	

Voraussetzungen

keine

6.47 Teilleistung: Energietechnik [T-CIWVT-108833]

Verantwortung: Prof. Dr.-Ing. Horst Büchner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104293 - Energietechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2232810	Energietechnik I	2 SWS	Vorlesung (V) / 🗣	Büchner	
Prüfungsveranstaltungen						
SS 2025	7231501	Energietechnik			Büchner	
WS 25/26	7231501	Energietechnik			Büchner	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.48 Teilleistung: Energieträger aus Biomasse [T-CIWVT-108828]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104288 - Energieträger aus Biomasse

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2231510	Energieträger aus Biomasse	2 SWS	Vorlesung (V) / 🗣	Bajohr	
WS 25/26	2231511	Übung zu 2231510 Energieträger aus Biomasse	1 SWS	Übung (Ü) / 🗣	Bajohr, und Mitarbeitende	
Prüfungsve	eranstaltungen					
SS 2025	7230016	Energieträger aus Biomasse	Energieträger aus Biomasse		Bajohr	
WS 25/26	7230016	Energieträger aus Biomasse			Bajohr	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.49 Teilleistung: Entrepreneurship [T-WIWI-102864]

Verantwortung: Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-CIWVT-106017 - Students Innovation Lab

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3 LP	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2545001	Entrepreneurship	2 SWS	Vorlesung (V) / 💢	Terzidis, Dang		
WS 25/26	2545001	Entrepreneurship	2 SWS	Vorlesung (V) / 🕃	Malik, Terzidis, Dang		
Prüfungsve	eranstaltungen						
SS 2025	7900002	Entrepreneurship			Terzidis		
SS 2025	7900192	Entrepreneurship			Terzidis		
SS 2025	7900376	Entrepreneurship (Withdraw) (nicht b	pestätigt)		Terzidis		
SS 2025	7900377	Entrepreneurship (Withdraw)			Terzidis		
WS 25/26	7900045	Entrepreneurship			Terzidis		
WS 25/26	7900229	Entrepreneurship			Terzidis		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Note ist die Note der schriftlichen Prüfung.

Den Studierenden wird durch gesonderte Aufgabenstellungen die Möglichkeit geboten einen Notenbonus zu erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um maximal eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

6.50 Teilleistung: Entwicklung eines innovativen Lebensmittelprodukts [T-CIWVT-108960]

Verantwortung: Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104388 - Entwicklung eines innovativen Lebensmittelprodukts

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Semester2

Lehrverans	staltungen				
SS 2025	2211220	Teamprojekt "Eco TROPHELIA": Entwicklung eines innovativen Lebensmittels	3 SWS	Projekt (PRO) / 🗣	van der Schaaf, und Mitarbeitende
WS 25/26	2211220	Teamprojekt "Eco TROPHELIA": Entwicklung eines neuartigen Lebensmittels	3 SWS	Projekt (PRO) / 🗣	van der Schaaf, Ellwanger
Prüfungsv	eranstaltungen			•	
SS 2025	7220022	Entwicklung eines innovativen Lebensmittelprodukts			van der Schaaf
WS 25/26	7220022	Entwicklung eines innovativen Lebensmittelprodukts			van der Schaaf

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO: Schriftliche Ausarbeitung/ Esposé im Umfang von ca. 20 Seiten in Gruppenarbeit.

Voraussetzungen

Keine

Anmerkungen

Es besteht die Möglichkeit zur Teilnahme am Wettbewerb "EcoTrophelia".

6.51 Teilleistung: Entwicklung eines innovativen Lebensmittelprodukts - Vortrag [T-CIWVT-111010]

Verantwortung: Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104388 - Entwicklung eines innovativen Lebensmittelprodukts

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Semester1

Lehrverans	Lehrveranstaltungen						
SS 2025	2211220	Teamprojekt "Eco TROPHELIA": Entwicklung eines innovativen Lebensmittels	3 SWS	Projekt (PRO) / 🗣	van der Schaaf, und Mitarbeitende		
WS 25/26	2211220	Teamprojekt "Eco TROPHELIA": Entwicklung eines neuartigen Lebensmittels	3 SWS	Projekt (PRO) / 🗣	van der Schaaf, Ellwanger		
Prüfungsv	eranstaltungen						
SS 2025	7220025	Entwicklung eines innovativen Lebensmittelprodukts - Vortrag			van der Schaaf		
WS 25/26	7220025	Entwicklung eines innovativen Lebensmittelprodukts - Vortrag			van der Schaaf		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO: Teilnahme am Seminar und eigener Vortrag im Umfang von ca. 20 - 30 Minuten.

Voraussetzungen

Keine

Anmerkungen

Es besteht die Möglichkeit zur Teilnahme am Wettbewerb "EcoTrophelia".

6.52 Teilleistung: Environmental Biotechnology [T-CIWVT-106835]

Verantwortung: Andreas Tiehm

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104320 - Environmental Biotechnology

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2233810	Environmental Biotechnology	2 SWS	Vorlesung (V) / 🗣	Tiehm		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7232614	Environmental Biotechnology			Tiehm		
WS 25/26	7232614	Environmental Biotechnology			Tiehm		

Legende: \blacksquare Online, \maltese Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung im Unfamg von ca. 30 Minuten

6.53 Teilleistung: Ersatz menschlicher Organe durch technische Systeme [T-MACH-105228]

Verantwortung: apl. Prof. Dr. Christian Pylatiuk **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102702 - Ersatz menschlicher Organe durch technische Systeme

TeilleistungsartPrüfungsleistung schriftlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten **Turnus**Jedes Sommersemester

Version

Lehrveranstaltungen						
SS 2025	2106008	Ersatz menschlicher Organe durch technische Systeme	2 SWS	Vorlesung (V) / €	Pylatiuk	
Prüfungsv	eranstaltungen					
SS 2025	76-T-MACH-105228	Ersatz menschlicher Organe durc	Ersatz menschlicher Organe durch technische Systeme			
WS 25/26	76-T-MACH-105228	Ersatz menschlicher Organe durc	rsatz menschlicher Organe durch technische Systeme			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen

keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

120 Std.

6.54 Teilleistung: Estimator and Observer Design [T-CIWVT-112828]

Verantwortung: Dr.-Ing. Pascal Jerono

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106320 - Estimator and Observer Design

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2243110	Estimator and Observer Design	3 SWS	Vorlesung / Übung (VÜ) / ♀ ⁵	Jerono	
Prüfungsve	eranstaltungen					
SS 2025	7243110	Estimator and Observer Design	Estimator and Observer Design			
WS 25/26	7200007	Estimator and Observer Design			Jerono	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

6.55 Teilleistung: Excercises: Membrane Technologies [T-CIWVT-113235]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105380 - Membrane Technologies in Water Treatment

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1 LP	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2233011	Membrane Technologies in Water Treatment - Excercises	1 SWS	Übung (Ü) / 🕃	Horn, Saravia, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7233011	Excercises for Membrane Technologies			Horn, Saravia		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung: Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

6.56 Teilleistung: Excursions: Water Supply [T-CIWVT-110866]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103440 - Practical Course in Water Technology

Teilleistungsart Le Studienleistung

Leistungspunkte 1 LP Notenskala best./nicht best.

Turnus Jedes Wintersemester Version 1

Prüfungsveranstaltungen				
WS 25/26	7232006	Excursions: Water Supply	Horn, Hille-Reichel	

Erfolgskontrolle(n)

Teilnahme an zwei Exkursionen, Abgabe von Exkursionsprotokollen.

6.57 Teilleistung: Extrusion Technology in Food Processing [T-CIWVT-112174]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105996 - Extrusion Technology in Food Processing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2211310	Extrusion Technology in Food Processing	2 SWS	Block (B) / ♣	Emin	
Prüfungsve	eranstaltungen					
SS 2025	7211310	Extrusion Technology in Food Proce	Extrusion Technology in Food Processing			
WS 25/26	7211310	Extrusion Technology in Food Processing			Emin	

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.58 Teilleistung: Fest Flüssig Trennung [T-CIWVT-108897]

Verantwortung: Dr.-Ing. Marco Gleiß

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104342 - Fest Flüssig Trennung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	8 LP	Drittelnoten	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2245230	Mechanische Separationstechnik	3 SWS	Vorlesung (V) / 🗣	Gleiß		
WS 25/26	2245231	Übung zu 2245230 Mechanische Separationstechnik	1 SWS	Übung (Ü) / 🗣	Gleiß		
Prüfungsve	eranstaltungen						
SS 2025	7291987	Fest Flüssig Trennung	Fest Flüssig Trennung				
WS 25/26	7245230	Fest Flüssig Trennung	est Flüssig Trennung				

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 (2) Nr. 2 SPO.

Voraussetzungen

6.59 Teilleistung: Formulierung und Darreichung biopharmazeutischer Wirkstoffe [T-CIWVT-108805]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104266 - Formulierung und Darreichung biopharmazeutischer Wirkstoffe

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2214030	Formulierung und Darreichung biopharmazeutischer Wirkstoffe	2 SWS	Vorlesung (V) / 🗣	Hubbuch	
Prüfungsve	eranstaltungen					
SS 2025	7223012	Formulierung und Darreichung bioph	narmazeuti	scher Wirkstoffe	Hubbuch	
WS 25/26	7223012	Formulierung und Darreichung bioph	narmazeuti	scher Wirkstoffe	Hubbuch	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umpfang von ca. 15 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.60 Teilleistung: Fundamentals of Water Quality [T-CIWVT-106838]

Verantwortung: Dr. Michael Wagner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103438 - Fundamentals of Water Quality

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen							
WS 25/26	2233230	Fundamentals of Water Quality	2 SWS	Vorlesung (V) / 🗣	Horn, Wagner		
WS 25/26	2233231	Fundamentals of Water Quality - Exercises	1 SWS	Übung (Ü) / 🗣	Wagner, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7232625	Fundamentals of Water Quality	·		Wagner		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

6.61 Teilleistung: Gas-Partikel-Messtechnik [T-CIWVT-108892]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104337 - Gas-Partikel-Messtechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen							
WS 25/26	2244020	Gas-Partikel-Messtechnik	2 SWS	Vorlesung (V) / 🗣	Dittler			
WS 25/26	2244021	Übungen in kleinen Gruppen zu 2244020 Gas-Partikel-Messtechnik	1 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende			
Prüfungsve	eranstaltungen							
SS 2025	7244020	Gas-Partikel-Messtechnik			Dittler			
SS 2025	7244020-W	Gas-Partikel-Messtechnik			Dittler			
WS 25/26	7244020	Gas-Partikel-Messtechnik			Dittler			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.62 Teilleistung: Gas-Partikel-Trennverfahren [T-CIWVT-108895]

Verantwortung: Dr.-Ing. Jörg Meyer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104340 - Gas-Partikel-Trennverfahren

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen							
WS 25/26	2244120	Gas-Partikel-Trennverfahren	2 SWS	Vorlesung (V) / 🗣	Meyer			
WS 25/26	2244121	Übungen in kleinen Gruppen zu 2244120 Gas-Partikel- Trennverfahren	1 SWS	Übung (Ü) / 🗣	Meyer			
Prüfungsve	eranstaltungen							
SS 2025	7244120	Gas-Partikel-Trennverfahren			Meyer			
WS 25/26	7244120	Gas-Partikel-Trennverfahren	Gas-Partikel-Trennverfahren					

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten (Einzelprüfung) bzw. 20 Minuten (Gesamtprüfung im Vertiefungsfach Gas-Partikel-Systeme) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.63 Teilleistung: Grenzflächenthermodynamik [T-CIWVT-106100]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103063 - Grenzflächenthermodynamik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnoten2

Lehrveranstaltungen							
SS 2025	2250050	Grenzflächenthermodynamik	2 SWS	Vorlesung (V) / 🗣	Enders		
Prüfungsveranstaltungen							
SS 2025	7250050	Grenzflächenthermodynamik			Enders		
WS 25/26	7250050	Grenzflächenthermodynamik			Enders		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Voraussetzungen

6.64 Teilleistung: Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie [T-MACH-102111]

Verantwortung: apl. Prof. Dr. Günter Schell **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und

Technologien

Bestandteil von: M-CIWVT-104886 - Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten **Turnus** Jedes Wintersemester Version 1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2193010	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	2 SWS	Vorlesung (V) / 🕸	Schell		
Prüfungsv	eranstaltungen						
SS 2025	76-T-MACH-102111	Grundlagen der Herstellungsverfa Pulvermetallurgie	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie				
WS 25/26	76-T-MACH-102111	Grundlagen der Herstellungsverfa Pulvermetallurgie	hren der K	eramik und	Schell		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 20-30 min. mündlichen Prüfung zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Voraussetzungen

keine

Arbeitsaufwand

120 Std.

6.65 Teilleistung: Grundlagen der Lebensmittelchemie [T-CHEMBIO-109442]

Verantwortung: Prof. Dr. Mirko Bunzel

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-104620 - Grundlagen der Lebensmittelchemie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester3

Lehrveranstaltungen						
SS 2025	6601	Grundlagen der Lebensmittelchemie I	2 SWS	Vorlesung (V) / 🗣	Bunzel	
Prüfungsve	eranstaltungen					
SS 2025	71109442	Grundlagen der Lebensmittelchemie	;		Bunzel	
WS 25/26	71109442	Grundlagen der Lebensmittelchemie	Grundlagen der Lebensmittelchemie			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen

6.66 Teilleistung: Grundlagen der Medizin für Ingenieure [T-MACH-105235]

Verantwortung: apl. Prof. Dr. Christian Pylatiuk **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102720 - Grundlagen der Medizin für Ingenieure

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4 LPDrittelnotenJedes Wintersemester2

Lehrverans	Lehrveranstaltungen						
WS 25/26	2105992	Grundlagen der Medizin für Ingenieure	2 SWS	Vorlesung (V) / 🗣	Pylatiuk		
Prüfungsve	eranstaltungen						
SS 2025	76-T-MACH-105235	Grundlagen der Medizin für Ingen	ieure		Pylatiuk		
WS 25/26	76-T-MACH-105235	Grundlagen der Medizin für Ingen	Grundlagen der Medizin für Ingenieure				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen

keine

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

120 Std.

6.67 Teilleistung: Grundlagen der Verbrennungstechnik [T-CIWVT-106104]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103069 - Grundlagen der Verbrennungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 25/26	2232010	Grundlagen der Verbrennungstechnik	2 SWS	Vorlesung (V) / 🗣	Trimis		
WS 25/26	2232011	Übungen zu 2232010 Grundlagen der Verbrennungstechnik	1 SWS	Übung (Ü) / 🗣	Trimis, und Mitarbeitende		
Prüfungsv	eranstaltungen			•			
SS 2025	7231201	Grundlagen der Verbrennungstechn	Grundlagen der Verbrennungstechnik				
WS 25/26	7231201	Grundlagen der Verbrennungstechnik			Trimis		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

6.68 Teilleistung: Grundlagenseminar Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung [T-FORUM-113579]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Studienleistung Leistungspunkte 2 LP Notenskala best./nicht best.

Turnus Jedes Sommersemester Dauer 1 Sem. Version 1

Erfolgskontrolle(n)

Studienleistung in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Es wird empfohlen, das Grundlagenseminar im gleichen Semester wie die Ringvorlesung "Wissenschaft in der Gesellschaft" zu absolvieren.

Falls ein Besuch von Ringvorlesung und Grundlagenseminar im gleichen Semester nicht möglich ist, kann das Grundlagenseminar auch in Semestern vor der Ringvorlesung besucht werden.

Der Besuch von Veranstaltungen in der Vertiefungseinheit vor dem Besuch des Grundlagenseminars sollte jedoch vermieden werden.

6.69 Teilleistung: Herstellung und Entwicklung von Krebstherapeutika [T-CIWVT-113230]

Verantwortung: PD Dr. Gero Leneweit

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106563 - Herstellung und Entwicklung von Krebstherapeutika

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2245420	Herstellung und Entwicklung von Krebstherapeutika	2 SWS	Vorlesung (V) /	Leneweit	
Prüfungsve	eranstaltungen					
SS 2025	7291420	Herstellung und Entwicklung von Kr	ebstherape	eutika	Leneweit	
WS 25/26	7291420	Herstellung und Entwicklung von Kr	ebstherape	eutika	Leneweit	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.70 Teilleistung: Heterogene Katalyse im Ingenieurwesen [T-CIWVT-114085]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107025 - Heterogene Katalyse im Ingenieurwesen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	staltungen				
SS 2025	2220040	Heterogene Katalyse im Ingenieurwesen	2 SWS	Vorlesung (V) / 🗣	Wehinger
SS 2025	2220041	Übung zu 2220040 Heterogene Katalyse im Ingenieurwesen	1 SWS	Übung (Ü) / €	Wehinger
Prüfungsv	eranstaltungen		•		•
SS 2025	7220040	Heterogene Katalyse im Ingenieurw	Heterogene Katalyse im Ingenieurwesen		
WS 25/26	7220040	Heterogene Katalyse im Ingenieurw	esen		Wehinger

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.71 Teilleistung: Hochtemperatur-Verfahrenstechnik [T-CIWVT-106109]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103075 - Hochtemperatur-Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen							
SS 2025	2232210	Hochtemperaturverfahrenstechnik	2 SWS	Vorlesung (V) /	Stapf		
SS 2025	2232211	Übung zu 2232210 Hochtemperaturverfahrenstechnik	1 SWS	Übung (Ü) / 🗣	Stapf, und Mitarbeitende		
Prüfungsv	eranstaltungen						
SS 2025	7231001	Hochtemperatur-Verfahrenstechnik	Hochtemperatur-Verfahrenstechnik		Stapf		
WS 25/26	7231001	Hochtemperatur-Verfahrenstechnik			Stapf		

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

6.72 Teilleistung: Hydrogen in Materials – Exercises and Lab Course [T-MACH-112159]

Verantwortung: Dr. rer. nat. Stefan Wagner **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-107278 - Wasserstoff in Materialien - Übungen und Laborkurs

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	4 LP	best./nicht best.	Jedes Sommersemester	1 Sem.	3

Lehrveranstaltungen						
SS 2025	2173584	Hydrogen in Materials – Exercises and Lab Course	2 SWS	Übung (Ü) / 🗣	Wagner	
WS 25/26	2173584	Hydrogen in Materials – Exercises and Lab Course	2 SWS	Übung (Ü) / 🗙	Wagner	
Prüfungsveranstaltungen						
SS 2025	76-T-MACH-112159	Hydrogen in Materials – Exercises and Lab Course			Wagner	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Regelmäßige Teilnahme und Teilnahme am Laborpraktikum inklusive Protokoll.

Voraussetzungen

T-MACH-112942 – Wasserstoff in Materialien - Übungen und Laborkurs darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-MACH-112942 - Wasserstoff in Materialien - Übungen und Laborkurs darf nicht begonnen worden sein.

Empfehlungen

Die Teilnahme ist nur parallel zur Vorlesung möglich.

Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache angeboten.

Arbeitsaufwand

120 Std.

6.73 Teilleistung: Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement [T-MACH-110923]

Verantwortung: Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-107277 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	2

Lehrverans	staltungen				
SS 2025	2173588	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement	2 SWS	Vorlesung (V) / 🗣	Pundt, Wagner
WS 25/26	2173588	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement	2 SWS	Vorlesung (V) / x	Pundt, Wagner
Prüfungsv	eranstaltungen		•		
SS 2025	76-T-MACH-110923	Hydrogen in Materials: from Ener Embrittlement	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement		
WS 25/26	76-T-MACH-110923	Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement			Pundt

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

T-MACH-108853 - Wasserstoff in Materialien darf nicht begonnen sein

T-MACH-110957 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110957 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung darf nicht begonnen worden sein.

Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache angeboten.

Arbeitsaufwand

120 Std.

6.74 Teilleistung: Industrial Wastewater Treatment [T-CIWVT-111861]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105903 - Industrial Wastewater Treatment

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen							
SS 2025	2233020	Industrial Wastewater Treatment	2 SWS	Vorlesung (V) / 🗣	Horn		
Prüfungsveranstaltungen							
SS 2025	7232007	Industrial Wastewater Treatment			Horn		
WS 25/26	7232007	Industrial Wastewater Treatment			Horn		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.75 Teilleistung: Industrielle Aspekte in der Bioprozesstechnologie [T-CIWVT-110935]

Verantwortung: Prof. Dr. Jürgen Hubbuch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105412 - Industrielle Aspekte in der Bioprozesstechnologie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2214020	Industrielle Aspekte in der Bioprozesstechnologie	2 SWS	Vorlesung (V) / ¶⁴	Hubbuch	
Prüfungsve	eranstaltungen					
SS 2025	7223016	Industrielle Aspekte in der Bioprozes	stechnolo	gie	Hubbuch	
WS 25/26	7223016	Industrielle Aspekte in der Bioprozes	ndustrielle Aspekte in der Bioprozesstechnologie			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 15 Minuten nach § 4 (2) Nr. 2 SPO

Voraussetzungen

6.76 Teilleistung: Industrielle Biokatalyse [T-CIWVT-113432]

Verantwortung: PD Dr. Jens Rudat

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106678 - Industrielle Biokatalyse

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2025	2212230	Industrielle Biokatalyse	2 SWS	Vorlesung (V) / 🗣	Rudat
Prüfungsveranstaltungen					
SS 2025	7212230-VT-IBK	Industrielle Biokatalyse			Rudat
WS 25/26	7212230_VT-IBK	Industrielle Biokatalyse			Rudat

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.77 Teilleistung: Industrielle Bioprozesse [T-CIWVT-113120]

Verantwortung: Prof. Dr.-Ing. Michael-Helmut Kopf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106501 - Industrielle Bioprozesse

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 25/26	2245810	Industrielle Bioprozesse	2 SWS	Vorlesung (V) / 🗯	Kopf		
Prüfungsveranstaltungen							
SS 2025	7291933	Industrielle Bioprozesse			Kopf		
WS 25/26	7245810	Industrielle Bioprozesse			Kopf		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten.

Voraussetzungen

6.78 Teilleistung: Innovationsmanagement für Produkte und Prozesse der chemischen Industrie [T-CIWVT-108980]

Verantwortung: Dr. Claudius Neumann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104397 - Innovationsmanagement für Produkte und Prozesse der chemischen Industrie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
SS 2025	2231330	Innovation Management for Products and Processes in the Chemical Industry	2 SWS	Block (B) / 😘	Sauer, Neumann		
WS 25/26	2231330	Innovation Management for Products and Processes in the Chemical Industry - Announcement	2 SWS	Block (B) / 😘	Sauer, Neumann		
Prüfungsv	eranstaltungen		•				
SS 2025	7231330	Innovationsmanagement für Produkt Industrie	Innovationsmanagement für Produkte und Prozesse der chemischen Industrie				
WS 25/26	7200028	Innovationsmanagement für Produkt Industrie	Neumann				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung (multiple choice) im Umfang von 60 Minuten.

Voraussetzungen

6.79 Teilleistung: Innovationsprojekt Innovative Elektronik aus druckbaren, leitfähigen Materialien [T-CIWVT-113226]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106017 - Students Innovation Lab

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 6 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen						
WS 25/26	2242062	Innovation Project Electronic Devices from Printable Conductive Materials	2 SWS	Projekt (PRO) / 🗣	Willenbacher	

Legende: Online, SP Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Schriftliche Ausarbeitung im Umfang von ca. 20 Seiten in Gruppenarbeit. Präsentation des Prototypen und des Produkts in Form eines Vortrags analog zum Pitch-Deck für die Finanzierung einer Firmengründung.

Voraussetzungen

Das Innovationspronjekt kann nur in Kombination mit einem der folgenden Module gewählt werden:

- · Innovative Concepts for Formulation and Processing of Printable Materials
- · Stabilität disperser Systeme

6.80 Teilleistung: Innovationsprojekt poröse Keramik aus dem 3D Drucker [T-CIWVT-112201]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106017 - Students Innovation Lab

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 6 LP Notenskala Drittelnoten Version 1

Lehrveranstaltungen							
WS 25/26	2242061	Innovation Project Porous Ceramics from the 3D Printer	2 SWS	Projekt (PRO) / 🗣	Willenbacher		
Prüfungsve	eranstaltungen		•	•	•		
SS 2025	7242061	nnovationsprojekt poröse Keramik aus dem 3D Drucker			Willenbacher		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Schriftliche Ausarbeitung im Umfang von ca. 20 Seiten in Gruppenarbeit. Präsentation des Prototypen und des Produkts in Form eines Vortrags analog zum Pitch-Deck für die Finanzierung einer Firmengründung.

Voraussetzungen

6.81 Teilleistung: Innovative Concepts for Formulation and Processing of Printable Materials [T-CIWVT-112170]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105993 - Innovative Concepts for Formulation and Processing of Printable Materials

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Semester1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2242060	Innovative Concepts for Formulation and Processing of Printable Materials	2 SWS	Vorlesung (V) / 🕸	Willenbacher		
Prüfungsv	eranstaltungen						
WS 25/26	7290108	nnovative Concepts for Formulation and Processing of Printable Materials			Willenbacher		

Legende: 🖥 Online, 💲 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine

Arbeitsaufwand

120 Std.

6.82 Teilleistung: Introduction to Numerical Simulation of Reacting Flows [T-CIWVT-113436]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106676 - Introduction to Numerical Simulation of Reacting Flows

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich3 LPDrittelnoten2

Lehrverans	Lehrveranstaltungen							
WS 25/26	2232130	Introduction to Numerical Simulation of Reacting Flows	2 SWS	Vorlesung (V) / ♣	Stein			
WS 25/26	2232131	Introduction to Numerical Simulation of Reacting Flows - Exercises	2 SWS	Übung (Ü) / 🗣	Stein			
Prüfungsv	eranstaltungen				•			
WS 25/26	722232130	Introduction to Numerical Simulation	Stein					

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Voraussetzung für die Teilnahme an der mündlichen Prüfung ist die bestandene Prüfungsvorleistung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113435 - Introduction to Numerical Simulation of Reacting Flows - Prerequisite muss erfolgreich abgeschlossen worden sein.

6.83 Teilleistung: Introduction to Numerical Simulation of Reacting Flows - Prerequisite [T-CIWVT-113435]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106676 - Introduction to Numerical Simulation of Reacting Flows

Teilleistungsart Studienleistung Leistungspunkte 5 LP Notenskala best./nicht best. Version 2

Lehrveran	Lehrveranstaltungen							
WS 25/26	2232130	Introduction to Numerical Simulation of Reacting Flows	2 SWS	Vorlesung (V) / 🗣	Stein			
WS 25/26	2232131	Introduction to Numerical Simulation of Reacting Flows - Exercises	2 SWS	Übung (Ü) / 🗣	Stein			
Prüfungsv	•							
WS 25/26	7232131	Introduction to Numerical Simulat	Introduction to Numerical Simulation of Reacting Flows - Prerequisite					

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung: Berichte über die Übungsblätter, die die bearbeitete Aufgabe, die erzeugten Daten und deren Analyse dokumentieren.

Voraussetzungen

6.84 Teilleistung: Journal Club - Neue Bioproduktionssysteme [T-CIWVT-113149]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-106526 - Journal Club - Neue Bioproduktionssysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
SS 2025	2212040	Journal Club – Neue Bioproduktionssysteme	2 SWS	Seminar (S) / 🗣	Holtmann		
WS 25/26	2212040	Journal Club – Neue Bioproduktionssysteme	2 SWS	Seminar (S) / 🗣	Holtmann		
Prüfungsv	eranstaltungen						
SS 2025	7212040-VT-JC	Journal Club - Neue Bioproduktionssysteme			Holtmann		
WS 25/26	7212040-VT-JC	Journal Club - Neue Bioprodukt	Journal Club - Neue Bioproduktionssysteme				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Unbenotete Studienleistung, aktive Teilnahme am Seminar, Anwesenheitspflicht bei mindestens 80 % der Termine, Seminarvortrag.

Voraussetzungen

6.85 Teilleistung: Kältetechnik B - Grundlagen der industriellen Gasgewinnung [T-CIWVT-108914]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104354 - Kältetechnik B - Grundlagen der industriellen Gasgewinnung

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen							
SS 2025	2250120	Kältetechnik B	2 SWS	Vorlesung (V) / 🗣	Grohmann			
SS 2025	2250121	Übungen zu 2250120 Kältetechnik B	1 SWS	Übung (Ü) / ♀ ⁴	Grohmann, und Mitarbeitende			
Prüfungsve	eranstaltungen							
SS 2025	7250120	Kältetechnik B - Grundlagen der ind	Kältetechnik B - Grundlagen der industriellen Gasgewinnung					
WS 25/26	7250120	Kältetechnik B - Grundlagen der ind	ustriellen G	Gasgewinnung	Grohmann			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.86 Teilleistung: Katalyse für nachhaltige chemische Produkte und Energieträger [T-CIWVT-114167]

Verantwortung: Dr. Arik Malte Beck

Prof. Dr. Jan-Dierk Grunwaldt

Dr. Erisa Saraci Prof. Dr. Felix Studt TT-Prof. Dr. Moritz Wolf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107131 - Katalyse für nachhaltige chemische Produkte und Energieträger

Teilleistungsart Leistungs|
Prüfungsleistung mündlich 4 LP

Leistungspunkte
4 LP

Notenskala
Drittelnoten

Version 1

Lehrverans	Lehrveranstaltungen						
SS 2025	5440	Katalyse für nachhaltige chemische Produkte und Energieträger (Catalysis for sustainable chemicals and energies)	2 SWS	Vorlesung (V) / 🗣	Saraci, Studt, Grunwaldt, Beck, Wolf		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7235440	Katalyse für nachhaltige chemische	Produkte ι	und Energieträger	Wolf		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Anmerkungen

Die mündliche Prüfung wird für Studierende in den Masterstudiengängen Bioingenieurwesen sowie Chemieingenieurwesen und Verfahrnestechnik von Herrn Prof. Wolf abgenommen.

6.87 Teilleistung: Katalytische Mikroreaktoren [T-CIWVT-109087]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104451 - Katalytische Mikroreaktoren

M-CIWVT-104491 - Katalytische Mikroreaktoren mit Praktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2220210	Katalytische Mikroreaktoren	2 SWS	Vorlesung (V) / 🗣	Pfeifer		
SS 2025	2220211	Praktikum zu 2220210 Katalytische Mikroreaktoren	1 SWS	Praktikum (P) / 🗣	Dittmeyer, Pfeifer, und Mitarbeitende		
WS 25/26	2220211	Praktikum zu 2220210 Katalytische Mikroreaktoren	1 SWS	Praktikum (P) / 🗣	Pfeifer, Dittmeyer, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7210211	Katalytische Mikroreaktoren			Pfeifer		
WS 25/26	7210211	Katalytische Mikroreaktoren	Katalytische Mikroreaktoren				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.88 Teilleistung: Katalytische Verfahren der Gastechnik [T-CIWVT-108827]

Verantwortung: Dr.-Ing. Siegfried Bajohr

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104287 - Katalytische Verfahren der Gastechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2231520	Katalytische Verfahren der Gastechnik	2 SWS	Vorlesung (V) / Q ⁴	Bajohr	
Prüfungsveranstaltungen						
SS 2025	7230017	Katalytische Verfahren der Gastechnik			Bajohr	
WS 25/26	7230017	Katalytische Verfahren der Gastechnik			Bajohr	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.89 Teilleistung: Kinetik und Katalyse [T-CIWVT-106032]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104383 - Kinetik und Katalyse

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
SS 2025	2220030	Kinetik und Katalyse	2 SWS	Vorlesung (V) / 🗣	Wehinger	
SS 2025	2220031	Übungen zu 2220030 Kinetik und Katalyse	1 SWS	Übung (Ü) / ♀ ⁴	Wehinger, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	7210102	Kinetik und Katalyse			Wehinger	
WS 25/26	7210102	Kinetik und Katalyse			Wehinger	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen

6.90 Teilleistung: Kommerzielle Biotechnologie [T-CIWVT-108811]

Verantwortung: Prof. Dr. Ralf Kindervater

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104273 - Kommerzielle Biotechnologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2212810	Kommerzielle Biotechnologie	2 SWS	Vorlesung (V) / ♀ ⁵	Kindervater, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	7212810-VT-KB	Kommerzielle Biotechnologie			Kindervater	
WS 25/26	7212810-VT-KB	Kommerzielle Biotechnologie			Kindervater	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Bei großer Teilnehmerzahl bzw. bei Prüfungen im Technischen Erfängzungsfach alternativ eine schriftliche Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

6.91 Teilleistung: Kreislaufwirtschaft [T-CIWVT-113815]

Verantwortung: Prof. Dr.-Ing. Dieter Stapf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106881 - Kreislaufwirtschaft

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 6 LP

Notenskala Drittelnoten

TurnusJedes Wintersemester

Version 1

Prüfungsveranstaltungen					
SS 2025	7232220	Kreislaufwirtschaft - mündliche Prüfung	Stapf		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung über die Inhalte von Vorlesung, Übung und Fallstudien mit einer Dauer von ca. 30 Minuten.

Voraussetzungen

6.92 Teilleistung: Liquid Transportation Fuels [T-CIWVT-111095]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105200 - Liquid Transportation Fuels

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2231130	Liquid Transportation Fuels	2 SWS	Vorlesung (V) /	Rauch	
WS 25/26	2231131	Exercises on 2231130 Liquid Transportation Fuels	1 SWS	Übung (Ü) / 🗣	Rauch	
Prüfungsv	eranstaltungen				•	
SS 2025	7230020	Liquid Transportation Fuels			Rauch	
WS 25/26	7230010	Liquid Transportation Fuels			Rauch	

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.93 Teilleistung: Luftreinhaltung - Gesetze, Technologie und Anwendung [T-CIWVT-112812]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106314 - Luftreinhaltung - Gesetze, Technologie und Anwendung

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen							
SS 2025	2244040	Luftreinhaltung - Gesetze, Technologie und Anwendung	2 SWS	Vorlesung (V) / ●	Dittler		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7244040	Luftreinhaltung - Gesetze, Technolog	Luftreinhaltung - Gesetze, Technologie und Anwendung				
WS 25/26	7244040	uftreinhaltung - Gesetze, Technologie und Anwendung			Dittler		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

6.94 Teilleistung: Masterarbeit [T-CIWVT-109275]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104526 - Modul Masterarbeit

Teilleistungsart
AbschlussarbeitLeistungspunkte
30 LPNotenskala
DrittelnotenTurnus
Jedes SemesterVersion
2

Voraussetzungen

SPO § 14 (1)

Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende im Fach "Erweiterte Grundlagen" dieModulprüfung "Prozess-und Anlagentechnik" sowie drei weitere Modulprüfungen in diesem Fach und das Berufspraktikum erfolgreichabgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 6 Monate

Maximale Verlängerungsfrist 4 Wochen

Korrekturfrist 8 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

6.95 Teilleistung: Materialien für elektrochemische Speicher und Wandler [T-CIWVT-108146]

Verantwortung: Prof. Dr. Jens Tübke

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104353 - Materialien für elektrochemische Speicher und Wandler

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Semester1

Lehrveranstaltungen							
SS 2025	2245840	Materialien für elektrochemische Speicher und Wandler	2 SWS	Vorlesung (V) / ♣	Tübke		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7245840	Materialien für elektrochemische Sp	Materialien für elektrochemische Speicher und Wandler				
WS 25/26	7291840	Materialien für elektrochemische Speicher und Wandler			Tübke		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen

6.96 Teilleistung: Membrane Materials & Processes Research Masterclass [T-CIWVT-113153]

Verantwortung: Prof. Dr. Andrea Schäfer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106529 - Membrane Materials & Processes Research Masterclass

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2233120	Membrane Materials & Processes Research Masterclass	4 SWS	Vorlesung / Übung (VÜ) / ⊈ ⁵	Schäfer	
Prüfungsve	Prüfungsveranstaltungen					
WS 25/26	7233120	Membrane Materials & Processes Research Masterclass				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Forschungsbericht, ca. 10 Seiten, und Vortrag, ca. 10 min.

Voraussetzungen

6.97 Teilleistung: Membrane Technologies in Water Treatment [T-CIWVT-113236]

Verantwortung: Prof. Dr. Harald Horn

Dr.-Ing. Florencia Saravia

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105380 - Membrane Technologies in Water Treatment

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2233010	Membrane Technologies in Water Treatment	2 SWS	Vorlesung (V) / 🗣	Horn, Saravia	
SS 2025	2233011	Membrane Technologies in Water Treatment - Excercises	1 SWS	Übung (Ü) / 🗯	Horn, Saravia, und Mitarbeitende	
Prüfungsv	eranstaltungen	•				
SS 2025	7233010	Membrane Technologies in Water T	Membrane Technologies in Water Treatment			
WS 25/26	7232605	Membrane Technologies in Water T	Membrane Technologies in Water Treatment			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung mit einer Dauer von 90 Minuten.

Voraussetzungen

Prüfungsvorleistung: Abgabe von Übungsblättern, Membranauslegung und kurze Präsentation (5 Minuten, Gruppenarbeit)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-113235 - Excercises: Membrane Technologies muss erfolgreich abgeschlossen worden sein.

6.98 Teilleistung: Messmethoden in der chemischen Verfahrenstechnik [T-CIWVT-109086]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104450 - Messmethoden in der Chemischen Verfahrenstechnik mit Praktikum

M-CIWVT-104490 - Messmethoden in der chemischen Verfahrenstechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten **Turnus**Jedes Sommersemester

Version

Lehrveran	Lehrveranstaltungen						
SS 2025	2220330	Messmethoden in der Chemischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Müller		
SS 2025	2220331	Praktikum zu 2220330 Messmethoden in der Chemischen Verfahrenstechnik	1 SWS	Praktikum (P) / 🗣	Müller		
Prüfungsv	eranstaltungen						
SS 2025	7210107	Messmethoden in der chemischen Verfahrenstechnik			Müller		
WS 25/26	7210107	Messmethoden in der chemischen Verfahrenstechnik			Müller		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.99 Teilleistung: Messtechnik in der Thermofluiddynamik [T-CIWVT-108837]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104297 - Messtechnik in der Thermofluiddynamik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2232040	Messtechnik in der Thermofluiddynamik	2 SWS	Vorlesung (V) / 🗣	Trimis		
WS 25/26	2232041	Übung zu 2232040 Messtechnik in der Thermofluiddynamik	1 SWS	Übung (Ü) / 🗣	Trimis		
Prüfungsv	eranstaltungen			•			
SS 2025	7231202	Messtechnik in der Thermofluiddynamik			Trimis		
WS 25/26	7231202	Messtechnik in der Thermofluiddynamik			Trimis		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

6.100 Teilleistung: Methoden und Prozesse der PGE -Produktgenerationsentwicklung [T-MACH-109192]

Prof. Dr.-Ing. Albert Albers Verantwortung:

Prof. Dr.-Ing. Norbert Burkardt

KIT-Fakultät für Maschinenbau Einrichtung:

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

M-MACH-102718 - Produktentstehung - Entwicklungsmethodik Bestandteil von:

> **Teilleistungsart** Prüfungsleistung schriftlich

Leistungspunkte 6 LP

Notenskala Drittelnoten

Turnus Jedes Sommersemester Version

Lehrveranstaltungen							
SS 2025	2146176	Methoden und Prozesse der PGE – Produktgenerationsentwicklung	4 SWS	Vorlesung (V) / 🗣	Albers, Düser		
Prüfungsv	eranstaltungen			•	•		
SS 2025	76-T-MACH-105382	Methoden und Prozesse der PGE - Produktgenerationsentwicklung			Albers, Düser		
SS 2025	76-T-MACH-105382-en	Methods and Processes of PGE - Product Generation Engineering			Albers, Düser		
WS 25/26	76-T-MACH-105382	Methoden und Prozesse der PGE - Produktgenerationsentwicklung			Albers, Burkardt		
WS 25/26	76-T-MACH-105382-en	Methods and Processes of PGE - Product Generation Engineering			Albers		

Legende: 🖥 Online, 🥸 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Bearbeitungszeit: 120 min + 10 min Einlesezeit)

Hilfsmittel:

- · Nicht-programmierbare Taschenrechner
- Deutsche Wörterbücher (nur echte Bücher)

Voraussetzungen

Keine

Anmerkungen

Aufbauend auf dieser Vorlesung wird zur Vertiefung die Schwerpunkt-Vorlesung Integrierte Produktentwicklung angeboten. Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

180 Std.

6.101 Teilleistung: Mikrofluidik [T-CIWVT-108909]

Verantwortung: PD Dr. Gero Leneweit

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104350 - Mikrofluidik

M-CIWVT-105205 - Mikrofluidik mit Fallstudien

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen						
WS 25/26	2245410	Mikrofluidik - Grundlagen und Anwendungen	2 SWS	Vorlesung (V) / 🗣	Leneweit	
Prüfungsve	eranstaltungen					
SS 2025	7291410	Mikrofluidik			Leneweit	
WS 25/26	7291410	Mikrofluidik			Leneweit	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.102 Teilleistung: Mikrofluidik - Fallstudien [T-CIWVT-110549]

Verantwortung: PD Dr. Gero Leneweit

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105205 - Mikrofluidik mit Fallstudien

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2 LP	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2245411	Fallstudien zur Mikrofluidik (Praktikum zu 2245410)	1 SWS	Praktikum (P) / 🗣	Leneweit	
Prüfungsve	eranstaltungen					
SS 2025	7291965	Mikrofluidik - Fallstudien			Leneweit	
WS 25/26	7291411	Mikrofluidik - Fallstudien			Leneweit	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung.

Voraussetzungen

6.103 Teilleistung: Mikrorheologie und Hochfrequenzrheometrie [T-CIWVT-108977]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik **Bestandteil von:** M-CIWVT-104395 - Mikrorheologie und Hochfrequenzrheometrie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich2 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2242110	Mikrorheologie und Hochfrequenzrheometrie	1 SWS	Vorlesung (V) / ●	Oelschlaeger	
Prüfungsve	eranstaltungen					
SS 2025	7290301	Mikrorheologie und Hochfrequenzrheometrie			Oelschlaeger	
WS 25/26	7290301	Mikrorheologie und Hochfrequenzrheometrie			Oelschlaeger	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Voraussetzung ist die Teilnahme an einer Fallstudie.

Voraussetzungen

6.104 Teilleistung: Mischen, Rühren, Agglomeration [T-CIWVT-110895]

Verantwortung: Dr.-Ing. Frank Rhein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105399 - Mischen, Rühren, Agglomeration

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen							
SS 2025	2245310	Mischen, Rühren und Agglomerieren	3 SWS	Vorlesung (V) / ♣	Rhein		
Prüfungsveranstaltungen							
SS 2025	7291907	Mischen, Rühren, Agglomeration			Nirschl, Rhein		
WS 25/26	7291907	Mischen, Rühren, Agglomeration			Nirschl, Rhein		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine individuelle mündliche Prüfung mit einem Umfang von 30 Minuten nach § 4 Abs. 2 SPO.

Voraussetzungen

6.105 Teilleistung: Modeling Wastewater Treatment Processes [T-BGU-112371]

Verantwortung: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften **Bestandteil von:** M-BGU-106113 - Modeling Wastewater Treatment Processes

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	6 LP	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2025	6223816	Modelling Wastewater Treatment Processes	4 SWS	Vorlesung / Übung (VÜ) / ♀ ⁵	Azari Najaf Abad	
Prüfungsveranstaltungen						
SS 2025	8244112371	Modeling Wastewater Treatment Processes			Azari Najaf Abad	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

schriftliche Ausarbeitung, ca. 10 Seiten, und Präsentation, ca. 10 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

Die Teilnehmerzahl ist auf 20 begrenzt. Die Anmeldung erfolgt über ILIAS. Die Plätze werden unter Berücksichtigung des Studienfortschritts vergeben, vorrangig an Studierende aus *Water Science and Engineering*, dann *Bauingenieurwesen*, *Chemieingenieurwesen und Verfahrenstechnik*, *Geoökologie* und weiteren Studiengängen.

Arbeitsaufwand

180 Std.

6.106 Teilleistung: Modellbildung elektrochemischer Systeme [T-ETIT-100781]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100508 - Modellbildung elektrochemischer Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2304217	Modellbildung elektrochemischer Systeme	2 SWS	Vorlesung (V) / ♣	Weber	
Prüfungsve	eranstaltungen					
SS 2025	7304217	Modellbildung elektrochemischer Sy	/steme		Weber	
WS 25/26	7304217	Modellbildung elektrochemischer Sy	Modellbildung elektrochemischer Systeme			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 Minuten.

Voraussetzungen

keine

Empfehlungen

Die Inhalte der Vorlesung "Batterien und Brennstoffzelle" werden als bekannt vorausgesetzt. Studierenden, die diese Vorlesung (noch) nicht gehört haben, wird empfohlen das Skript zu dieser Vorlesung vorab durchzuarbeiten.

6.107 Teilleistung: Modellbildung und Simulation in der Thermischen Verfahrenstechnik [T-CIWVT-113702]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106832 - Modellbildung und Simulation in der Thermischen Verfahrenstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art6 LPDrittelnoten1

Lehrveranstaltungen						
WS 25/26	2260160	Modellbildung und Simulation in der Thermischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Zeiner	
WS 25/26	2260161	Übung zu 2260160 Modellbildung und Simulation in der Thermischen Verfahrenstechnik	2 SWS	Übung (Ü) / ♀	Zeiner, und Mitarbeitende	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Bewertet wird die Projektpräsentation in Form eines Berichtes (maximal 30 Seiten) und eines Vortrages (ca. 20 Minuten).

Voraussetzungen

Keine.

Anmerkungen

Bei Bedarf wird die Lehrveranstaltung in englischer Sprache angeboten.

6.108 Teilleistung: Modern Concepts in Catalysis: From Science to Engineering [T-CIWVT-114168]

Verantwortung: Prof. Dr. Jan-Dierk Grunwaldt

Prof. Dr. Felix Studt

Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107149 - Modern Concepts in Catalysis: From Science to Engineering

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten

Version 1

Lehrveranstaltungen					
SS 2025		Modern Concepts in Catalysis: From Science to Engineering	2 SWS	Vorlesung (V) / 🗣	Studt, Grunwaldt, Wehinger

Legende: 🖥 Online, 😘 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Anmerkungen

Die mündliche Prüfung wird für Studierende in den Masterstudiengängen Bioingenieurwesen sowie Chemieingenieurwesen und Verfahrnestechnik von Herrn Prof. Wehinger abgenommen.

6.109 Teilleistung: Molekularbiologie und Genetik [T-CHEMBIO-103675]

Verantwortung: Prof. Dr. Jörg Kämper

Prof. Dr. Natalia Requena Sanchez

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-106204 - Molekularbiologie und Genetik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5 LPDrittelnoten1

Lehrverans	staltungen				
WS 25/26	7301	Molekularbiologie (BA-04)	2 SWS	Vorlesung (V) / 🗣	Requena Sanchez
WS 25/26	7400721	KOPIE Genetik (BA-04)	2 SWS	Vorlesung (V) / 😘	Kämper, Kaster
WS 25/26	7401	Genetik (BA-04)	2 SWS	Vorlesung (V) / 🕃	Kämper, Kaster
Prüfungsv	eranstaltungen				
SS 2025	71103675	INF_Bio_Molekularbiologie und (INF_Bio_Molekularbiologie und Genetik		
WS 25/26	71INF-103675	Molekularbiologie und Genetik			Kämper, Fischer, Requena Sanchez

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Klausur über die Vorlesungen Genetik (3LP) und Molekularbiologie (2LP)

Voraussetzungen

keine

Empfehlungen

wichtige Informationen auf:

http://www.biologie.kit.edu/310.php

Arbeitsaufwand

150 Std.

6.110 Teilleistung: Nanopartikel - Struktur und Funktion [T-CIWVT-108894]

Verantwortung: Dr.-Ing. Jörg Meyer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104339 - Nanopartikel - Struktur und Funktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveran	staltungen				
SS 2025	2244110	Nanopartikel - Struktur und Funktion	2 SWS	Vorlesung (V) / 🗣	Meyer
SS 2025	2244111	Übungen zu 2244110 Nanopartikel - Struktur und Funktion	1 SWS	Übung (Ü) / 🗣	Meyer
Prüfungsv	eranstaltungen	•		•	
SS 2025	7244110	Nanopartikel - Struktur und Funktior	1		Meyer
SS 2025	7244110-W	Nanopartikel - Struktur und Funktior	Nanopartikel - Struktur und Funktion		
WS 25/26	7244110	Nanopartikel - Struktur und Funktior	Nanopartikel - Struktur und Funktion		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten (Einzelprüfung) bzw. 20 Minuten (Gesamtprüfung im Vertiefungsfach Gas-Partikel-Systeme) nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen

6.111 Teilleistung: NMR im Ingenieurwesen [T-CIWVT-108984]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104401 - NMR im Ingenieurwesen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen								
WS 25/26	2245130	NMR im Ingenieurwesen	2 SWS	Vorlesung (V) /	Guthausen			
WS 25/26	2245131	Praktikum zu 2245130 NMR im Ingenieurwesen	2 SWS	Praktikum (P) / 🗣	Guthausen			
Prüfungsveranstaltungen								
SS 2025	7291954	NMR im Ingenieurwesen	Guthausen					
WS 25/26	7291130	NMR im Ingenieurwesen			Guthausen			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Praktikum muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-109144 - Praktikum zu NMR im Ingenieurwesen muss erfolgreich abgeschlossen worden sein.

6.112 Teilleistung: NMR-Methoden zur Produkt- und Prozessanalyse [T-CIWVT-111843]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105890 - NMR-Methoden zur Produkt- und Prozessanalyse

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen									
WS 25/26	2245130	NMR im Ingenieurwesen	2 SWS	Vorlesung (V) /	Guthausen				
Prüfungsveranstaltungen									
WS 25/26	7291130	NMR im Ingenieurwesen			Guthausen				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.113 Teilleistung: Nonlinear Process Control [T-CIWVT-112824]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106316 - Nonlinear Process Control

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrveranstaltungen							
WS 25/26	2243050	Nonlinear Process Control	3 SWS	Vorlesung / Übung (VÜ) / ♀	Meurer		
Prüfungsve	eranstaltungen						
SS 2025	7243050	Nonlinear Process Control			Meurer		
WS 25/26	7200006	Nonlinear Process Control			Meurer		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung.

Voraussetzungen

6.114 Teilleistung: Numerical Simulation of Reacting Multiphase Flows [T-CIWVT-114118]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107076 - Numerical Simulation of Reacting Multiphase Flows

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich3 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen						
SS 2025	2232120	Numerical Simulation of Reacting Multiphase Flows	2 SWS	Vorlesung (V) / ●	Stein		
SS 2025	2232121	Numerical Simulation of Reacting Multiphase Flows - Exercises	2 SWS	Übung (Ü) / 🗣	Stein, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7232121	Numerical Simulation of Reacting Multiphase Flows			Stein		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Voraussetzung für die Teilnahme an der mündlichen Prüfung ist die bestandene Prüfungsvorleistung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-114117 - Numerical Simulation of Reacting Multiphase Flows - Prerequisite muss erfolgreich abgeschlossen worden sein.

6.115 Teilleistung: Numerical Simulation of Reacting Multiphase Flows - Prerequisite [T-CIWVT-114117]

Verantwortung: Prof. Dr. Oliver Thomas Stein

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107076 - Numerical Simulation of Reacting Multiphase Flows

Teilleistungsart
StudienleistungLeistungspunkte
5 LPNotenskala
best./nicht best.Version
1

Lehrverans	Lehrveranstaltungen						
SS 2025	2232120	Numerical Simulation of Reacting Multiphase Flows	2 SWS	Vorlesung (V) / ♣	Stein		
SS 2025	2232121	Numerical Simulation of Reacting Multiphase Flows - Exercises	2 SWS	Übung (Ü) / 🗣	Stein, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7232120	Numerical Simulation of Reacting Multiphase Flows - Prerequisite			Stein		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studienleistung: Berichte über die Übungsblätter, die die bearbeitete Aufgabe, die erzeugten Daten und deren Analyse dokumentieren.

Voraussetzungen

6.116 Teilleistung: Numerische Methoden in der Strömungsmechanik [T-MATH-105902]

Verantwortung: Prof. Dr. Willy Dörfler

PD Dr. Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102932 - Numerische Methoden in der Strömungsmechanik

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 4 LP

Notenskala Drittelnoten Version 1

Lehrveran	staltungen				
SS 2025	0103100	Numerische Methoden in der Strömungsmechanik	2 SWS	Vorlesung (V) /	Thäter
SS 2025	0103110	Übungen zu 0103100	1 SWS	Übung (Ü) /	Thäter
SS 2025	0161600	Numerical Methods in Fluidmechanics	2 SWS	Vorlesung (V)	Dörfler
SS 2025	0164200	Numerische Methoden in der Strömungsmechanik	2 SWS	Vorlesung (V)	Thäter
SS 2025	0164210	Übungen zu 0164210 (Numerische Methoden in der Strömungsmechanik)	1 SWS	Übung (Ü)	Thäter
Prüfungsv	veranstaltungen			•	•
SS 2025	7700037	Numerische Methoden in der Strömungsmechanik			Dörfler
SS 2025	7700154	Numerische Methoden in der Ströme	Numerische Methoden in der Strömungsmechanik		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Voraussetzungen

6.117 Teilleistung: Numerische Strömungssimulation [T-CIWVT-106035]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103072 - Numerische Strömungssimulation

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen				
WS 25/26	2245020	Numerische Strömungssimulation	2 SWS	Vorlesung (V) / 🗣	Nirschl, und Mitarbeitende
WS 25/26	2245021	Übungen zu 2245020 Numerische Strömungssimulation (in kleinen Gruppen)	1 SWS	Übung (Ü) / 🗣	Nirschl, und Mitarbeitende
Prüfungsv	eranstaltungen				•
SS 2025	7291932	Numerische Strömungssimulation			Nirschl
WS 25/26	7291020	Numerische Strömungssimulation			Nirschl

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

6.118 Teilleistung: Optimal and Model Predictive Control [T-CIWVT-112825]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106317 - Optimal and Model Predictive Control

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrverans	staltungen				
SS 2025	2243030	Optimal and Model Predictive Control	2 SWS	Vorlesung (V) / 🗣	Meurer
SS 2025	2243031	Optimal and Model Predictive Control - Exercises	1 SWS	Übung (Ü) / 🗣	Meurer
Prüfungsv	eranstaltungen				
SS 2025	7243030	Optimal and Model Predictive Control			Meurer
WS 25/26	7250001	Optimal and Model Predictive Control			Meurer

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Einrichtung:

6.119 Teilleistung: Paralleles Rechnen [T-MATH-102271]

Verantwortung: PD Dr. Mathias Krause

Prof. Dr. Christian Wieners KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101338 - Paralleles Rechnen

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich5 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen						
SS 2025	0162000	Paralleles Rechnen in Theorie und Praxis	2 SWS	Vorlesung (V) /	Krause, Bülow		
SS 2025	0162100	Übungen zu 0162000	2 SWS	Übung (Ü) / 🖥	Krause, Bülow		
WS 25/26	0100055	Parallel Computing	3 SWS	Vorlesung (V)	Krause, Simonis		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Voraussetzungen

keine

6.120 Teilleistung: Partikeltechnik Klausur [T-CIWVT-106028]

Verantwortung: Prof. Dr.-Ing. Achim Dittler

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104378 - Partikeltechnik

Teilleistungsart Leistungspunkte Prüfungsleistung schriftlich 6 LP Notenskala Drittelnoten 1

Lehrveranstaltungen							
SS 2025	2244030	Partikeltechnik	2 SWS	Vorlesung (V) / 🗣	Dittler		
SS 2025	2244031	Übungen in kleinen Gruppen zu 2244030 Partikeltechnik	1 SWS	Übung (Ü) / 🗣	Dittler, und Mitarbeitende		
Prüfungsv	eranstaltungen						
SS 2025	7244030	Partikeltechnik Klausur			Dittler		
WS 25/26	7244030	Partikeltechnik Klausur			Dittler		

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen

6.121 Teilleistung: Physical Foundations of Cryogenics [T-CIWVT-106103]

Verantwortung: Prof. Dr.-Ing. Steffen Grohmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103068 - Physical Foundations of Cryogenics

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen							
SS 2025	2250130	Physical Foundations of Cryogenics	2 SWS	Vorlesung (V) / €	Grohmann			
SS 2025	2250131	Physical Foundations of Cryogenics - Exercises	1 SWS	Übung (Ü) / ♀ ⁴	Grohmann			
Prüfungsve	eranstaltungen							
SS 2025	7250130	Physical Foundations of Cryogenics			Grohmann			
WS 25/26	7250130	Physical Foundations of Cryogenics			Grohmann			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.122 Teilleistung: Polymerthermodynamik [T-CIWVT-113796]

Verantwortung: Prof. Dr. Sabine Enders

Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106882 - Polymerthermodynamik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2250060	Polymerthermodynamik	2 SWS	Vorlesung (V) / 🗣	Enders		
WS 25/26	2250061	Übungen zu 2250060 Polymerthermodynamik	1 SWS	Übung (Ü) / ♀	Enders		
Prüfungsve	eranstaltungen		•	•			
SS 2025	7250060	Polymerthermodynamik			Enders		
WS 25/26	7250060	Polymerthermodynamik			Enders		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.123 Teilleistung: Power-to-X – Key Technology for the Energy Transition [T-CIWVT-111841]

Verantwortung: Prof. Dr.-Ing. Roland Dittmeyer

Dr. Peter Holtappels

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105891 - Power-to-X – Key Technology for the Energy Transition

Teilleistungsart
Prüfungsleistung mündlichLeistungspunkte
4 LPNotenskala
DrittelnotenTurnus
Jedes SemesterDauer
1 Sem.Version
1

Lehrveranstaltungen							
SS 2025	2220110	Power-to-X: Key Technology for the Energy Transition	2 SWS	Vorlesung (V) / ♣	Holtappels, Navarrete Munoz		
WS 25/26	2220110	Power-to-X – Key Technology for the Energy Transition	2 SWS	Vorlesung (V) / ♣	Holtappels		
Prüfungsv	eranstaltungen						
SS 2025	7220110	Power-to-X – Key Technology for the Energy Transition			Holtappels		
WS 25/26	7220110	Power-to-X – Key Technology for the	Energy T	ransition	Holtappels		

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.124 Teilleistung: Practical Course in Water Technology [T-CIWVT-106840]

Verantwortung: Dr. Andrea Hille-Reichel

Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103440 - Practical Course in Water Technology

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3 LP	Drittelnoten	Jedes Wintersemester	4

Lehrveranstaltungen						
WS 25/26	2233032	Praktikum Wassertechnologie und Wasserbeurteilung (Practical Course in Water Technology)	2 SWS	Praktikum (P) / 🗣	Horn, Hille-Reichel, und Mitarbeitende	
Prüfungsve	eranstaltungen					
SS 2025	7232664	Practical Course in Water Technology			Horn, Hille-Reichel	
WS 25/26	7232664	Practical Course in Water Technology			Horn, Hille-Reichel	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

6 Versuche inkl. Eingangskolloquium und Protokoll; Vortrag zu einem Versuch; mündliches Abschlusstestat (Dauer 15 min). Das Abschlusstestat findet nach der Abgabe der Protokolle und der Vorstellung eines ausgewählten Versuchs statt.

Voraussetzungen

Teilnahme an der Exkursion, Exkursionsbericht.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Das Modul M-CIWVT-103407 Water Technology muss begonnen worden sein.
- 2. Die Teilleistung T-CIWVT-110866 Excursions: Water Supply muss erfolgreich abgeschlossen worden sein.

6.125 Teilleistung: Practical in Additive Manufacturing for Process Engineering [T-CIWVT-110903]

Verantwortung: TT-Prof. Dr. Christoph Klahn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105407 - Additive Manufacturing for Process Engineering

Teilleistungsart Studienleistung praktisch

Leistungspunkte 1 LP Notenskala best./nicht best.

Version 1

Lehrveranstaltungen							
SS 2025	2241021	Practical in Additive Manufacturing for Process Engineering	1 SWS	Praktikum (P) / 🗣	Klahn		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7241021	Practical in Additive Manufacturing for Process Engineering			Klahn		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung nach § 4 Abs. 3 SPO: Teilnahme an 8 Praktikumsversuchen.

6.126 Teilleistung: Practical in Power-to-X: Key Technology for the Energy Transition [T-CIWVT-111842]

Verantwortung: Prof. Dr.-Ing. Roland Dittmeyer

Dr. Peter Holtappels

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105891 - Power-to-X - Key Technology for the Energy Transition

TeilleistungsartLeistungspunkteNotenskalaTurnusDauerVersionStudienleistung praktisch2 LPbest./nicht best.Jedes Semester1 Sem.1

Lehrveranstaltungen							
SS 2025	2220111	Practical in Power-to-X: Key Technology for the Energy Transition	1 SWS	Praktikum (P) / 🗣	Holtappels, Navarrete Munoz		
WS 25/26	2220111	Practical in Power-to-X: Key Technology for the Energy Transition	1 SWS	Praktikum (P) / 🗣	Holtappels		
Prüfungsv	eranstaltungen						
SS 2025	7220111	Practical in Power-to-X: Key Technology for the Energy Transition			Holtappels		
WS 25/26	7220111	Practical in Power-to-X: Key Techno	logy for the	e Energy Transition	Holtappels		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Unbenotete Studienleistung: Teilnahme an allen vier Praktikumsversuchen.

Voraussetzungen

Keine

Anmerkungen

Termine nach Vereinbarung, Ort: IMVT, KIT Campus Nord, Energy Lab 2.0, Geb. 605.

6.127 Teilleistung: Praktikum Messmethoden in der Chemischen Verfahrenstechnik [T-CIWVT-109181]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104450 - Messmethoden in der Chemischen Verfahrenstechnik mit Praktikum

Teilleistungsart Studienleistung praktisch Leistungspunkte 2 LP Notenskala best./nicht best.

TurnusJedes Sommersemester

Version 1

Lehrverans	staltungen					
SS 2025	2220330	Messmethoden in der Chemischen Verfahrenstechnik	2 SWS	Vorlesung (V) / 🗣	Müller	
SS 2025	2220331	Praktikum zu 2220330 Messmethoden in der Chemischen Verfahrenstechnik	1 SWS	Praktikum (P) / 🗣	Müller	
SS 2025	2220332	Kolloquium zu 2220330 Messmethoden in der Chemischen Verfahrenstechnik		Kolloquium (KOL) /	Müller	
Prüfungsv	eranstaltungen				•	
SS 2025	7210108	Praktikum Messmethoden in der Chemischen Verfahrenstechnik			Müller	
WS 25/26	7210108	Praktikum Messmethoden in der Ch	Praktikum Messmethoden in der Chemischen Verfahrenstechnik			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung (Praktikum) nach § 4 Abs. 3 SPO.

Voraussetzungen

6.128 Teilleistung: Praktikum Prozess- und Anlagentechnik [T-CIWVT-106148]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104374 - Prozess- und Anlagentechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung praktisch	0 LP	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 25/26	2231012	Praktikum Prozess- und Anlagentechnik	1 SWS	Praktikum (P) / 🗣	Scheiff, und Mitarbeitende	
Prüfungsveranstaltungen						
WS 25/26	7230101	Praktikum Prozess- und Anlagentechnik			Scheiff	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Studinleistung: Praktikum.

Voraussetzungen

Eingangsklausur Praktikum

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-106149 - Eingangsklausur Praktikum Prozess- und Anlagentechnik muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Das Praktikum dauert einen Tag und findet am Campus Nord statt.

6.129 Teilleistung: Praktikum zu Katalytische Mikroreaktoren [T-CIWVT-109182]

Verantwortung: Prof. Dr.-Ing. Peter Pfeifer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104491 - Katalytische Mikroreaktoren mit Praktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung praktisch	2 LP	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen							
SS 2025	2220211	Praktikum zu 2220210 Katalytische Mikroreaktoren	1 SWS	Praktikum (P) / 🗣	Dittmeyer, Pfeifer, und Mitarbeitende			
WS 25/26	2220211	Praktikum zu 2220210 Katalytische Mikroreaktoren	1 SWS	Praktikum (P) / 🗣	Pfeifer, Dittmeyer, und Mitarbeitende			
Prüfungsve	eranstaltungen				•			
SS 2025	7210212	Praktikum zu Katalytische Mikroreaktoren			Pfeifer			
WS 25/26	7210212	Praktikum zu Katalytische Mikroreak	Praktikum zu Katalytische Mikroreaktoren					

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung (Praktikum) nach § 4 Abs. 3 SPO.

Voraussetzungen

6.130 Teilleistung: Praktikum zu NMR im Ingenieurwesen [T-CIWVT-109144]

Verantwortung: apl. Prof. Dr. Gisela Guthausen

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104401 - NMR im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung praktisch2 LPbest./nicht best.Jedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2245130	NMR im Ingenieurwesen	2 SWS	Vorlesung (V) / €	Guthausen		
WS 25/26	2245131	Praktikum zu 2245130 NMR im Ingenieurwesen	2 SWS	Praktikum (P) / 🗣	Guthausen		
Prüfungsveranstaltungen							
WS 25/26	7291955	Praktikum zu NMR im Ingenieurwesen			Guthausen		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle ist ein unbenotetes Praktikum (Studienleistung) nach § 4 Abs. 3 SPO.

Voraussetzungen

6.131 Teilleistung: Principles of Constrained Static Optimization [T-CIWVT-112811]

Verantwortung: Dr.-Ing. Pascal Jerono

Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106313 - Principles of Constrained Static Optimization

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten Version 1

Lehrveranstaltungen						
WS 25/26						
Prüfungsve	eranstaltungen					
SS 2025	7243060	Principles of Constrained Static Opti	mization		Jerono	
WS 25/26	7200054	Principles of Constrained Static Opti	Principles of Constrained Static Optimization			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

6.132 Teilleistung: Process Engineering in Wastewater Treatment [T-BGU-106787]

Verantwortung: Dr.-Ing. Tobias Morck

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften **Bestandteil von:** M-BGU-103399 - Process Engineering in Wastewater Treatment

TeilleistungsartPrüfungsleistung schriftlich

Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Wintersemester Version

Erfolgskontrolle(n)

schriftliche Prüfung, 60 min.

Voraussetzungen

interne Prüfungsvorleistung: Gruppenvortrag, ca. 20 min., und schriftliche Ausarbeitung, ca. 10 Seiten

Empfehlungen

keine

Anmerkungen

wird nicht mehr angeboten

Arbeitsaufwand

180 Std.

6.133 Teilleistung: Prozess- und Anlagentechnik Klausur [T-CIWVT-106150]

Verantwortung: Dr. Frederik Scheiff

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104374 - Prozess- und Anlagentechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	8 LP	Drittelnoten	Jedes Semester	1

Lehrverans	staltungen						
SS 2025	2231011	Prozess - und Anlagentechnik II - Prozesse	3 SWS	Vorlesung (V) /	Scheiff, Bajohr		
WS 25/26	2231010	Prozess- und Anlagentechnik I - Grundlagen der Ingenieurstechnik	2 SWS	Vorlesung (V) / 🗣	Scheiff, Bajohr		
WS 25/26	2231012	Praktikum Prozess- und Anlagentechnik	1 SWS	Praktikum (P) / 🗣	Scheiff, und Mitarbeitende		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7230102	Prozess- und Anlagentechnik Klausur			Scheiff		
WS 25/26	7230102	Prozess- und Anlagentechnik Klaus	Scheiff				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 180 Minuten.

Voraussetzungen

Keine

Empfehlungen

Die Inhalte des Praktikums Prozess und Anlagentechnik sind Klausurrelevant. Die Klausurteilnahme wird erst nach erfolgreich bestandenem Praktikum empfohlen!

6.134 Teilleistung: Prozessanalyse: Modellierung, Data Mining, Machine Learning [T-ETIT-111214]

Verantwortung: Dr.-Ing. Christian Borchert

Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105594 - Prozessanalyse: Modellierung, Data Mining, Machine Learning

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1 Sem.	2

Lehrveranstaltungen						
SS 2025	2302145	Prozessanalyse: Modellierung, Data Mining, Machine Learning	2 SWS	Vorlesung (V) / ♥	Borchert	
Prüfungsv	eranstaltungen					
SS 2025	7302145	Prozessanalyse: Modellierung, Data	Prozessanalyse: Modellierung, Data Mining, Machine Learning			
WS 25/26	7302145	Prozessanalyse: Modellierung, Data Mining, Machine Learning			Borchert	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, Note gemäß Ergebnis der Prüfung

Voraussetzungen

keine

Empfehlungen

Grundlagen in: Mathematik, Differentialgleichungen, Lineare Algebra, Statistik, Grundkenntnisse in Matlab

6.135 Teilleistung: Prozessmodellierung in der Aufarbeitung [T-CIWVT-106101]

Verantwortung: apl. Prof. Dr. Matthias Franzreb

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103066 - Prozessmodellierung in der Aufarbeitung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
SS 2025	2214110	Prozessmodellierung in der Bioproduktaufarbeitung	2 SWS	Vorlesung (V) / Q ⁴	Franzreb		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7223015	Prozessmodellierung in der Aufarbeitung			Franzreb		
WS 25/26	7223015	Prozessmodellierung in der Aufarbeitung			Franzreb		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung

Voraussetzungen

6.136 Teilleistung: Raffinerietechnik - flüssige Energieträger [T-CIWVT-108831]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104291 - Raffinerietechnik - flüssige Energieträger

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2025	2231120	Raffinerietechnik - Flüssige Energieträger	2 SWS	Vorlesung (V) / 🗣	Rauch		
SS 2025	2231121	Übung zu 2231120 Raffinerietechnik	1 SWS	Übung (Ü) / €	Rauch, und Mitarbeitende		
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7230011	Raffinerietechnik - flüssige Energieträger			Rauch		
WS 25/26	7230011	Raffinerietechnik - flüssige Energieträger			Rauch		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.137 Teilleistung: Reactor Modeling with CFD [T-CIWVT-113224]

Verantwortung: Prof. Dr.-Ing. Gregor Wehinger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106537 - Reactor Modeling with CFD

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung anderer Art4 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen					
SS 2025	2220060	Reactor Modeling with CFD	1 SWS	Vorlesung (V) / 🗣	Wehinger, Reinold	
SS 2025	2220061	Exercise Reactor Modeling with CFD	2 SWS	Übung (Ü) / ♀ ⊧	Wehinger, und Mitarbeitende	
Prüfungsveranstaltungen						
SS 2025	7220060	Reactor Modeling with CFD			Wehinger	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Voraussetzungen

6.138 Teilleistung: Reaktionskinetik [T-CIWVT-108821]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104283 - Reaktionskinetik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen							
WS 25/26	2220310	Reaktionskinetik	2 SWS	Vorlesung (V) / ●	Müller		
WS 25/26	2220311	Übungen zu 2220310 Reaktionskinetik	1 SWS	Übung (Ü) / 🗣	Müller		
WS 25/26	2220312	Kolloquium zu 2220310 Reaktionskinetik	2 SWS	Kolloquium (KOL) /	Müller		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	25 7210109 Reaktionskinetik				Müller		
WS 25/26	7210109	Reaktionskinetik		Müller			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.139 Teilleistung: Regelung verteilt-parametrischer Systeme [T-CIWVT-112826]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106318 - Regelung verteilt-parametrischer Systeme

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrveranstaltungen							
SS 2025	2243040	Regelung verteilt-parametrischer Systeme	3 SWS	Block (B) / ⊈ ⁵	Meurer		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7243040	Regelung verteilt-parametrischer Systeme			Meurer		
WS 25/26	7250002	Regelung verteilt-parametrischer Systeme			Meurer		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

6.140 Teilleistung: Rheologie Disperser Systeme [T-CIWVT-108963]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104391 - Rheologie Disperser Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	2 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2025	2242040	Rheologie disperser Systeme	1 SWS	Vorlesung (V) / 🗣	Willenbacher	
Prüfungsv	Prüfungsveranstaltungen					
SS 2025	7290101	Rheologie Disperser Systeme			Willenbacher	
WS 25/26	7290101	Rheologie Disperser Systeme			Willenbacher	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.141 Teilleistung: Rheologie komplexer Fluide und moderne rheologische Messmethoden [T-CIWVT-108886]

Verantwortung: Dr.-Ing. Claude Oelschlaeger

Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104331 - Rheologie komplexer Fluide und moderne rheologische Messmethoden

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte 4 LP **Notenskala** Drittelnoten **Turnus** Jedes Sommersemester Version

Lehrveranstaltungen						
SS 2025	2242040	Rheologie disperser Systeme	1 SWS	Vorlesung (V) / 🗣	Willenbacher	
SS 2025	2242110	Mikrorheologie und Hochfrequenzrheometrie	1 SWS	Vorlesung (V) / 🗣	Oelschlaeger	
Prüfungsv	eranstaltungen					
SS 2025	7290102 Rheologie komplexer Fluide und moderne rheologische Messmethoden				Oelschlaeger, Willenbacher	
WS 25/26	7290102	Rheologie komplexer Fluide und moderne rheologische Messmethoden			Willenbacher, Oelschlaeger	

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.142 Teilleistung: Rheologie von Polymeren [T-CIWVT-108884]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104329 - Rheologie von Polymeren

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2242050	Rheologie von Polymeren	2 SWS	Vorlesung (V) / 🗣	Willenbacher	
Prüfungsv	Prüfungsveranstaltungen					
SS 2025	7290105	Rheologie von Polymeren			Willenbacher	
WS 25/26	7290105	Rheologie von Polymeren			Willenbacher	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.143 Teilleistung: Ringvorlesung Begleitstudium Wissenschaft, Technologie und Gesellschaft - Selbstverbuchung [T-FORUM-113578]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart Studienleistung Leistungspunkte 2 LP Notenskala best./nicht best.

Turnus Jedes Sommersemester Dauer 1 Sem. Version 1

Erfolgskontrolle(n)

Aktive Teilnahme, ggfs. Lernprotokolle

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Empfohlen wird das Absolvieren der Ringvorlesung "Wissenschaft in der Gesellschaft" vor dem Besuch von Veranstaltungen im Vertiefungsmodul und parallel zum Besuch des Grundlagenseminars.

Falls ein Besuch von Ringvorlesung und Grundlagenseminar im gleichen Semester nicht möglich ist, kann die Ringvorlesung auch nach dem Besuch des Grundlagenseminars besucht werden.

Der Besuch von Veranstaltungen in der Vertiefungseinheit vor dem Besuch der Ringvorlesung sollte jedoch vermieden werden.

Anmerkungen

Die Grundlageneinheit besteht aus der Ringvorlesung "Wissenschaft in der Gesellschaft" und dem Grundlagenseminar.

Die Ringvorlesung wird jeweils nur im Sommersemester angeboten.

Das Grundlagenseminar kann im Sommer- oder im Wintersemester besucht werden.

6.144 Teilleistung: Schriftliche Prüfung Prozess- und Anlagendesign in der Biotechnologie [T-CIWVT-114499]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107357 - Prozess- und Anlagendesign in der Biotechnologie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2212020	Prozess- und Anlagendesign in der Biotechnologie	2 SWS	Vorlesung (V) / 🗣	Holtmann		
WS 25/26	2212021	Übung zu 2212020 Prozess- und Anlagendesign in der Biotechnologie	1 SWS	Seminar (S) / 🗣	Holtmann		
Prüfungsv	Prüfungsveranstaltungen						
WS 25/26	7212020-V-PAD	Prozess- und Anlagendesign in der Biotechnologie			Holtmann		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

Teilnahme am Seminar.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-CIWVT-114498 - Seminar Prozess- und Anlagendesign in der Biotechnologie muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Kenntnisse in Biochemie, Genetik, Zellbiologie, Mikrobiologie und Bioverfahrenstechnik werden vorausgesetzt.

6.145 Teilleistung: Seminar Lebensmittelverarbeitung in der Praxis mit Exkursion [T-CIWVT-109129]

Verantwortung: Dr.-Ing. Nico Leister

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-105932 - Seminar Lebensmittelverarbeitung in der Praxis

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich2 LPDrittelnotenJedes Wintersemester3

Lehrverans	Lehrveranstaltungen						
WS 25/26	2211930	Seminar Lebensmittelverarbeitung in der Praxis, inkl. Exkursion	3 SWS	Block (B) / ¶⁴	Leister, Ellwanger, Martin, van der Schaaf		
Prüfungsve	eranstaltungen						
SS 2025	7211930 Seminar Lebensmittelverarbeitung in der Praxis mit Exkursion Leister				Leister		
WS 25/26	7220017	Seminar Lebensmittelverarbeitung in	Leister				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten.

Voraussetzungen

6.146 Teilleistung: Seminar Mathematik [T-MATH-106541]

Einrichtung: KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103276 - Seminar

Teilleistungsart
StudienleistungLeistungspunkte
3 LPNotenskala
best./nicht best.Turnus
Jedes SemesterVersion
1

Prüfungsveranstaltungen					
SS 2025	7700026	Seminar Mathematik (Vert.)	Kühnlein		
WS 25/26	7700039	Seminar Mathematik	Kühnlein		

Voraussetzungen

keine

6.147 Teilleistung: Seminar Prozess- und Anlagendesign in der Biotechnologie [T-CIWVT-114498]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107357 - Prozess- und Anlagendesign in der Biotechnologie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art2 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen						
WS 25/26	2212020	Prozess- und Anlagendesign in der Biotechnologie	2 SWS	Vorlesung (V) / ♀	Holtmann		
WS 25/26	2212021	Übung zu 2212020 Prozess- und Anlagendesign in der Biotechnologie	1 SWS	Seminar (S) / 🗣	Holtmann		
Prüfungsve	Prüfungsveranstaltungen						
WS 25/26	7212021-Ü-PAD	Seminar Prozess- und Anlagendesig	Holtmann				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art, aktive Teilnahme am Seminar, Anwesenheitspflicht bei mindestens 80 % der Termine, benoteter Seminarvortrag mit einer Dauer von ca. 10 Minuten.

Voraussetzungen

6.148 Teilleistung: Sicherheitstechnik für Prozesse und Anlagen [T-CIWVT-108912]

Verantwortung: Hon.-Prof. Dr. Jürgen Schmidt

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104352 - Sicherheitstechnik für Prozesse und Anlagen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen							
SS 2025	2231810	Sicherheitstechnik für Prozesse und Anlagen	2 SWS	Vorlesung (V) / ●	Schmidt		
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	SS 2025 7230200 Sicherheitstechnik für Prozesse und Anlagen Schmidt						
WS 25/26	7230200	Sicherheitstechnik für Prozesse und		Schmidt			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.149 Teilleistung: SIL Entrepreneurship Projekt [T-WIWI-110166]

Verantwortung: Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-CIWVT-106017 - Students Innovation Lab

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3 LP	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
SS 2025	2545082	SIL Entrepreneurship Projekt		Seminar (S) /	Mitarbeiter	
WS 25/26	2545082	SIL Entrepreneurship Projekt	4 SWS	Seminar (S)	Terzidis	
Prüfungsve	Prüfungsveranstaltungen					
WS 25/26	7900037	SIL Entrepreneurship Projekt			Terzidis	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Die Note ergibt sich aus der Bewertung von zwei Seminararbeiten. Nähere Angaben erfolgen zu Beginn der Veranstaltung. Das Punkteschema für die Bewertung der beiden Seminararbeiten legt der/die Dozent/in der Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

Arbeitsaufwand

90 Std.

6.150 Teilleistung: Simulationstechnik - Prüfung [T-CIWVT-114104]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107038 - Simulationstechnik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich3 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen					
SS 2025	2243090	Simulationstechnik	2 SWS	Vorlesung (V) / 🗣	Meurer, Jerono	
SS 2025	2243091	Übungen zu 2243090 Simulationstechnik	1 SWS	Übung (Ü) / ♀	Meurer, Jerono	
Prüfungsve	Prüfungsveranstaltungen					
SS 2025	7200029	Simulationstechnik - Prüfung	·		Meurer	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung mit einer Dauer von ca. 45 Minuten.

Voraussetzungen

Die Vorleistung, Programmieraufgabe und schriftliche Ausarbeitung, muss bestanden sein T-CIWVT-114141 - Simulationstechnik - Vorleistung

6.151 Teilleistung: Simulationstechnik - Vorleistung [T-CIWVT-114141]

Verantwortung: Prof. Dr.-Ing. Thomas Meurer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107038 - Simulationstechnik

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 3 LP Notenskala Drittelnoten Version 1

Prüfungsve	Prüfungsveranstaltungen				
SS 2025	7200001	Simulationstechnik - Vorleistung	Meurer		

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art: Schriftliche Ausarbeitung einer Programmieraufgabe zur Simulationstechnik.

6.152 Teilleistung: Single-Cell Technologies [T-CIWVT-113231]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106564 - Single-Cell Technologies

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich4 LPDrittelnoten1

Lehrveranstaltungen							
WS 25/26 2213030 Single-Cell Technologies 2 SWS Vorlesung (V) / ♥ Grünberger							
Prüfungsv	Prüfungsveranstaltungen						
SS 2025	7213030	Single-Cell Technologies			Grünberger		
WS 25/26	7213031	Single-Cell Technologies			Grünberger		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung.

Voraussetzungen

6.153 Teilleistung: Sol-Gel-Prozesse [T-CIWVT-108822]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104284 - Sol-Gel-Prozesse mit Praktikum

M-CIWVT-104489 - Sol-Gel-Prozesse

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4 LP	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
WS 25/26	2220320	Sol-Gel-Prozesse	2 SWS	Vorlesung (V) / 🗣	Müller	
WS 25/26	2220322	Kolloquium zu 2220320 Sol-Gel- Prozesse	2 SWS	Kolloquium (KOL) /	Müller	
Prüfungsve	eranstaltungen			•		
SS 2025	S 2025 7210110 Sol-Gel-Prozesse				Müller	
WS 25/26	7210110	Sol-Gel-Prozesse		_	Müller	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO

Voraussetzungen

6.154 Teilleistung: Sol-Gel-Prozesse Praktikum [T-CIWVT-108823]

Verantwortung: Dr.-Ing. Steffen Peter Müller

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104284 - Sol-Gel-Prozesse mit Praktikum

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung praktisch2 LPbest./nicht best.Jedes Sommersemester1

Lehrveranstaltungen					
WS 25/26	2220321	Praktikum zu 2220320 Sol-Gel- Prozesse	1 SWS	Praktikum (P) / 🗣	Müller
Prüfungsve	eranstaltungen				
SS 2025 7210111 Sol-Gel-Prozesse Praktikum					Müller
WS 25/26 7210111 Sol-Gel-Prozesse Praktikum			Müller		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen

6.155 Teilleistung: Stabilität disperser Systeme [T-CIWVT-108885]

Verantwortung: Prof. Dr. Norbert Willenbacher

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104330 - Stabilität disperser Systeme

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 25/26 2242030 Stabilität disperser Systeme 2 SWS Vorlesung (V) / ♥ Willenbacher							
Prüfungsve	Prüfungsveranstaltungen						
SS 2025	7290106	Stabilität disperser Systeme			Willenbacher		
WS 25/26	7290106	Stabilität disperser Systeme			Willenbacher		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.156 Teilleistung: Statistische Thermodynamik [T-CIWVT-106098]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103059 - Statistische Thermodynamik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten1

Lehrverans	Lehrveranstaltungen						
SS 2025	2250040	Statistische Thermodynamik	2 SWS	Vorlesung (V) / 🗣	Enders		
SS 2025	2250041	Übungen zu 2250040 Statistische Thermodynamik	1 SWS	Übung (Ü) / 🗣	Enders		
Prüfungsve	eranstaltungen						
SS 2025	SS 2025 7250040 Statistische Thermodynamik				Enders		
WS 25/26	7250040	Statistische Thermodynamik			Enders		

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten

Voraussetzungen

Thermodynamik III

6.157 Teilleistung: Stoffübertragung II [T-CIWVT-108935]

Verantwortung: Dr.-Ing. Benjamin Dietrich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104369 - Stoffübertragung II

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 25/26	2260320	Stoffübertragung II	2 SWS	Vorlesung (V) / 🗣	Dietrich	
WS 25/26	2260321	Übung zu 2260320 Stoffübertragung II	1 SWS	Übung (Ü) / 🗣	Dietrich, und Mitarbeitende	
Prüfungsv	eranstaltungen					
SS 2025	7260220	Stoffübertragung II			Schabel, Dietrich	
WS 25/26	7280021	Stoffübertragung II			Schabel, Dietrich	

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.158 Teilleistung: Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen [T-CIWVT-108834]

Verantwortung: Prof. Dr.-Ing. Horst Büchner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104294 - Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
SS 2025	2232820	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen	2 SWS	Block-Vorlesung (BV) / x	Büchner	
Prüfungsv	eranstaltungen			•		
SS 2025	7231502	Strömungs- und Verbrennungsinsta Feuerungssystemen	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen			
WS 25/26	7231502	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen			Büchner	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.159 Teilleistung: Thermische Verfahrenstechnik II [T-CIWVT-114107]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107039 - Thermische Verfahrenstechnik II

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen								
SS 2025	2260150	Thermische Verfahrenstechnik II	2 SWS	Vorlesung (V) / 🗣	Zeiner			
SS 2025	2260151	Übungen zu 2260150 Thermische Verfahrenstechnik II	2 SWS	Übung (Ü) / 🗣	Zeiner, und Mitarbeitende			
Prüfungsve	eranstaltungen							
SS 2025	7260150	Thermische Verfahrenstechnik II			Zeiner			
WS 25/26	7260150	Thermische Verfahrenstechnik II	Zeiner					

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

6.160 Teilleistung: Thermische Verfahrenstechnik III [T-CIWVT-114108]

Verantwortung: Prof. Dr.-Ing. Tim Zeiner

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107040 - Thermische Verfahrenstechnik III

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art6 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen							
WS 25/26	2260120	Thermische Verfahrenstechnik III	2 SWS	Vorlesung (V) / 🗣	Zeiner			
WS 25/26	2260121	Übungen zu 2260120 Thermische Verfahrenstechnik III	2 SWS	Übung (Ü) / 🗣	Zeiner, und Mitarbeitende			
Prüfungsve	Prüfungsveranstaltungen							
WS 25/26	7260120	Thermische Verfahrenstechnik III	·		Zeiner			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art.

Voraussetzungen

Inhalte Thermische Verfahrenstechnik II.

Empfehlungen

Thermodynamik III.

6.161 Teilleistung: Thermodynamik III [T-CIWVT-106033]

Verantwortung: Prof. Dr. Sabine Enders

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103058 - Thermodynamik III

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6 LPDrittelnoten1

Lehrveranstaltungen								
WS 25/26	2250030	Thermodynamik III	2 SWS	Vorlesung (V) /	Enders			
WS 25/26	2250031	Übungen zu 2250030 Thermodynamik III	1 SWS	Übung (Ü) / 🗣	Enders, und Mitarbeitende			
Prüfungsv	eranstaltungen							
SS 2025	7250030	Thermodynamik III	Enders					
WS 25/26	7250030	Thermodynamik III			Enders			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 90 Minuten.

Voraussetzungen

6.162 Teilleistung: Trocknungstechnik - dünne Schichten und poröse Stoffe [T-CIWVT-108936]

Verantwortung: Prof. Dr.-Ing. Wilhelm Schabel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104370 - Trocknungstechnik - dünne Schichten und poröse Stoffe

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen								
SS 2025	2260210	Trocknungstechnik - dünne Schichten und poröse Stoffe	2 SWS	Vorlesung (V) / ♀ ⁴	Schabel				
SS 2025	2260211	Übung zu 2260210 Trocknungstechnik	1 SWS	Übung (Ü) / 🗣	Schabel, und Mitarbeitende				
Prüfungsv	eranstaltungen								
SS 2025	7260210	Trocknungstechnik - dünne Schicht	Trocknungstechnik - dünne Schichten und poröse Stoffe						
WS 25/26	7280022	Trocknungstechnik - dünne Schicht	Trocknungstechnik - dünne Schichten und poröse Stoffe						

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO 2016.

Voraussetzungen

6.163 Teilleistung: Vakuumtechnik [T-CIWVT-109154]

Verantwortung: Dr.-Ing. Thomas Giegerich

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-CIWVT-104478 - Vakuumtechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen								
WS 25/26	2250810	Vakuumtechnik	2 SWS	Vorlesung (V) / 🗣	Giegerich, Tantos				
WS 25/26	2250811	Übung zu 2250810 Vakuumtechnik	1 SWS	Übung (Ü) / 🗣	Tantos, Giegerich				
Prüfungsve	eranstaltungen								
SS 2025	7200401	Vakuumtechnik	Vakuumtechnik						
WS 25/26	7250810	Vakuumtechnik			Giegerich				

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.164 Teilleistung: Verarbeitung nanoskaliger Partikel [T-CIWVT-106107]

Verantwortung: Prof. Dr.-Ing. Hermann Nirschl

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103073 - Verarbeitung nanoskaliger Partikel

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen								
WS 25/26	2245030	Verfahrenstechnik nanoskaliger Partikelsysteme	2 SWS	Vorlesung (V) /	Nirschl			
Prüfungsve	eranstaltungen							
SS 2025	7291921	Verarbeitung nanoskaliger Partikel			Nirschl			
WS 25/26	7291030	Verfahrenstechnik nanoskaliger Part		Nirschl				

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Voraussetzungen

6.165 Teilleistung: Verbrennung und Umwelt [T-CIWVT-108835]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104295 - Verbrennung und Umwelt

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen									
SS 2025	2232020	Verbrennung und Umwelt	2 SWS	Vorlesung (V) / 🗣	Trimis				
Prüfungsv	Prüfungsveranstaltungen								
SS 2025	7231203	Verbrennung und Umwelt			Trimis				
WS 25/26	7231203	Verbrennung und Umwelt			Trimis				

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Voraussetzungen

6.166 Teilleistung: Verbrennungstechnisches Praktikum [T-CIWVT-108873]

Verantwortung: Dr.-Ing. Stefan Raphael Harth

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104321 - Verbrennungstechnisches Praktikum

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveranstaltungen								
SS 2025	2232060	Verbrennungstechnisches Praktikum	3 SWS	Praktikum (P) / 🗣	Trimis, Harth			
SS 2025	2232321	Laboratory Work in Combustion Technology	3 SWS	Praktikum (P) / 🗣	Harth			
Prüfungsv	eranstaltungen							
SS 2025	7231401	Verbrennungstechnisches Praktikur	Verbrennungstechnisches Praktikum					
WS 25/26	7231401	Verbrennungstechnisches Praktikum			Harth			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Anmerkungen

Termine der Praktika werden in Absprache festgelegt. Anmeldungen bis spätestens 15. Mai per email an: stefan.harth@kit.edu

6.167 Teilleistung: Verfahren und Prozessketten für nachwachsende Rohstoffe [T-CIWVT-108997]

Verantwortung: Prof. Dr. Nicolaus Dahmen

Prof. Dr.-Ing. Jörg Sauer

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104422 - Verfahren und Prozessketten für nachwachsende Rohstoffe

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 6 LP

Notenskala Drittelnoten **Turnus** Jedes Sommersemester Version

Lehrveranstaltungen							
SS 2025							
Prüfungsv	eranstaltungen			•			
SS 2025	7231210	Verfahren und Prozessketten für na	chwachse	nde Rohstoffe	Dahmen, Sauer		
WS 25/26 7233101 Verfahren und Prozessketten für nachwachsende Rohstoffe					Dahmen, Sauer		

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Gesamtprüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.168 Teilleistung: Verfahrensentwicklung in der Chemischen Industrie [T-CIWVT-108961]

Verantwortung: Hon.-Prof. Dr. Jürgen Dahlhaus

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104389 - Verfahrensentwicklung in der Chemischen Industrie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich2 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen							
SS 2025	2260810	Verfahrensentwicklung in der chemischen Industrie (BASF AG Ludwigshafen, 3-tägig)	2 SWS	Block (B) / ⊈ ⁵	Dahlhaus			
Prüfungsve	eranstaltungen							
SS 2025	7280041	Verfahrensentwicklung in der Chemi	Verfahrensentwicklung in der Chemischen Industrie					

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist ein schriftlicher Test, der zum Ende der Veranstaltung durchgeführt wird.

Voraussetzungen

Keine

Empfehlungen

Das Modul wird Studierenden empfohlen, die bereits weit im Studium fortgeschritten sind.

Anmerkungen

Täglicher Bustransport von KIT-CS nach Ludwigshafen und zurück

6.169 Teilleistung: Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen [T-CIWVT-113476]

Verantwortung: Dr.-Ing. Ulrike van der Schaaf

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106698 - Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen								
WS 25/26	2211010	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen	2 SWS	Vorlesung (V) / 🕄	van der Schaaf				
Prüfungsv	eranstaltungen			•					
SS 2025	7211011	Verfahrenstechnik zur Herstellung vor pflanzlichen Rohstoffen	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen						
WS 25/26	7211011	Verfahrenstechnik zur Herstellung von Lebensmitteln aus pflanzlichen Rohstoffen			van der Schaaf				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

6.170 Teilleistung: Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen [T-CIWVT-113477]

Verantwortung: PD Dr. Volker Gaukel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106699 - Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrveran	Lehrveranstaltungen								
SS 2025	2211010	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen	2 SWS	Vorlesung (V) / 🗣	Gaukel				
Prüfungsv	eranstaltungen								
SS 2025	7211010	Verfahrenstechnik zur Herstellung ver Rohstoffen	on Lebens	smitteln aus tierischen	Gaukel				
WS 25/26	7211010	Verfahrenstechnik zur Herstellung von Lebensmitteln aus tierischen Rohstoffen			Gaukel				

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung des Vorlesungsinhalts im Umfang von ca. 30 Minuten.

Voraussetzungen

6.171 Teilleistung: Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration [T-CIWVT-108910]

Verantwortung: Dr.-Ing. Manfred Nagel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104351 - Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrverans	Lehrveranstaltungen							
WS 25/26	2245820	Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration (Blockvorlesung der Evonik Industries AG)	2 SWS	Block (B) / ⊈ ⁵	Nagel			
Prüfungsve	eranstaltungen							
WS 25/26					Nagel			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

6.172 Teilleistung: Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Über Wissen und Wissenschaft - Selbstverbuchung [T-FORUM-113580]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Semester1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 5 (3) in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Die Inhalte der Grundlageneinheit sind hilfreich.

Die Grundlageneinheit sollte abgeschlossen sein oder parallel besucht werden, jedoch nicht nach der Vertiefungseinheit. Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Gegenstandsbereich und Lehrveranstaltung festgelegt.

Anmerkungen

Dieser Platzhalter kann für alle Leistungen im Vertiefungsbereich des Begleitstudiums genutzt werden.

In der Vertiefungseinheit ist eine selbst gewählte individuelle Schwerpunktbildung möglich z. B. Nachhaltige Entwicklung, Data Literacy u. a. Der Schwerpunkte sollte mit der/dem Modulverantwortlichen am FORUM besprochen werden.

6.173 Teilleistung: Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in der Gesellschaft - Selbstverbuchung [T-FORUM-113581]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3 LPDrittelnotenJedes Semester1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 5 (3) in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Die Inhalte der Grundlageneinheit sind hilfreich.

Die Grundlageneinheit sollte abgeschlossen sein oder parallel besucht werden, jedoch nicht nach der Vertiefungseinheit. Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Gegenstandsbereich und Lehrveranstaltung festgelegt.

Anmerkungen

Dieser Platzhalter kann für alle Leistungen im Vertiefungsbereich des Begleitstudiums genutzt werden.

6.174 Teilleistung: Wahlpflicht Vertiefung Begleitstudium Wissenschaft, Technologie und Gesellschaft / Wissenschaft in gesellschaftlichen Debatten -Selbstverbuchung [T-FORUM-113582]

Verantwortung: Dr. Christine Mielke

Christine Myglas

Einrichtung: Zentrale Einrichtungen/Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM)

Bestandteil von: M-FORUM-106753 - Begleitstudium Wissenschaft, Technologie und Gesellschaft

Teilleistungsart L
Prüfungsleistung anderer Art

Leistungspunkte 3 LP Notenskala Drittelnoten

Turnus Jedes Semester Version 1

Erfolgskontrolle(n)

Prüfungsleistung anderer Art nach § 5 (3) in Form eines Referats oder einer Haus- oder Projektarbeit in der gewählten Lehrveranstaltung.

Voraussetzungen

Keine

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · Studium Generale. Forum Wissenschaft und Gesellschaft (FORUM) (ehem. ZAK)
- · FORUM (ehem. ZAK) Begleitstudium

Empfehlungen

Die Inhalte der Grundlageneinheit sind hilfreich.

Die Grundlageneinheit sollte abgeschlossen sein oder parallel besucht werden, jedoch nicht nach der Vertiefungseinheit. Lektüreempfehlung von Primär- und Fachliteratur wird von den jeweiligen Dozierenden individuell nach Gegenstandsbereich und Lehrveranstaltung festgelegt.

Anmerkungen

Dieser Platzhalter kann für alle Leistungen im Vertiefungsbereich des Begleitstudiums genutzt werden.

6.175 Teilleistung: Wärmeübertrager [T-CIWVT-108937]

Verantwortung: Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104371 - Wärmeübertrager

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	6 LP	Drittelnoten	Jedes Wintersemester	2

Lehrverans	Lehrveranstaltungen							
WS 25/26	2260010	Wärmeübertrager	2 SWS	Vorlesung (V) / €	Wetzel			
WS 25/26	2260011	Übung zu 2260010 Wärmeübertrager	1 SWS	Übung (Ü) / 🗣	Wetzel			
Prüfungsve	eranstaltungen							
SS 2025	7260010	Wärmeübertrager			Wetzel			
WS 25/26	7280032	Wärmeübertrager			Wetzel			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

6.176 Teilleistung: Wärmeübertragung II [T-CIWVT-106067]

Verantwortung: Prof. Dr.-Ing. Thomas Wetzel

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103051 - Wärmeübertragung II

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung mündlich6 LPDrittelnoten3

Lehrverans	Lehrveranstaltungen							
WS 25/26	2260020	Wärmeübertragung II	2 SWS	Vorlesung (V) / 🗣	Wetzel, Dietrich			
WS 25/26	2260021	Übung zu 2260020 Wärmeübertragung II	1 SWS	Übung (Ü) / 🗣	Wetzel, Dietrich			
Prüfungsve	eranstaltungen							
SS 2025	7260020	Wärmeübertragung II			Wetzel, Dietrich			
WS 25/26	7280031	Wärmeübertragung II			Wetzel, Dietrich			

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von ca. 25 Minuten.

Voraussetzungen

keine

6.177 Teilleistung: Wasserstoff in Materialien - Übungen und Laborkurs [T-MACH-112942]

Verantwortung: Dr. rer. nat. Stefan Wagner **Einrichtung:** KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-107278 - Wasserstoff in Materialien - Übungen und Laborkurs

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	4 LP	best./nicht best.	Jedes Wintersemester	1 Sem.	2

Lehrverans	Lehrveranstaltungen							
WS 25/26	2174573	Wasserstoff in Materialien - Übungen und Laborkurs	2 SWS	Übung (Ü) / ♀ ⁴	Wagner			
Prüfungsve	eranstaltungen							
SS 2025	76-T-MACH-112942	Wasserstoff in Materialien - Übung	Nasserstoff in Materialien - Übungen und Laborkurs					
WS 25/26	76-T-MACH-112942	Wasserstoff in Materialien - Übung	gen und La	aborkurs	Wagner			

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Regelmäßige Teilnahme und Teilnahme am Laborpraktikum inklusive Protokoll.

Voraussetzungen

T-MACH-112159 darf nicht begonnen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-112159 - Hydrogen in Materials – Exercises and Lab Course darf nicht begonnen worden sein.

Empfehlungen

Die Teilnahme ist nur parallel zur Vorlesung möglich.

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

120 Std.

6.178 Teilleistung: Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung [T-MACH-110957]

Verantwortung: Prof. Dr. Astrid Pundt

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-107277 - Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester2

Lehrveranstaltungen							
WS 25/26	2174572	Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung	2 SWS	Vorlesung (V) / 🗣	Pundt, Wagner		
Prüfungsv	eranstaltungen			•			
SS 2025	76-T-MACH-110957	Wasserstoff in Materialien: von de Materialversprödung	Wasserstoff in Materialien: von der Energiespeicherung zur Materialversprödung				
WS 25/26	76-T-MACH-110957	Wasserstoff in Materialien: von de Materialversprödung	/asserstoff in Materialien: von der Energiespeicherung zur				

Legende:
☐ Online,
☐ Präsenz/Online gemischt,
☐ Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

T-MACH-110923 - Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement darf nicht begonnen sein T-MACH-108853 - Wasserstoff in Materialien darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110923 - Hydrogen in Materials: from Energy Storage to Hydrogen Embrittlement darf nicht begonnen worden sein.

Anmerkungen

Die Lehrveranstaltung wird in deutscher Sprache angeboten.

Arbeitsaufwand

120 Std.

6.179 Teilleistung: Wasserstoff- und Brennstoffzellentechnologien [T-CIWVT-108836]

Verantwortung: Prof. Dr.-Ing. Dimosthenis Trimis

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104296 - Wasserstoff- und Brennstoffzellentechnologien

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen							
SS 2025	2232030	Wasserstoff- und Brennstoffzellentechnologien	2 SWS	Vorlesung (V) / €	Trimis			
Prüfungsv	eranstaltungen							
SS 2025	7231204	Wasserstoff- und Brennstoffzellente	chnologien		Trimis			
WS 25/26	7231204	Wasserstoff- und Brennstoffzellentechnologien			Trimis			
WS 25/26 7231204-2 Wasserstoff- und Brennstoffzellentechnologien - Nachklausur			Trimis					

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Voraussetzungen

6.180 Teilleistung: Wastewater Treatment Technologies [T-BGU-109948]

Verantwortung: Dr.-Ing. Mohammad Ebrahim Azari Najaf Abad

PD Dr.-Ing. Stephan Fuchs

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-104917 - Wastewater Treatment Technologies

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6 LP	Drittelnoten	Jedes Semester	1 Sem.	4

Lehrverans	Lehrveranstaltungen							
WS 25/26	6223801	Wastewater Treatment Technologies	4 SWS	Vorlesung / Übung (VÜ) / ⊈ ⁵	Fuchs, Azari Najaf Abad			
Prüfungsve	eranstaltungen							
SS 2025	8244109948	Wastewater Treatment Technologies	Wastewater Treatment Technologies					
WS 25/26	8244109948	Wastewater Treatment Technologies	;		Fuchs, Azari Najaf Abad			

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 60 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

Die Teilnehmerzahl in der Lehrveranstaltung ist auf 30 Personen begrenzt. Die Anmeldung erfolgt über ILIAS. Die Plätze werden unter Berücksichtigung des Studienfortschritts vergeben, vorrangig an Studierende aus *Water Science and Engineering*, dann *Bauingenieurwesen*, *Chemieingenieurwesen und Verfahrenstechnik*, *Geoökologie* und weiteren Studiengängen.

Arbeitsaufwand

180 Std.

6.181 Teilleistung: Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation [T-CIWVT-113433]

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106680 - Water - Energy - Environment Nexus in a Circular Economy: Research Proposal

Preparation

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art5 LPDrittelnotenJedes Sommersemester1

Lehrverans	Lehrveranstaltungen						
SS 2025	2233130	Circular Economy Water Energy Environment: Research Proposal Preparation	4 SWS	Vorlesung (V) / ●	Schäfer		
Prüfungsve	eranstaltungen						
SS 2025	SS 2025 7233130 Water – Energy – Environment Nexus in a Circular Economy: Research Proposal Preparation				Schäfer		

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz,
X Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Abgabe eines research proposals im Umfang von 10 Seiten, Präsentation im Umfang von 10 Minuten.

Voraussetzungen

6.182 Teilleistung: Water Technology [T-CIWVT-106802]

Verantwortung: Prof. Dr. Harald Horn

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-103407 - Water Technology

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich6 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen							
WS 25/26	2233030	Water Technology	2 SWS	Vorlesung (V) / ●	Horn		
WS 25/26	2233031	Exercises to Water Technology	1 SWS	Übung (Ü) / 🗣	Horn, und Mitarbeitende		
Prüfungsve	eranstaltungen						
SS 2025	7232621	Water Technology			Horn		
WS 25/26	7232621	Water Technology	Water Technology				

Legende: \blacksquare Online, \clubsuit Präsenz/Online gemischt, \P Präsenz, $\mathbf x$ Abgesagt

Voraussetzungen

6.183 Teilleistung: Wirbelschichttechnik [T-CIWVT-108832]

Verantwortung: Prof. Dr. Reinhard Rauch

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-104292 - Wirbelschichttechnik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich4 LPDrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
SS 2025	2231110	Wirbelschichttechnik	2 SWS	Vorlesung (V) / 🗣	Rauch
Prüfungsveranstaltungen					
SS 2025	7230012	Wirbelschichttechnik			Rauch
WS 25/26	7230012	Wirbelschichttechnik			Rauch

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle ist eine mündliche Prüfung im Umfang von 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

7 Anhang

7.1 Begriffsdefinitionen

Grundsätzlich gliedert sich das Studium in **Fächer** (z. B. Erweiterte Grundlagen). Jedes Fach wiederum ist in **Module** aufgeteilt. Jedes Modul beinhaltet eine oder mehrere **Teilleistungen**, die durch eine Erfolgskontrolle (Studienleistung oder Prüfungsleistung) abgeschlossen werden.

Der Umfang jedes Moduls ist durch Leistungspunkte gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls gutgeschrieben werden. Im Masterstudium sind hauptsächlich Wahlpflichtmodule enthalten.

Das Modulhandbuch beschreibt die zum Studiengang gehörigen Module. Dabei geht es ein auf die Zusammensetzung der Module, die Größe der Module (in LP), die Abhängigkeiten der Module untereinander, die Qualifikationsziele der Module, die Art der Erfolgskontrolle und die Bildung der Note eines Moduls. Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.