KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik Karlsruher Institut für Technologie (KIT) Master-Prüfungsausschuss

LISTE DER VORLESUNGEN UND ÜBUNGEN FÜR DIE ZUSAMMENSTELLUNG DER VERTIEFUNGSFÄCHER UND VERTIEFUNGSRICHTUNGEN ZU DEN MASTER-STUDIENGÄNGEN CIW/VT UND BIW

(SPO 2016)

Wintersemester 2023/24

Stand 20.11.2023

Allgemeines

Der/Die Kandidat(in) wählt aus dieser Zusammenstellung zwei Vertiefungsfächer aus. Jedes Vertiefungsfach besteht aus mindestens 16 LP (ECTS) an Vorlesungen, Übungen und praktischen Lehrveranstaltungen. Auswahlmöglichkeiten für Modulkombinationen zu den einzelnen Vertiefungsfächern sind auf den folgenden Seiten zusammengestellt. Der Master-Prüfungsausschuss ist für die Genehmigung der Modulzusammenstellungen zuständig. Hierzu trägt der/die Kandidat(in) die Module (inkl. Lehrveranstaltungen) in seinen Studienplan ein und sendet diesen Studienplan per Email an Frau Marion Gärtner (marion.gaertner@kit.edu) zur Genehmigung. Lehrveranstaltungen, die bereits im Bachelor-Studium belegt wurden, können nicht mehr gewählt werden. Falls ein Modul/eine Lehrveranstaltung in beiden gewählten Vertiefungsfächer möglich ist, darf es/sie nur in einem der beiden Vertiefungsfächer gewählt werden.

Studiengang Master Chemieingenieurwesen und Verfahrenstechnik:

Es darf **nur eines** der folgenden Fächer gewählt werden: Biopharmazeutische Verfahrenstechnik, Neue Bioproduktionssysteme-Elektrobiotechnologie; Produktionsprozesse zur stofflichen Nutzung nachwachsender Rohstoffe

Studiengang Master Bioingenieurwesen:

Es **muss mindestens eines** der folgenden Fächer gewählt werden: Biopharmazeutische Verfahrenstechnik, Lebensmittelverfahrenstechnik, Neue Bioproduktionssysteme-Elektrobiotechnologie; Produktionsprozesse zur stofflichen Nutzung nachwachsender Rohstoffe, Wassertechnologie

INHALTSVERZEICHNIS

Änderungen WS 23/24	3
Module in englischer Sprache	5
Angewandte Rheologie	6
Automatisierung und Systemverfahrenstechnik	7
Biopharmazeutische Verfahrenstechnik	8
Chemische Energieträger - Brennstofftechnologie	9
Chemische Verfahrenstechnik	10
Energieverfahrenstechnik	11
Energy and Combustion Technology	12
Entrepreneurship in der Verfahrenstechnik	13
Gas-Partikel-Systeme	14
Lebensmittelverfahrenstechnik	15
Neue Bioproduktionssysteme - Elektrobiotechnologie	16
Produktgestaltung	17
Produktionsprozesse zur stofflichen Nutzung nachwachsender Rohstoffe	18
Prozesse der Mechanischen Verfahrenstechnik	19
Technische Thermodynamik	20
Thermische Verfahrenstechnik	21
Umweltschutzverfahrenstechnik	22
Verbrennungstechnik	23
Wassertechnologie	24
Kooperation Universität Hohenheim: Nachhaltige Produktion nachwachsender Rohstoffe	25

ÄNDERUNGEN WS 23/24

Neue Module

Biologie und Biotechnologie mit Pilzen

PD Dr.-Ing Katrin Ochsenreither/ 2 SWS/ 4 LP

Wählbar in: Neue Bioproduktionssysteme - Elektrobiotechnologie; Technisches Ergänzungsfach

Biotechnologische Nutzung nachwachsender Rohstoffe

Prof. Dr. Christoph Syldatk/ 2 SWS/ 4 LP

Wählbar in: Neue Bioproduktionssysteme – Elektrobiotechnologie; Produktionsprozesse zur stofflichen Nutzung nachwachsender Rohstoffe, Technisches Ergänzungsfach

Chemical Hydrogen Storage

Prof. Dr. Moritz Wolf/ 2 SWSW/ 4 LP

Wählbar in: Chemische Verfahrenstechnik; Chemische Energieträger – Brennstofftechnologie; Energy and Combustion Technology; Technisches Ergänzungsfach

Data-Based Modeling and Control

Prof. Dr.-Ing. Thomas Meurer/ 3 SWS/ 6 LP

Wählbar in: Automatisierung und Systemverfahrenstechnik; Technisches Ergänzungsfach

Elektrobiotechnologie

Prof. Dr.-Ing. Dirk Holtmann/ 3 SWS/ 6 LP

Wählbar in: Neue Bioproduktionssysteme - Elektrobiotechnologie; Technisches Ergänzungsfach

Estimator and Observer Design

Dr.-Ing. Pascal Jerono/ 3 SWS/ 6 LP

Wählbar in: Automatisierung und Systemverfahrenstechnik; Technisches Ergänzungsfach

Herstellung und Entwicklung von Krebstherapeutika

PD Dr. Gero Leneweit/ 2 SWS/ 4 LP

Wählbar in: Biopharmazeutische Verfahrenstechnik; Technisches Ergänzungsfach

Komplexe Phasengleichgewichte

Prof. Dr. Sabine Enders/ 3 SWS/ 6 LP

Wählbar in: Technische Thermodynamik; Technisches Ergänzungsfach

Membrane Materials & Processes Research Masterclass

Prof. Dr.-Ing. Andrea Iris Schäfer/ 4 SWS/ 6 LP

Wählbar in: Technisches Ergänzungsfach

Nonlinear Process Control

Prof. Dr.-Ing. Thomas Meurer/ 3 SWS/ 6 LP

Wählbar in: Automatisierung und Systemverfahrenstechnik; Technisches Ergänzungsfach

Numerische Simulation von reaktiven Mehrphasenströmungen

Prof. Dr. Oliver Stein/ 4 SWS/ 8 LP

Wählbar in: Technisches Ergänzungsfach Ab SS 24

• Principles of Constrained Static Optimization

Prof. Dr.-Ing. Thomas Meurer; Dr.-Ing. Pascal Jerono/ 2 SWS/ 4 LP

Wählbar in: Automatisierung und Systemverfahrenstechnik; Technisches Ergänzungsfach

Reaktormodellierung mit CFD

Prof. Dr. Ing. Gregor D. Wehinger/ 2 SWS/ 4 LP

Wählbar in: Chemische Verfahrenstechnik; Technisches Ergänzungsfach ab SS 24

Single Cell Technologies

Prof. Dr.-Ing. Alexander Grünberger/ 2 SWS/ 4 LP

Wählbar in: Technisches Ergänzungsfach

Neues Vertiefungsfach

Neue Bioproduktionssysteme - Elektrobiotechnologie

Prof. Dr.-Ing. Dirk Holtmann

Übersicht über wählbare Module in diesem Vertiefungsfach auf Seite Neue Bioproduktionssysteme -

Elektrobiotechnologie

Änderung November 2023: Die LP im Modul Batterien und Brennstoffzellen wurden angepasst: 5 LP → 6 LP

Änderungen im Vertiefungsfach Chemische Verfahrenstechnik

Übersicht über wählbare Module in diesem Vertiefungsfach auf Seite Chemische Verfahrenstechnik
Änderung November 2023: Die LP im Modul Chemische Verfahrenstechnik II wurden angepasst: 4 LP → 6 LP

Auslaufende/ nicht mehr wählbare Angebote

Vertiefungsfach Technische Biologie

Das Vertiefungsfach Technische Biologie ist ab dem WS 23/24 nicht mehr wählbar und wird durch das Vertiefungsfach Neue Bioproduktionssysteme – Elektrobiotechnologie ersetzt.

Module

BioMEMS IV

Die Vorlesung wird im WS 23/24 letztmalig angeboten.

BioMEMS V

Das Modul ist nicht mehr wählbar.

Biotechnologische Prozess in der Bioökonomie

Das Modul wird durch das Modul Biotechnologische Nutzung nachwachsender Rohstoffe ersetzt

• Ernährungsphysiologische Konsequenzen der Lebensmittelverarbeitung

Das Modul ist nicht mehr wählbar.

• Industrielle Kristallisation:

Die Vorlesung wird nicht mehr angeboten. Studierende, die die Vorlesung bereits besucht haben, können Prüfungen noch bis September 2024 ablegen.

• Lebensmittelkunde und -funktionalität

Das Modul wird im WS 23/24 nicht und voraussichtlich wieder im WS 24/25 angeboten.

Prüfungen können im WS 23/24 abgelegt werden.

• Produktgestaltung II:

Die Vorlesung wird im WS 23/24 letztmalig angeboten.

Reaktionstechnik mehrphasiger Systeme

Das Modul ist nicht mehr wählbar.

• Struktur und Reaktionen aquatischer Huminstoffe

Die Vorlesung wird im SS 24 letztmalig angeboten.

• Thermische Trennverfahren II:

Die Vorlesung wird im WS 23/24 letztmalig angeboten.

Wasserbeurteilung:

Die Vorlesung wird im WS 23/24 letztmalig angeboten.

MODULE IN ENGLISCHER SPRACHE

(English Courses)

Erweiterte Grundlagen		
Bioprocess DevelopmentMembrane Technologies in Water Treatment	6 LP 6 LP	SS SS
Vertiefungsfach Wassertechnologie/ Water Technology		
 Water Technology Practical Course in Water Technology Microbiology for Engineers Biofilm Systems Instrumental Analytics Industrial Wastewater Treatment Vertiefungsfach Technische Thermodynamik/ Technical Thermodynamics	6 LP 4 LP 4 LP 4 LP 4 LP 4 LP	WS WS SS SS SS
· · · · · · · · · · · · · · · · · · ·	6 LP	SS
Physical Foundations of CryogenicsCryogenic Engineering	6 LP	WS
Vertiefungsfach Entrepreneurship in der Verfahrenstechnik		
Innovative Concepts for Formulation and Processing		
of Printable Materials Extrusion Technology in Food Processing	6 LP 6 LP	SS WS
Englischsprachiges Vertiefungsfach: Energy and Combustion Technology		
Applied Combustion Technology	4 LP	SS
Laboratory Work in Combustion Technology	4 LP	SS
Energy from Biomass	6 LP	WS
Liquid Transportation FuelsDesign of a Jet Engine Combustion Chamber	6 LP 6 LP	WS WS
Chemical Hydrogen Storage	4 LP	WS
Vertiefungsfach Automatisierung und Systemverfahrenstechnik		
Nonlinear Process Control	6 LP	WS
Principles of Constrained Static Optimization	4 LP	WS
Optimal and Model Predictive ControlData-Based Modeling and Control	6 LP 6 LP	SS WS
Estimator and Observer Design	6 LP	WS
 Advanced Methods in Nonlinear Control (ab SS 24) 	4 LP	SS
 Computer-Assisted Modeling and Control (ab SS 24) 	4 LP	SS
Technisches Ergänzungsfach		
Additive Manufacturing for Process Engineering	6 LP	SS
 Digital Design in Process Engineering Power-to-X – Key Technology for the Energy Transition 	6 LP 6 LP	WS SS/WS
Electrocatalysis	6 LP	SS
Environmental Biotechnology	4 LP	WS
Single-Cell Technologies	4 LP	WS
Wahlpflicht Bachelor		
Catalysts for the Energy Transiton	5 LP	SS

ANGEWANDTE RHEOLOGIE

(Applied Rheology)

Prof. Dr.-Ing. N. Willenbacher

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/SS	V+Ü	LP
1	Rheologie und Verfahrenstechnik disperser Systeme - Rheologie disperser Systeme - Stabilität disperser Systeme - Mikrorheologie und Hochfrequenzrheometrie	Willenbacher, Oelschlaeger	WS/SS	4+0	8
2	Rheologie und Verfahrenstechnik von Polymeren - Rheologie von Polymeren - Rheologie und Rheometrie	Willenbacher, Hochstein	SS	4 + 0	8
3	Rheologie komplexer Fluide und moderne rheologische Messmethoden - Rheologie disperser Systeme - Mikrorheologie und Hochfrequenzrheometrie	Willenbacher, Oelschlaeger	SS	2+0	4
4	Strömungsmechanik nicht-Newtonscher Fluide - Dimensionsanalyse strömungsmechanischer Fragestellungen - Kontinuumsmechanik und Strömungen nicht-Newtonscher Fluide	Hochstein	WS/SS	4+0	8
5	Rheologie und Rheometrie	Hochstein	SS	2 + 0	4
6	Rheologie von Polymeren	Willenbacher	SS	2 + 0	4
7	Stabilität disperser Systeme	Willenbacher	WS	2 + 0	4
8	Kontinuumsmechanik und Strömungen nicht Newtonscher Fluide	Hochstein	WS	2 + 0	4
9	Dimensionsanalyse strömungsmechanischer Fragestellungen	Hochstein	SS	2 + 0	4
10	Innovative concepts for formulation and processing of printable materials	Willenbacher	WS	2 + 0	4
11	Mischen, Rühren, Agglomeration	Rhein	SS	3 + 0	6
12	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	Schell	WS	2 + 0	4
13	Trocknungstechnik – dünne Schichten und poröse Stoffe	Schabel	WS	2 + 1	6
14	Mikrofluidik - Mikrofluidik und Fallstudien zu Mikrofluidik	Leneweit	WS	2 + 1	6

Kombinationen:

- Mindestens eines der Module 1 2 muss gewählt werden
- Module 1 und 3 nicht kombinierbar
- Module 5, 6, 7, 8 oder 9 nur wählbar, wenn nicht in gewählten Modulen 1, 2, 3 oder 4 enthalten
- Modul 10 kann nur gewählt werden, wenn nicht Modul 1 oder 7 gewählt wurde
- Fallstudien in Modul 14 können abgewählt werden, für das Modul werden dann 4 LP vergeben

Prüfungsmodus:

- mündliche Gesamtprüfung der Modulkombination

AUTOMATISIERUNG UND SYSTEMVERFAHRENSTECHNIK

(Automation and Process Systems Engineering)

Prof. Dr.-Ing. Th. Meurer

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS / SS	V+Ü	LP
1	Nonlinear Process Control	Meurer	WS	2 + 1	6
2	Principles of Constrained Static Optimization	Meurer/ Jerono	WS	1 + 1	4
3	Optimal and Model Predictive Control	Meurer	SS	2 + 1	6
4	Data-Based Modeling and Control	Meurer	WS	2 + 1	6
5	Regelung verteilt-parametrischer Systeme (Blockveranstaltung)	Meurer	SS	2 + 1	6
6	Estimator and Observer Design	Jerono	WS	2 + 1	6
7	Dynamik verfahrenstechnischer Systeme	Jerono	SS	2 + 1	6
8	Advanced Methods in Nonlinear Control	Meurer/ Jerono	SS	2 + 0	4
9	Prozessanalyse: Modellierung, Data Mining, Machine Learning	Heimann / Borchert	SS	2 + 0	4
10	Computer-Assisted Modeling and Control (Seminar und Praktikum)	Meurer	SS	S + P 1 + 2	4

Kombinationen:

- Modul 1 = Pflichtmodul
- Mindestens ein Modul aus 3, 4, 5, 6 muss gewählt werden.
- Für Modul 10 werden die Module 3, 4 und 6 emfpohlen

BIOPHARMAZEUTISCHE VERFAHRENSTECHNIK

(Biopharmaceutical Process Engineering)

Prof. Dr.-Ing. J. Hubbuch

Voraussetzung Wahlpflichtmodul: Biopharmazeutische Aufarbeitungsverfahren

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	L P
1	Formulierung und Darreichung biopharmazeutischer Wirkstoffe	Hubbuch	WS	2+0	4
2	Prozessmodellierung in der Aufarbeitung	Franzreb	SS	2 + 0	4
3	Industrielle Aspekte in der Bioprozesstechnologie	Hubbuch	SS	2 + 0	4
4	Ersatz menschlicher Organe durch technische Systeme	Pylatiuk	SS	2 + 0	4
5	Grundlagen der Medizin für Ingenieure	Pylatiuk	WS	2 + 0	4
6	BioMEMS I	Guber	WS	2 + 0	4
7	BioMEMS II	Guber	SS	2 + 0	4
8	BioMEMS III	Guber	SS	2 + 0	4
9	BioMEMS IV Das Modul läuft aus: Die Vorlesung wird im WS 23/24 letztmalig angeboten	Guber	SS	2+0	4
10	Herstellung und Entwicklung von Krebstherapeutika	Leneweit	WS	2 + 0	4
11	Kommerzielle Biotechnologie	Kindervater et al.	SS	2+0	4
12	Industrielle Bioprozesse	Kopf	WS	2 + 0	4
13	NMR-Methoden zur Produkt- und Prozessanalyse	Guthausen	WS	2 + 0	4

Kombinationen: Mindestens ein Modul aus 1-3

<u>Prüfungsmodus:</u> mündliche Prüfung der einzelnen Module; in einigen Modulen wird die Prüfung schriftlich angeboten. Im Modul "Kommerzielle Biotechnologie" ist die Prüfung bei großer Teilnehmerzahl schriftlich.

CHEMISCHE ENERGIETRÄGER - BRENNSTOFFTECHNOLOGIE

(Fuel Technology)

Prof. Dr.-Ing. T. Kolb, Prof. Dr.-Ing. R. Rauch

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Brennstofftechnik	Kolb	WS	2 + 1	6
2	Energieträger aus Biomasse	Bajohr	WS	2 + 1	6
3	Katalytische Verfahren der Gastechnik	Bajohr	SS	2 + 0	4
4	Raffinerietechnik – flüssige Energieträger	Rauch	SS	2 + 1	6
5	Grundlagen der Verbrennungstechnik	Trimis	WS	2 + 1	6
6	Hochtemperatur-Verfahrenstechnik	Stapf	SS	2 + 1	6
7	Chemische Verfahrenstechnik II	Wehinger	WS	2 + 1	6
8	Sicherheitstechnik für Prozesse und Anlagen	Schmidt	SS	2 + 0	4
9	Wirbelschichttechnik	Rauch	SS	2 + 0	4
10	Wasserstoff- und Brennstoffzellentechnologien	Trimis	SS	2 + 0	4
11	Chemical Hydrogen Storage	Wolf	WS	2 + 0	4

Kombinationen:

- Modul 1 = Pflichtmodul
- Das Modul "Raffinerietechnik flüssige Energieträger" kann nicht gewählt werden, wenn in einem anderen Fach das Modul "Liquid Transportation Fuels" gewählt wurde.

CHEMISCHE VERFAHRENSTECHNIK

(Chemical Process Engineering)

Prof. Dr.-Ing. G. D. Wehinger, Prof. Dr.-Ing. R. Dittmeyer

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Chemische Verfahrenstechnik II	Wehinger	WS	2 + 1	6
2	Heterogene Katalyse I wird im WS 23/24 nicht angeboten	Wehinger	WS	1 + 1	4
3	Heterogene Katalyse II wird im SS 24 nicht angeboten	Wehinger	SS	2 + 1	6
4	Reaktionskinetik	Müller	WS	2 + 1	6
5	Sol-Gel-Prozesse - Sol-Gel-Prozesse - Praktikum Sol-Gel-Prozesse	Müller	WS	2 + 0 0 + 1	6
6	Messmethoden in der chemischen Verfahrenstechnik - Messmethoden in der chemischen Verfahrenstechnik - Praktikum zu Messmethoden in der chemischen Verfahrenstechnik	Müller	SS	2 + 0 0 + 1	4 2
7	Reaktormodellierung mit CFD Modul wird ab SS 24 angeboten	Wehinger	SS	1 + 2	4
8	Rechnergestützte Reaktorauslegung Modul wird ab WS 24/25 angeboten	Wehinger	WS	1 + 2	6
9	Chemical Hydrogen Storage	Wolf	WS	2 + 0	4
10	Auslegung von Mikroreaktoren	Pfeifer	WS	3 + 0	6
11	Katalytische Mikroreaktoren - Katalytische Mikroreaktoren - Praktikum zu Katalytische Mikroreaktoren	Pfeifer	SS	2 + 0 0 + 1	4 2

Kombinationen:

- Modul 1: Pflichtmodul
- Modul 10 ist nicht wählbar nach Ablegen des Profilfachs "Mikroverfahrenstechnik" im Bachelor
- Module 10 und 11 dürfen nicht kombiniert werden, d.h. wählbar ist nur 10 oder 11
- Praktika (5, 6 und 11) können abgewählt werden, wobei sich die Modul-LP entsprechend verringern

- mündliche Prüfung der einzelnen Module;
- Ausnahme: Modul 7 und 8 sind Prüfungsleistungen anderer Art (schriftliche Ausarbeitung).

ENERGIEVERFAHRENSTECHNIK

(Energy Process Engineering)

Prof. Dr.-Ing. T. Kolb, Prof. Dr.-Ing D. Trimis, Prof. Dr.-Ing. D. Stapf

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Brennstofftechnik	Kolb	WS	2 + 1	6
2	Grundlagen der Verbrennungstechnik	Trimis	WS	2 + 1	6
3	Hochtemperatur-Verfahrenstechnik	Stapf	SS	2 + 1	6
4	Verbrennung und Umwelt	Trimis	SS	2 + 0	4
5	Energietechnik	Büchner	WS	2 + 0	4
6	Wasserstoff- und Brennstoffzellentechnologien	Trimis	SS	2 + 0	4
7	Sicherheitstechnik für Prozesse und Anlagen	Schmidt	SS	2 + 0	4
8	Messtechnik in der Thermofluiddynamik	Trimis	WS	2 + 1	6
9	Energieträger aus Biomasse	Bajohr	WS	2 + 1	6
10	Wirbelschichttechnik	Rauch	SS	2 + 0	4
11	Design of a Jet Engine Combustion Chamber	Harth	WS	0 + P	6

Kombinationen:

Modul 1 = Pflichtmodul, wenn nicht als weiteres Vertiefungsfach "Chemische Energieträger-Brennstofftechnologie" gewählt wurde

⁻ Module 2, 3: es muss mindestens eines der beiden Module 2 und 3 gewählt werden.

ENERGY AND COMBUSTION TECHNOLOGY

(Vertiefungsfach in englischer Sprache)

Prof. Dr. R. Rauch; Prof. Dr.-Ing D. Trimis

Voraussetzungen: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Applied Combustion Technology	Harth	SS	2 + 0	4
2	Laboratory Work in Combustion Technology	Harth	SS	0 + 2	4
3	Energy from Biomass	Bajohr, Dahmen	WS	2 + 1	6
4	Liquid Transportation Fuels	Rauch	WS	2 + 1	6
5	Design of a Jet Engine Combustion Chamber	Harth	WS	0 + P	6
6	Chemical Hydrogen Storage	Wolf	WS	2 + 0	4

Hinweise:

- Das Vertiefungsfach "Energy and Combustion Technology" darf nicht in Kombination mit dem Vertiefungsfach "Verbrennungstechnik" gewählt werden
- Das Modul "Liquid Transportation Fuels" kann nicht gewählt werden, wenn in einem anderen Fach das Modul "Raffinerietechnik flüssige Energieträger" gewählt wurde.

Entrepreneurship in der Verfahrenstechnik

Prof. Dr. N. Willenbacher

Voraussetzungen: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/SS	V+Ü	LP
1	Students Innovation Lab	Willenbacher, Terzidis	WS	2+P	12
2	Innovative Concepts for Formulation and Processing of Printable Materials	Willenbacher	WS	2+0	4
3	Stabilität disperser Systeme	Willenbacher	WS	2+0	4
4	Extrusion Technology in Food Processing	Emin	WS/SS	2+0	4
5	Verfahren und Prozessketten für Lebensmittel aus pflanzlichen Rohstoffen	Karbstein	WS	3 + 1	7
6	Liquid Transportation Fuels	Rauch	WS	2 + 1	6

Kombinationen:

Modul 1 ist Pflichtmodul

Innerhalb des Moduls "Students Innovation Lab" kann zwischen unterschiedlichen Projekten gewählt werden. Dabei ist zu beachten, dass die Wahl verschiedener Projekte nur in Kombination mit bestimmten Wahlmodulen möglich ist.

Kombination 1: Modul: Innovative Concepts for Formulation and Processing of Printable Materials oder

Modul: Stabilität disperser Systeme

Projekt: Innovation Project Porous Ceramics from the 3D Printer oder

Projekt: Innovation Project Electronic Devices from printable conductive materials

Kombination 2: Modul: Verfahren und Prozessketten für Lebensmittel pflanzlicher Herkunft

Projekt: Entwicklung eines innovativen Lebensmittelprodukts

Kombination 3: Modul: Extrusion Technology in Food Processing

Projekt: Innovative Food Design by Extrusion Technology

Kombination 4: Modul: Liquid Transportation Fuels

Projekt: Vollständig regenerativer Kraftstoff mit minimalen Emissionswerten für Schiffsmotoren

Prüfungsmodus: schriftliche/ mündliche Prüfung der einzelnen Module

GAS-PARTIKEL-SYSTEME

(Gas-Particle-Systems)

Prof. Dr.-Ing. A Dittler

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Gas-Partikel-Messtechnik	Dittler	WS	2 + 1	6
2	Gas-Partikel-Trennverfahren	Meyer	WS	2 + 1	6
3	Nanopartikel – Struktur und Funktion	Meyer	SS	2 + 1	6
4	Luftreinhaltung - Gesetze, Technologie und Anwendung	Dittler	SS	2+0	4
5	Dimensionsanalyse strömungsmechanischer Fragestellungen	Hochstein	SS	2+0	4
6	Datenanalyse und Statistik	Guthausen	WS	2 + 0	4
7	Wirbelschichttechnik	Rauch	SS	2 + 0	4
8	Digitalisierung in der Partikeltechnik	Gleiß	WS	1 + 1	4

Kombinationen:

- Modul 1 = Pflichtmodul
- Es kann nur eines der Module 5 oder 6 gewählt werden

<u>Prüfungsmodus:</u> sowohl mündliche Gesamtprüfung der Modulkombination als auch Prüfung der einzelnen Module möglich.

LEBENSMITTELVERFAHRENSTECHNIK

(Food Process Engineering)

Prof. Dr.-Ing. H. P. Karbstein

Voraussetzung Wahlpflichtmodul: es wird empfohlen, das WP-Modul "Ausgewählte Formulierungstechnologien" zu wählen

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/SS	V+Ü	LP
1	Verfahren und Prozessketten für Lebensmittel aus pflanzlichen Rohstoffen	Karbstein	WS	3 + 1	7
2	Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen	Karbstein	SS	2 + 1	5
3	Seminar Lebensmittelverarbeitung in der Praxis	Van der Schaaf	WS	1 P	2
4	Lebensmittelkunde und –funktionalität Das Modul wird im WS 23/24 nicht angeboten	Watzl	WS	2+0	4
5	Microbiology for Engineers	Schwartz	SS	2 + 0	4
6	Grundlagen der Lebensmittelchemie	Bunzel	SS	2 + 0	4
7	Ernährungsphysiologische Konsequenzen der Lebensmittelverarbeitung Das Modul wird nicht mehr angeboten. Prüfungen sind bis 31.03.2024 möglich	Briviba	WS	2+0	4
8	Einführung in die Sensorik	Scherf	SS	1 + 1	2
9	Water Technology	Horn	WS	2 + 1	6
10	Membrane Technologies in Water Treatment - Membrane Technologies in Water Treatment - Excursions: Membrane Technologies	Horn, Saravia	SS	2 + 1	6
11	Trocknungstechnik – dünne Schichten und poröse Stoffe	Schabel	WS	2 + 1	6
12	Mischen, Rühren, Agglomeration	Rhein	SS	3 + 0	6
13	Extrusion Technology in Food Processing	Emin	WS/SS	2 + 0	4

Kombinationen:

- Module 1 und 2 = Pflichtmodule
- Modul 5 darf nur von Studierenden im Studiengang Chemieingenieurwesen und Verfahrenstechnik gewählt werden

- mündliche Prüfung der einzelnen Module, auf Wunsch auch als Block.
- Ausnahme: Die Prüfung in Modul 10 ist schriftlich

NEUE BIOPRODUKTIONSSYSTEME - ELEKTROBIOTECHNOLOGIE

New Bio-Production Systems - Electro-Biotechnology

Prof. Dr.-Ing. D. Holtmann

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Elektrobiotechnologie	Holtmann	WS	2 + 1	6
2	C1-Biotechnologie Das Modul wird ab dem WS 24/25 angeboten	Neumann	WS	2 + 1	6
3	Biotechnologische Nutzung nachwachsender Rohstoffe	Syldatk	WS	2 + 0	4
4	Journal Club	Holtmann	SS	2 + 0	4
5	Biologie und Biotechnologie mit Pilzen	Ochsenreither	WS	1 + 1	4
6	Industrielle Biokatalyse	Rudat	SS	2 + 0	4
7	Industrielle Genetik	Ochsenreither	SS	2 + 0	4
8	Biofilm Systems	Hille-Reichel, Wagner	SS	2+0	4
9	Biobasierte Kunststoffe	Kindervater et al.	WS	2 + 0	4
10	Kommerzielle Biotechnologie	Kindervater et al.	SS	2 + 0	4
11	Electrocatalysis	Röse	SS	2 + 0	4
12	Elektrochemie	Bresser et al.	SS	2 + 0	4
13	Batterien und Brennstoffzellen	Krewer	WS	2 + 1	6
14	Batterie- und Brennstoffzellensysteme	Weber	SS	2 + 0	3
15	Modellbildung elektrochemischer Systeme	Weber	SS	2 + 0	3

Kombinationen:

- Modul 1 ist Pflichtmodul
- Es darf nur eines der beiden Module Batterien und Brennstoffzellen bzw. Batterie- und Brennstoffzellensysteme gewählt werden.
- Es wird empfohlen, das Modul Modellbildung elektrochemischer Systeme nur in Kombination mit einem der beiden Module Batterien und Brennstoffzellen bzw. Batterie- und Brennstoffzellensysteme zu belegen.

- mündliche Gesamtprüfung der Modulkombination
- Im Modul Kommerzielle Biotechnologie ist die Prüfung bei großer Teilnehmerzahl schriftlich.
- Im Modul "Journal Club" werden die zwei mündlichen Präsentationen bewertet, weiterhin ist eine aktive Teilnahme am Seminar Voraussetzung

PRODUKTGESTALTUNG

(Product Design)

Prof. Dr.-Ing. M. Kind, Prof. Dr.-Ing. H.P. Karbstein

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Produktgestaltung II Das Modul läuft aus: Die Vorlesung wird im WS 23/24 letztmalig angeboten	Kind	WS	2+0	4
2	Ausgewählte Formulierungstechnologien	Karbstein, van der Schaaf	SS	4 + 0	6
3	Sol-Gel-Prozesse - Sol-Gel-Prozesse - Praktikum Sol-Gel-Prozesse	Müller	WS	2 + 0 0 + 1	4 2
4	Grundlagen der Herstellungsverfahren der Keramik und Pulvermetallurgie	Schell	WS	2+0	4
5	Nanopartikel – Struktur und Funktion	Meyer	SS	2 + 1	6
6	Rheologie und Rheometrie	Hochstein	SS	2+0	4
7	Rheologie von Polymeren	Willenbacher	SS	2 + 0	4
8	Stabilität disperser Systeme	Willenbacher	WS	2 + 0	4
9	Verfahren und Prozessketten für Lebensmittel aus pflanzlichen Rohstoffen	Karbstein	WS	3 + 1	7
10	Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen	Karbstein	SS	2 + 1	5
11	Mischen, Rühren, Agglomeration	Rhein	SS	3 + 0	6

Kombinationen:

- Modul 1 = Pflichtmodul
- Praktikum in Modul 3 kann abgewählt werden, für das betreffende Modul werden dann 4 LP vergeben

- mündliche Gesamtprüfung der Modulkombination
 Ausnahme: Die Prüfung in Modul 2 ist schriftlich

PRODUKTIONSPROZESSE ZUR STOFFLICHEN NUTZUNG NACHWACHSENDER ROHSTOFFE

(Bioresource Engineering)

Prof. Dr. Nicolaus Dahmen

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/SS	V+ Ü	LP
1	Verfahren und Prozessketten für nachwachsende Rohstoffe	Dahmen, Sauer	WS/SS	2+1	6
2	Verfahren und Prozessketten für Lebensmittel aus pflanzlichen Rohstoffen	Karbstein	WS	3 + 1	7
3	Verfahren und Prozessketten für Lebensmittel aus tierischen Rohstoffen	Karbstein	SS	2 + 1	5
4	Energieträger aus Biomasse	Bajohr	WS	2 + 1	6
5	Biotechnologische Nutzung nachwachsender Rohstoffe	Syldatk	WS	2+0	4
6	Ausgewählte Formulierungstechnologien	Karbstein van der Schaaf	SS	4 + 0	6
7	Biobasierte Kunststoffe	Kindervater	WS	2 + 0	4
8	Kommerzielle Biotechnologie	Kindervater et al.	SS	2 + 0	4
9	Biofilm Systems	Hille-Reichel, Wagner	SS	2+0	4
10	Mischen, Rühren, Agglomeration	Rhein	SS	3 + 0	6
11	Fest Flüssig Trennung	Gleiß	WS	3 + 1	8
12	Innovationsmanagement für Produkte und Prozesse der chemischen Industrie	Sauer, Neumann	WS	2+0	4
13	Formulierung und Darreichung biopharmazeutischer Wirkstoffe *	Hubbuch	WS	2 + 0	4
14	Grundlagen der Lebensmittelchemie	Bunzel	SS	2 + 0	4
15	Membrane Technologies in Water Treatment	Horn, Saravia	SS	2 + 1	6

⁻ Membrane Technologies in Water Treatment

Kombinationen:

Modul 1 = Pflichtmodul

- mündliche Gesamtprüfung der Modulkombination
 Ausnahme: Die Prüfungen in den Modulen 6 und 15 sind schriftlich
- im Modul 8 ist die Prüfung bei großer Teilnehmerzahl ebenfalls schriftlich.

⁻ Excursions: Membrane Technologies

^{*} Die Inhalte des Moduls Biopharmazeutische Aufarbeitungsverfahren (Wintersemester) werden vorausgesetzt.

PROZESSE DER MECHANISCHEN VERFAHRENSTECHNIK

(Mechanical Process Engineering)

Prof. Dr.-Ing. H. Nirschl

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/SS	V+Ü	LP
1	Fest Flüssig Trennung	Gleiß	WS	3 + 1	8
2	Verarbeitung nanoskaliger Partikel	Nirschl	WS	2 + 1	6
3	Digitalisierung in der Partikeltechnik	Gleiß	WS	1 + 1	4
4	Nanopartikel – Struktur und Funktion	Meyer	SS	2 + 1	6
5	Mikrofluidik	Leneweit	WS	2 + 1	6
6	Gas-Partikel-Trennverfahren	Meyer	WS	2 + 1	6
7	Mischen, Rühren, Agglomeration	Rhein	SS	3 + 0	6
8	Verfahrenstechnische Apparate und Maschinen und ihre Prozessintegration	Nagel	WS	2+0	4
9	Materialien für elektrochemische Speicher	Tübke	WS/SS	2 + 0	4
10	Dimensionsanalyse strömungsmechanischer Fragestellungen	Hochstein	SS	2 + 0	4
11	Datenanalyse und Statistik	Guthausen	WS	2 + 0	4
12	Instrumentelle Analytik	Guthausen	SS	2 + 0	4
13	NMR im Ingenieurwesen	Guthausen	WS	2 + P	6
14	NMR-Methoden zur Produkt- und Prozessanalyse	Guthausen	WS	2 + 0	4
15	Ausgewählte Formulierungstechnologien	Karbstein, van der Schaaf	SS	4 + 0	6
16	Projektorientiertes Softwarepraktikum	Krause	SS	1 + 3	4
17	Numerische Methoden in der Strömungsmechanik	Thäter, Krause	SS	2 + 1	4
18	Luftreinhaltung - Gesetze, Technologie und Anwendung	Dittler	SS	2+0	4
19	Industrielle Bioprozesse	Kopf	WS	2 + 0	4
20	Sol-Gel-Prozesse - Sol-Gel-Prozesse - Praktikum Sol-Gel-Prozesse	Müller	WS	2 + 0 0 + 1	6
21	Gas-Partikel-Messtechnik	Dittler	WS	2 + 1	6
22	Seminar: Strömungsrechnung	Krause, Thäter	SS	2 + 1	3

Kombinationen:

- Fächer, die bereits im Rahmen eines Profilfachs (Bachelor) gehört wurden, sollen nicht gewählt werden
- Die Fallstudien in Modul Mikrofluidik können abgewählt werden, für das Modul werden dann 4 LP vergeben
- Das Praktikum Sol-Gel-Prozesse kann abgewählt werden, für das Modul werden dann 4 LP vergeben
- Es darf nur eines der Module NMR im Ingenieurwesen oder NMR-Methoden zur Produkt- und Prozessanalyse gewählt werden. Beide Module beinhalten dieselbe Lehrveranstaltung. Das Modul NMR im Ingenieurwesen beinhaltet zusätzlich noch ein Praktikum.

- mündliche Prüfung der einzelnen Module
- Ausnahme: Die Prüfung in Modul 15 ist schriftlich

TECHNISCHE THERMODYNAMIK

(Technical Thermodynamics)

Prof. Dr. S. Enders, Prof. Dr.-Ing. S. Grohmann

Voraussetzung Wahlpflichtmodul: Thermodynamik III

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Statistische Thermodynamik	Enders	SS	2 + 1	6
2	Kältetechnik B – Grundlagen der industriellen Gasgewinnung	Grohmann	SS	2 + 1	6
3	Physical Foundations of Cryogenics	Grohmann	SS	2 + 1	6
4	Cryogenic Engineering	Grohmann	WS	2 + 1	6
5	Grenzflächenthermodynamik	Enders	SS	2 + 1	6
6	Komplexe Phasengleichgewichte	Enders	WS	2 + 1	6
7	Thermische Trennverfahren II Das Modul läuft aus: Die Vorlesung wird im WS 23/24 letztmalig angeboten	Kind	WS	2 + 1	6
8	Vakuumtechnik I	Day	WS	2 + 1	6
9	Sol-Gel-Prozesse - Sol-Gel-Prozesse - Praktikum Sol-Gel-Prozesse	Müller	WS	2 + 0 0 + 1	4 2
10	Reaktionskinetik	Müller	WS	2 + 1	6
11	Messtechnik in der Thermofluiddynamik	Trimis	WS	2 + 1	6
12	Chem-Plant	Enders	SS	Projekt	4

Kombinationen:

- Mindestens 2 Module aus 1 6
- Praktikum Sol-Gel-Prozesse kann abgewählt werden, für das Modul werden dann 4 LP vergeben

THERMISCHE VERFAHRENSTECHNIK

(Thermal Process Engineering)

Prof. Dr.-Ing. M. Kind, Prof. Dr.-Ing. T. Wetzel

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Thermische Trennverfahren II Das Modul läuft aus: Die Vorlesung wird im WS 23/24 letztmalig angeboten	Kind	WS	2 + 1	6
2	Wärmeübertragung II	Wetzel, Dietrich	WS	2 + 0	4
3	Stoffübertragung II	Schabel	WS	1 + 2	6
4	Trocknungstechnik – dünne Schichten und poröse Stoffe	Schabel	WS	2 + 1	6
5	Wärmeübertrager	Wetzel	WS	2 + 0	4
6	Hochtemperatur-Verfahrenstechnik	Stapf	SS	2 + 1	6
7	Messtechnik in der Thermofluiddynamik	Trimis	WS	2 + 1	6
8	Statistische Thermodynamik	Enders	SS	2 + 1	6
9	Sicherheitstechnik für Prozesse und Anlagen	Schmidt	SS	2 + 0	4
10	Kältetechnik B – Grundlagen der industriellen Gasgewinnung	Grohmann	SS	2 + 1	6

Kombinationen:

Prüfungsmodus: mündliche Gesamtprüfung der Modulkombination

⁻ Mindestens 1 Modul aus 1 – 5 und mindestens 1 weiteres Modul aus 1 - 7

UMWELTSCHUTZVERFAHRENSTECHNIK

(Environmental Process Engineering)

Prof. Dr. H. Horn

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Water Technology	Horn	WS	2 + 1	6
2	Gas-Partikel-Trennverfahren	Meyer	WS	2 + 1	6
3	Verbrennung und Umwelt	Trimis	SS	2 + 0	4
4	Applied Combustion Technology	Harth	SS	2 + 0	4
5	Industrial Wastewater Treatment	Horn	SS	2 + 0	4
6	Brennstofftechnik	Kolb	WS	2 + 1	6
7	Sicherheitstechnik für Prozesse und Anlagen	Schmidt	SS	2 + 0	4
8	Luftreinhaltung - Gesetze, Technologie und Anwendung	Dittler	SS	2+0	4
9	Liquid Transportation Fuels	Rauch	WS	2 + 1	6

Kombinationen:

- Mindestens eines der Module 1 4 muss gewählt werden
- Modul 9 "Liquid Transportation Fuels" darf nicht gewählt werden, wenn in einem anderen Vertiefungsfach das Modul "Raffinerietechnik flüssige Energieträger" gewählt wurde.

VERBRENNUNGSTECHNIK

(Combustion Technology)

Prof. Dr.-Ing D. Trimis

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Grundlagen der Verbrennungstechnik	Trimis	WS	2 + 1	6
2	Hochtemperatur-Verfahrenstechnik	Stapf	SS	2 + 1	6
3	Messtechnik in der Thermofluiddynamik	Trimis	WS	2 + 1	6
4	Verbrennung und Umwelt	Trimis	SS	2 + 0	4
5	Wasserstoff- und Brennstoffzellentechnologien	Trimis	SS	2 + 0	4
6	Verbrennungstechnisches Praktikum	Harth	SS	0 + 2	4
7	Energietechnik	Büchner	WS	2 + 0	4
8	Strömungs- und Verbrennungsinstabilitäten in technischen Feuerungssystemen	Büchner	SS	2+0	4
10	Brennstofftechnik	Kolb	WS	2 + 1	6
11	Energieträger aus Biomasse	Bajohr	WS	2 + 1	6
12	Design of a Jet Engine Combustion Chamber	Harth	WS	0 + P	6

Prüfungsmodus: mündliche Gesamtprüfung der Modulkombination

Kombinationen:Modul 1 ist Pflichtmodul

Wassertechnologie

(Water Technology)

Prof. Dr. H. Horn

Voraussetzung Wahlpflichtmodul: nein

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Water Technology	Horn	WS	2 + 1	6
2	Wasserbeurteilung - Naturwissenschaftliche Grundlagen der Wasserbeurteilung Das Modul läuft aus und wird im WS 23/24 letztmalig angeboten. Ab dem WS 24/25 kann alternativ das Modul Fundamentals of Water Quality belegt werden.	Abbt-Braun	WS	2 + 1	6
3	Industrial Wastewater Treatment	Horn	SS	2 + 0	4
4	Membrane Technologies in Water Treatment - Membrane Technologies in Water Treatment - Excursions: Membrane Technologies	Horn, Saravia	SS	2 + 1	6
5	Practical Course in Water Technology	Horn et al.	WS	2 P	4
6	Struktur und Reaktionen aquatischer Huminstoffe Das Modul läuft aus und wird im SS 24 letztmalig angeboten	Abbt-Braun	SS	1 + 0	2
7	Microbiology for Engineers	Schwartz	SS	2 + 0	4
8	Biofilm Systems	Hille-Reichel, Wagner	SS	2+0	4
9	Instrumentelle Analytik	Guthausen	SS	2 + 0	4
10	NMR im Ingenieurwesen	Guthausen	WS	2 + P	6
11	NMR-Methoden zur Produkt- und Prozessanalyse	Guthausen	WS	2 + 0	4

Kombinationen:

- Modul 1 = Pflichtmodul
- Module 2, 3, 4: es muss ein Modul aus 2, 3 oder 4 ausgewählt werden
- Modul 2 = nicht wählbar nach Ablegen des Profilfachs "Wasserqualität und Verfahrenstechnik"
- Es darf nur eines der Module NMR im Ingenieurwesen oder NMR-Methoden zur Produkt- und Prozessanalyse gewählt werden. Beide Module beinhalten dieselbe Lehrveranstaltung. Das Modul NMR im Ingenieurwesen beinhaltet zusätzlich noch ein Praktikum.

- mündliche Gesamtprüfung der Modulkombination
- Ausnahme: Die Prüfung in Modul 4 ist schriftlich

KOOPERATION UNIVERSITÄT HOHENHEIM: Nachhaltige Produktion nachwachsender Rohstoffe

(Sustainable Bioresource Production)

Prof. Dr. Andrea Kruse (Universität Hohenheim)

Voraussetzungen:

- Wahlpflichtfach "Produktqualität und Qualität der Produktion pflanzlicher Rohstoffe"
- Das Vertiefungsfach ist nur in Kombination mit dem Vertiefungsfach "PRODUKTIONSPROZESSE ZUR STOFFLICHEN NUTZUNG NACHWACHSENDER ROHSTOFFE" wählbar
- Voranmeldung erforderlich! Nähere Informationen erhalten Sie bei Prof. Dr. N. Dahmen

Vorlesungen und Prüfungen des Wahlpflichtmoduls "Produktqualität und Qualität der Produktion pflanzlicher Rohstoffe" sowie der unten aufgeführten Vertiefungs-Module werden an der Universität Hohenheim angeboten.

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	LP
1	Bewässerungssysteme für Nahrungs- und Energiepflanzen	Müller	WS	6
2	Stoffdynamik in Agrarökosystemen	Müller	WS	6
3	Properties of Biobased Resources and Products	Zörb	WS	6
4	Agricultural Production of Biobased Resources	Lewandowski	WS	6
5	Agricultural Production and Residues	Gallman	WS	6
6	Erneuerbare Energieträger	Müller	WS	6
7	Simulation einer Bioraffinerie mit AspenPlus	Kruse	WS	6
8	Grundoperationen einer Bioraffinerie	Kruse	WS	6