Sem	Kernkompetenzen, ÜQ und Projekt 28 LP	Summe 22 LP		Summe 40 LP				
1	Pflichtmodul: Anlagendesign in der Biotechnologie 6 LP	Rechnergestützte Methoden 6 - 16 LP 2 – 4 Module	Verfahrenstechnik 6 - 16 LP 2 – 4 Module					
	Pflichtmodul: Wiss. Praxis 2 LP			 Vertiefungsfächer Themenbereich Bioverfahrenstechnik, Biotechnologie Es werden zwei bis vier Vertiefungen gewählt Umfang je Vertiefung: 10 – 20 LP 				
2	Pflichtmodul: Thermodynamik im Bioingenieurwesen 6 LP							
	ÜQ 2 LP							
3	Projekt (intern) ODER Praktikum (extern) 12 LP			 Modulwahlen innerhalb der Vertiefungen möglich 				
4	Masterarbeit – 30 LP							

Master BIW Studienplan 2025

- Flexibler Aufbau
- Mehr Fokus auf dem Bereich Biotechnologie/ Bioverfahrenstechnik

Verfahrenstechnik und Rechnergestützte Methoden

Rechnergestützte Methoden – Module im Umfang von 6 – 16 LP

- Advanced Artificial Intelligence
- Computational Fluid Dynamics and Simulation Lab
- Data-Based Modeling and Control
- Datengetriebene verfahrenstechnische Modelle in Python
- Deep Learning and Neural Networks
- Digitalisierung in der Partikeltechnik
- Introduction to Numerical Simulation of Reacting Flows
- Nonlinear Process Control
- Numerical Simulation of Reacting Multiphase Flows
- Numerische Strömungssimulation
- Optimal and Model Predictive Control
- Paralleles Rechnen
- Principles of Constrained Static Optimization
- Prozessanalyse: Modellierung, Data Mining, Machine Learning
- Reactor Modeling with CFD
- Simulationstechnik

Verfahrenstechnik - Module im Umfang von 6 – 16 LP

- Additive Manufacturing for Process Engineering
- Digital Design in Process Engineering
- Dynamik verfahrenstechnischer Systeme
- Fest-Flüssig-Trennung
- Kinetik und Katalyse
- Materialien für Elektrochemische Speicher und Wandler
- Mischen, Rühren, Agglomeration
- Partikeltechnik
- Raffinerietechnik flüssige Energieträger
- Rheologie von Polymeren
- Sicherheitstechnik für Prozesse und Anlagen
- Stabilität disperser Systeme
- Thermische Verfahrenstechnik II
- Thermische Verfahrenstechnik III
- Verarbeitung nanoskaliger Partikel
- Verfahrenstechnische Apparate und Maschinen und deren Prozessintegration
- Wasser- und Brennstoffzellentechnologien
- Wärmeübertrager

Vertiefungsbereich

Folgende Fächer mit einem Umfang von je 10 – 20 LP können gewählt werden

- Biopharmazeutische Verfahrenstechnik
- Health Technology
- Industrielle Biotechnologie
- Lebensmittelverfahrenstechnik
- Lebensmittelproduktgestaltung
- Mikro-Bioverfahrenstechnik
- Neue Bioproduktionssysteme Elektrobiotechnologie
- Umwandlung nachwachsender Rohstoffe
- Wassertechnologie

Zu wählen sind zwei bis vier Vertiefungen, in Summe 40 LP.

Die wählbaren Module sind dem Vertiefungsfachkatalog oder Modulhandbuch zu entnehmen.

LP								
	Pflichtmodul 1 6 LP	Wiss. Praxis 2 LP	Numerische Strömungs- simulation 6 LP	Mikrofluidik mit Praktikum, 6 LP	Biopharmazeutsiche Aufarbeitungsverfahren 6 LP	Formulierung und Darreichung Bioph. Wirkstoffe 4 LP		
2	Pflichtmodul 2 6 LP	ÜQ – frei wählbar 2 LP	Wärmeübertrager 4 LP	Mischen, Rühren, Agglomeration, 6 LP	Produktionsprozesse nachwachsender Rohstoffe 6 LP	Ersatz menschlicher Organe 4 LP		
3	Projekt 12 LP		Simulationstechnik, 6 LP	Mikrosystems in BioProc.Eng., 4 LP	Biobasierte Kunststoffe, 4 LP	Energieträger aus Biomasse 6 LP		
4	Masterarbeit 30 LP							

Beispiel für einen Studienplan

Vertiefung

Health Technology, 14 LP

- Biopharmazeutische Aufarbeitung
- Formulierung und Darreichung
- Ersatz menschlicher Organe

Umwandlung nachwachsender Rohstoffe, 16 LP

- Produktionsprozesse nachwachsender Rohstoffe
- Biobasierte Kunststoffe
- Energieträger aus Biomasse

Mikro-Bioverfahrenstechnik, 10 LP

- Mikrofluidik mit Praktikum
- Mikrosystems in Bioprocess Engineering

Verfahrenstechnik 10 LP

- Wärmeübertrager
- Mischen, Rühren, Agglomeration

Rechnergestützte Methoden 12 LP

- Numerische Strömungssimulation
- Simulationstechnik

Praktikum/ Projekt

Kann entweder in der Industrie oder an einer Universität/ Forschungseinrichtung durchgeführt werden. Auch ein semesterbegleitendes Projekt am KIT ist möglich.

